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1 Introduction 

This paper addresses a discussion which was left unresolved at the first Forestry Canada 
Modelling Working Group Meeting (Ottawa, 1985): the use of basic research models in practical 
applications. In doing so, components of a larger question - the role of basic research in the decision 
making process - will be touched upon. The focus of this paper is on temporal dynamics and does 
not deal explicitly with spatial variation which has been discussed by other researchers in these 
proceedings. 

The approach begins with an .examination of differences between research models which are 
used for understanding (Le. extend 0ur kn0wledge of the world around us) and forecasting models 
that are used in decision support roles (Le. to support actions to change the future). The role of 
forecasting models in decision support is briefly examined. An argument in favour of an ecosystem 
view for stand level predictionS will then be given and illustrated with FORCYTE-11. A set of 
software utilities (PROBE) which codify the main steps for using simulation models in decision 
support is described. Finally, an example FORCYTE-ll eCosystem simlliation is presented, to 
illustrate the advantages of this approach. 

2 Scientific Research and Decision Support System (DSS) Models 

Today's society exists in what has been referred to as the information age. Certainly, the 
information needs of society, as well as the availability of this information, are increasing very rapidly 
and this has driven an explosive development of electroruc data systems to store and manipulate this 
information. Natural resource managers clearly can, and do, take advantage of these systems but in 
defining the role of research and models we must be clear on the relative meaning and use of data, 
facts, knowledge and wisdom in the decision making process. Figure 1, which has been adapted from 
Drew (1989), presents these levels of understanding in a hierarchical framework. The ultimate role 
of the decision maker is to exercise wisdom while integrating components from the lower levels. 

Most of the questions that managers must face deal with the future outcomes of actions. taken 
today - actions which are often highly technologically oriented and innovative. Current society 
emphasis is given to assessment of the long-term and large-scale impacts. In some instances (e.g., high 
yield, short rotation plantations), the managed systems are so beyond our historical experience that 
we do not have complete experimental data with which to empirically describe the future. Indeed it 
is a question of more than philosophical interest whether we can, or should, rely on experimental data 
alone. At least one author (Kimmins 1985) has pointed out that to do so in forestry would lead to 
the future shock described by Toffler (1970). In' this context the role of research, and the challenge 
to the scient,ific.community, is to find ways to feed the best and latest scientific knowledge into the 
decision-making process. 

Scientists, however, face several traditional barriers in rising to this challenge. In the first place, 
scientists are generally trained to generate and test hypotheses. Predictions are made for testing their 
hypotheses rather than for selecting a possible future. course of action. This is enhanced. by the 
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Figure 1. Levels of Understanding 

DATA - Recorded observations 

FACTS - Data which have been verified and validated 

INFORMATION - Facts communicated and shared 

KNOWLEDGE - Information assembled, distilled, and tested 

WISDOM - The judicious exercise of knowledge, using foresight and judgement 

Adapted from Drew (1989) 

traditionally conservative nature of the scientific approach. Although the really big scientific 
discoveries are made by seemingly monumental leaps of faith, most scientists prefer to stay on the 
safer ground provided by hard data. They like to deal with facts, and are not professionally well 
equipped to deal with opinions, speculation, and "guesstimates". Unfortunately, for many of the 
critical issues facing resource managers today, all the basic facts are not yet known. However. 
decisions must, and will, be made. This poses the following conundrum for the scientific community: 

The dilemma of mankind is that all facts are about the past, but decisions must 
be made for the future where the facts are not yet known.1 

Professional decision makers also face this conundrum but embrace it as their stock in trade. 
They are less concerned about being wrong sometimes than with being right more often than wrong. 
If the facts, of the future were known, the decision maker could be replaced by a set of rules (a 
program or a machine). This is where the wisdom part comes in - part of the decision process must 
include weighing a number of the alternative future's attributes, some of which may only be guessed , 
at. against each other and against a set of selection criteria. This is an inherently non-linear process 
in which the successful manager employs a healthy dose of foresight and judgement. 

3 Models for Understanding and Models for Forecasting 

To try to evaluate how modelling might serve to help resolve the apparent conflict between 
scientific rigour and decision-making needs, two classes of models are examined: models for 
understanding and models for forecasting. 

1 Quoted in an address by Gordon Baskerville, Dean of Forestry, University of New Brunswick. 
He attributes it to Pille Binnel. 
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3.1 Models for: Understanding 

This class of models forms the basic building blocks of the scientific method. They are used for 
formulating ideas and for integrating knowledge and facts in a testable concept of the real-world 
system. Such models are intrinsic expressions of the hypothesis: "the inferred knowledge is a good 
representation of the real-world system under study". The predictors (also called monitors or output) 
of such models are testable indicators of the model performance because an underlying principle of 
the scientific method is to continually test the hypothesis. 

In general, only an isolated portion of the total real world is considered, facts collected for this 
sub-system and the model built to encompass the knowledge that is gleaned from those facts. As such, 
the data for these models generally come from well controlled experiments - (Le. the physical 
subsystem has a well-defined environment and well defined boundaries). These data can be in the 
form of recorded observations or may be previously established relationships (e.g., knowledge 
expressed in other models). In this sense, the models can be used to infer new knowledge from other 
knowledge and observed facts. 

The underlying scientific approach is clear: assembly of a system concept,integration in a model 
of that system, use of the model to make testable predictions and comparison of the predictions 
against real-world observations. Again, the hypothesis being tested is the system "knowledge" and 
system concepts expressed by the model. The objective is to make the error term vanish: 

error = {Predicted Quantity} - {Observed Quantity } 

Such a vanishing.error term is sought not only in a quantitative sense but also in terms of the 
completeness of the understanding and concepts. We seek to be able to "explain" with arbitrary 
accuracy (subject to computational and theoretical limitations) as many aspects as we can of what we 
think is objective reality. The purpose of explanatory models and their output predictions is therefore 
to make a prediction which can be tested against actual data. 

3.2 Models for Forecasting (Predictions for Decision SupPOrt) 

Forecasting models differ from explanatory models in several important ways, which are 
described below. The quotation by Baskerville given earlier suggests the importance of this class of 

. models in a DSS. Remembering how the successful manager makes decisions for a future where the 
facts are not yet known leads to the following codicil which applies to decision support models: 

The objective is not to be 100% right - it is just not to be 100% wrong. 

A good example-by-analogy can be seen in terms of a financial investment. The investment 
broker (who represents the "model"), forecasts that a particular investment (Le. managemenl action) 
will lead to a healthy profit. An investor will probably tolerate· being 60% correct, and accepting a 
modest gain, but will not accept suffering a significant loss. To some extent the investor's confidence 
in the broker is established by the broker's track record. More generally, however, the wise investor 
looks at the factors used by the broker in assembling a forecast as well as the broker's track record; 
the investor uses judgement in accepting a broker's recommendation. 

A further piece of insight can be obtained from the investment analogy. Even though brokers 
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will not give any guarantees (and perhaps not even an estimate in the uncertainty of their 
predictions), their information is of more use to the investor than that provided by analysts who 
explain with 100% precision the prices of yesterday's stocks, but won't make any guesses about 
tomorrow's. In Bill Meades' (ForCan, NeFC) words: 

FORESIGHT with some uncertainty is more valuable 
than HINDSIGHT without error! 

Models for DSS must be able to compare multiple options. They can't focus on just one solution 
because if there are no options (choices), then there is no decision to be made and there is no need 
for the decision-maker, let alone a decision support tool! The job of DSS models is to provide 
estimates of possible alternatives between which the decision maker can make his choice. The results 
of such models are used to help select a perceived future - i.e. to support taking current action. 
(Contrast .this with the testing-against-reality use of research model's predictions.) 

Obviously, the quantities predicted by such models must meet the application needs of the user. 
This requires that the model produces estimates to which the user can assign value attributes. 
Examples of such attributes include profitability, sustainability, wildlife habitat and environmental 
quality. These reflect the goals and other constraints of the decision process. In other words, the 
model must permit the user to rank the alternative future outcomes against a set of user-defined 
criteria and so choose between the alternative current actions. 

Such models do not operate with real data because they operate in the time domain of the 
future. In fact, there may be as much, or more, uncertainty about these future conditions as there is 
about the correctness of the knowledge base embodied in the model. Put another way, assumptions 
must be made by the user both about the model itself and the future fact base on which it operates. 
This fact is often overlooked by both builders and users of forecasting models. 
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The role of models in the 
decision-making process is illus­
trated in Figure 2. The inter­
ventions or options (thinning 
levels 1,2,3) that a forest man­
ager will consider are con­
s t r a i ned bot h by an 
understanding of the system 
(including knowledge of new 
technologies) and by the. 
manager's intuition as to what 
the future outcomes will be -
their perceived benefits. In the 
example shown, option 1 is a 
particular thinning regime. The 
forest manager has some pre­
conceived idea of what the con­
sequence of thinning of some 
particular spacing is going to be 
(e.g., fewer but bigger, trees). 

Figure 2 Simulation Models and the Decision Maker. 

But there are other options too: . 
for example, thinning could be done at different spacings, the stand could be left alone or herbicides 
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could be applied to suppress competition. Choosing one from amongst the many involves the 
comparison of a number of characteristics reflecting the management goals - such as volume of 
wood, stem size, mean annual increment or cost of treatment. In addition, the manager's options may 
also be subjected to environmental constraints such as maintaining site productivity or providing 
suitable wildlife habitat. How then does the forest manager rank the available options given such 
multiple criteria?" 

One of the roles of a DSS model is to try to put some numbers to the various alternative futures 
(encapsulate them mathematically). As shown in Figure 2, the available options are translated into 
input cases which can in turn be fed into the model. The model is thus used to provide fast-forward 
views into the possible futures. The predicted quantities relevant to the manager's needs, can be 
evaluated, compared and ranked for their perceived benefit- i.e. against a selection criteria. It is 
important to note that the function of the model is merely to support, or to challenge, the forest 
manager's hunches. It can not make the selection as this generally involves the trading-off of factors 
and benefits of which the model is ignorant - in other words, the ultimate selection requires theexer­
cise of wisdom, generally considered a uniquely human trait. 

3.3 Using Explanatory Models for Decision Support 

Successful explanatory models can, and are, used as decision support tools. The reasons are very 
obvious. First of all, they use or encompass existing knowledge. That is, after all, why they are built­
they are a statement of how the modeller thinks things work. Secondly, they are also good backwards 
predictors (Le. they explain the data). If the data are recent, these models are good at predicting the 
current reality. Finally, as a corollary, if the future data are assumed to be like those of the past (in 
other words, if the data domain of relevant experiments up to now is echoed in the future), then they 
are the best possible forward predictor for peeking into the future. They work as well as they did with 
the past data-if the assumption of similar conditions is valid. 

3.3.1 Pitfalls of Using Explanatory Models as Predictive Tools 

1. The management interventions (options) that can be explored are completely constrained by the 
modeller's paradigm, or world-view. This viewpoint has a very definite impact on whether the 
explanatory model can be used for a particular predictive application. While-perfectly adequate 
for the purposes for which the model was built (i.e. synthesis of information to generate 
knowledge), these options may not match the requirements of the resource manager. 

A stand model can be used as a simple example to illustrate this point. If the model has been 
assembled from stand yield data for a commercial tree species, it may provide an excellent tool 
for a woodlot manager interested in the expected yield of this species. It is unlikely, however, 
to include the necessary "levers and switches" that a wildlife manager may need to use ~he model 
as an aid in designing an ungulate management plan. This illustrates the different requirements 
of different management responsibilities - the same object (a forest stand) seen through 
different windows (manager's paradigm and needs), has different attributes highlighted.2 

2 It is useful to think of the model as a cartoon of reality - an abstract simplification which focuses on the 
perceived important factors. The cartoon's abstraction depends on the point the cartoon is trying to make. 
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This stand model may be used as a further example in which a second coexisting tree species, 
previously considered a "weed", becomes economically important. A whole new set of 
management options may be required - options whose effect on the forest may not be reflected 
in the past data records. Such changes may not have been considered in the original model 
because they were not part of the modeller's paradigm. One doesn't have to look further than 
the boreal niixedwood to find concrete examples of this phenomenon. 

In addition, researchers (often the architects of models) and managers usually have very 
different training and have very different job responsibilities. In the exercise of their professional 
duties, they view the world through different "windows". Even within the harrower universe of 
the research scientists, widely different windows onto "reality" exist - compare for example the 
ecologists' description of a given stand with that of a biometrician. 

2. The variables which are included in the output predictions may not suit the application needs. 
An example of this is a biological model that explains well the ecosystem structure and function 
of the forest. First of all, it is very unlikely that it will have cost and benefit analysis in it, which 
the woodlot manager of a sawmill company would probably want. Secondly, the temporal scale 
is likely to be inappropriate for this manager. Even a good explanatory model may not simulate 
the temporal dynamics that encompass the range that is required for a management model. For 
~xample, in stand management,· the simulation should be at least one rotation, but an 
explanatory (or understanding) model, may not have any of that capability. If it does, it may 
require a Cray super-computer to execute the model simulation over the long time period 
required. 

3. Potentially the most serious pitfall is that, for a given object of study, explanatory and predictive 
models encompass a different scope. To explain an object or. phenomenon, the traditional 
scientific approach is to focus on the objects and events in space and time that are contained 
within and below the level of the object being explained. For example, to understand the 
growth of a single tree, the researcher looks inwards at the tree and its internal processes. The 
external environment is assumed to be under the control of the researcher (implicitly or 
explicitly). If the process being modelled requires light or a nutrient source, then it is assumed 
that those are supplied, and at best, they are represented as an external driving parameter. The 
system is bounded by an imaginary box that encompasses the phenomenon which is being 
modelled. Transfers are allowed in, but any processes outside that box are not included. 

On the other hand, if the purpose is to predict the object's behaviour, the system has, to be 
expanded. to include all the things that influence that object. To predict a real tree's growth, a 
representation of the tree's internal processes is still required, although not necessarily to the 
same level as detail as in an explanatory model. In addition, however, changes in the 
environment which affect its growth have to be included explicitly. To predict how a tree is 
going to grow, the effect of changes in supply of resources such as light, nutrients and moisture 
mUst be considered. In summary, the difference is that to understand a particular object, we 
look inwards; to predict we have to look outwards. 

The problem of scope can be further clarified by using the concept of "Levels of Biological 
Organization and Corresponding Levels of Integration". For example, the level of integration 
below an organism requires an examination of the objects and events at the organ level. To 
understand the tree, physiological processes such as transpiration, assimilation of nutrients and 
translocation of photosynthates have to be considered. If the objective is to understand above 
that, then we must look outwards. 
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The question that immediately arises is "What is the appropriate level of integration looking 
outwards (above the individual or organism)?" This was well answered by Rowe (1961), who 
stated that the appropriate level of integration above the organism is the ecosystem (the 
organism and its environment). 

4 Ecosystem Models for Stand-Level Predictions 

It follows from the above ideas that, in order to forecast the development of a tree species at 
the forest stand level (i.e. model for predictive purposes), the tree species and its surrounding 
environment have to be considered. This simple concept means that a management intervention 
(some action at the forest stand level that affects the individual trees), affects not only the internal 
processes of the tree species under consideration, but also processes that are taking place throughout 
the stand (e.g., litter decomposition). This affects the other tree species, understorey plants, soil and 
the associated ecosystem processes, all of which add up to influence the managed tree species. In 
other words, management intervention affects more than just the target species and is likely highly 
non-linear. 

Management intervention are the actions that are possible within the system being simulated. 
This in turn, determines the components and processes that must be included in the ecosystem model. 
The model defines the scope of 'the expanded .system and is constrained by the modeller's concept 
of the system. If climatic effects are not in the modeller's paradigm, then temperature and moisture 
fluctuations caused by climatic change will not be considered. 

Unfortunately a paradox arises: ecosystem models tend to be nearly as complex as the systems 
they are trying to simulate! The ecosystem model FORCYfE-11, which is discussed below, has been 
accused as being a leading example of this particular phenomenon.3 

5 The FORCYfE-ll Ecosystem Model 

FO R CYrE-11 is a complex stand-level ecosystem model that was developed by Hamish Kimmins and 
Kim ScouUar under contract to Forestry Canada.4 This model is currently under evaluation at 
several Forestry Canada centres, including an assessment of its ability to predict medium to long-term 
consequences of different management practices. 

FORCYfE-ll is actually a system of models, as is shown in the structure diagram (Figure 3). 
The modules "TREEGROW, PLNTGROW, BRYOGROW and FORSOIlS" are descriptive growth 
sub-models which are calibrated with empirical data. They encompass the knowledge ("fact base") 
of the past. The output from these are input into a simulation program module called "MANAFOR" 
(MANAgement of the FORest). Several trees as well as understorey plants, mosses and the soil 
component can be included in a single ecosystem simulation. MANAFOR links the output from these 
descriptive models by process simulation which explicitly includes nutrient dynamics and light com-

3 The Objective in this paper is not to explain, defend or criticize FORCYTE-ll, but to use it as an 
example of ecosystem-level process simulation. 

4 Forestry Canada, NW Region. Scientific Authority: MJ. Apps. This work is supported (in part) by the 
Federal Panel on Energy R&D (PERD) through the ENFOR (Energy From the Forest) program. 



" 

petition within the canopy. 
In other words, the descrip­
tive past growth records that 
were encompassed at this 
ecosystem level are manipu­
lated within MANAFOR. If 
management interventions 
(in the MANADATA file) 
cause changes in the ecosys­
tem from which these data 
were collected, then it will 
simulate the change by per­
turbing the past growth 
records through competition 
for light and nutrients in 
proportion to the changes in 
conditions. This is done 
through a "phenomenolog­
ical look-up" approach in 
which "empirical rules" cali­
brated in the setup modules 
are applied when growth 
conditions change (Figure 
4). This dynamic approach is 
further explained in Figure 
5. The change in a state 
variable over time (e.g., 
stemwood biomass) is per­
turbed by new growth con­
ditions. 
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While temperature Figure 3 Structure of FORCYTE-ll - Program Modules and I/O 
effects and moisture com- Files. (Diagram courtesy of Bruce Pike.) 
petItion are two other 
important determinants of plant growth in ecosystems (for example, they influence stand productivity, 
species assemblages and litter decomposition rates), they are not simulated within the model 
(although their effects are implicitly contained within the input data). This is an example of a 
phenomena mentioned earlier, which is that they were not in the viewpoint (or paradigm) at the time 
the model was originally constructed. More recently, it has became apparent that these two ecosystem 
processes should be included in a model of this type, particularly given the possibility of accelerated 
climate change. The paradigm upon which the original model was based does not allow some of the 
current questions to be answered.s . 

S In fairness to Kimmins and Scoullar, temperature and moisture were in their paradigm and their long­
term plans were to include them in future model development 
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Figure 4 FORCYTE-11 Dynamic Rules of Change 

6 The Decision Support Process and PROBE. 
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Figure 5 Dynamic Simulation in MANAFOR 

As shown in Figure 2, the use of ecosystem simulation models in forest management decision­
making requires that numerous data cases be set up, multiple models runs be conducted, and the 
predictive output ranked and compared. With 
complex models such as FORCYTE-ll this is 
almost impossible without some computer assist­
ance. To allow users to more efficiently execute 
multiple model runs and handle the large 
amount of output data, a supervisory software 
package (PROBE) has been developed (Apps et 
al. 1988, Kurz et a1. 1988, MacIsaac et al. 1990). 
PROBE acts as an interface between the user 
and the technical complexities of running the 
ecosystem model by providing data editing 
capabilities, unattended execution of mUltiple 
runs and automatic output file production and 
compression. 

The functions of PROBE can be divided into 

EXTRACT AND EDrr CASES 

... -, ........ .. .. _r ....... ,. ... _, ....... .. 
I !~_l23W771 JPl . .. -.-, ........ .. ... _, ........ . ... -, ........ .. 

... _f ........ . INPUT CASES ... -, ... " .... . 
three main activities: input data preparation, INPlJTOATA 

multiple run execution, and output data analysis. 
Each activity is facilitated by specific programs Figure 6 PROBE Set Up Activity 
(PC-compatible, run under DOS) and associated 
files. 
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Data Preparation: 
Using the utility program PREPARE, the user can define specific data changes (case overlays) 
to the original data set (default input files) needed for each program module run (Figure 6). This 
allows users to create a database of input options. The case descriptions are stored, and at 
execution time are used as overlays to modify the input data files. 

Program Execution: 

---+---.~ 

Figure 7 PROBE Run Time Activity 

PROBE controls the execution of the 
FORCYfE-11 program modules and the pro­
duction of output data files through the pro­
grams OVERLAY, SEQUENCE and 
COMPRESS. SEQUENCE permits the 
unattended execution of one or more 
FORCYfE-ll program module runs (an 
experiment) in a user-defined sequence. The 
specific input data files for each module run . 
are created with OVERLAY which incor­
porates the specific case-specific data into 
default data sets. 

COMPRESS converts the standard 
FORCYfE-ll output data to a form which 
significantly reduces the storage requirements 
(up to 75%), while permitting faster and 
more flexible access to it. This is done by 

converting the regular FORCYfE-ll output into two new files: a small index file which identifies 
the location of data in the second, binary file (Figure 7). The compressed files have been 
structured to make them suitable for further data analysis. 

Output Data Analysis: 
DISPLAY is an interactive program used to 
efficiently retrieve and analyze the 
FORCYTE-ll output data. DISPLAY loads 
the index file information produced by COM­
PRESS from a user-selected subset of FOR­
CYTE-II output (Figure 8). It then allows 
the user to easily and quickly choose, graphi­
cally display, browse through and numerically 
manipulate any combination of variables from 
FORCYTE-ll module runs. DISPLAY has 
been designed to show dynamic trends (varia­
bles vs time) or to plot relationships between 
variables (e.g., stand density vs foliage 
biomass). It also permits numerical manipula­
tion of the data, for example, changing scal­
ing factors. 

IIIIWlY 
DATA 

USER 

Figure 8 PROBE Analysis Activity - DISPLAY 
MANAGER 
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DISPLAY greatly enhances the usefulness of the original FORCYTE~ll output by making the 
output results more readily accessible for analysis and interpretation. As well, this data display and 
analysis manager can act as a selector for data to be exported to commercial software such as 
spreadsheet programs, statistical packages, database systems, and presentation graphics. 

PROBE provides the flexibility required for a useful decision support tool for forest managers. 
Although initially designed for use with the FORCYTE series of ecosystem models, PROBE has 
application as a multiple run management tool for other predictive models. Various forest 
management options are best examined by comparing their expected future. consequences using a 
predictive forest simulation model. This task involves setting up the model for a number of different 
conditions, executing the model for these conditions, generating the appropriate output and, finally, 
ranking and evaluating the simulated future ecosystem based on the perceived benefit of each. The 
strength of PROBE is that it supervises and expedites all the steps in this decision-making process. 
It also provides a framework for integrating large simulation models in other decision support tools 
such as GIS and AI. 

The PROBE utilities are being modified for use with any ecosystem simulation model which 
requires repeat runs with many data files. It can be used for a variety of purposes, including: 
development and management of "libraries" containing different input data cases (ecosystem and 
management data) and ecosystem simulation results, sensitivity analysis and management gaming. 

7 FORCYfE-ll Simulation Example 

For an example of how predictive models embrace both data and process modelling, a simple 
two-tree ecosystem simulation using FORCYTE-ll is used (with understorey not represented). It 
consists of a commercial coniferous species and non-commercial nitrogen-fixing deciduous species.6 

The forest manager's mandate is to maximize the return on the investment (i.e., maximizing the 
conifer yield subject to minimizing costs). The environmental constraint imposed on him, however, 
is to demonstrate that site fertility can be sustained over multiple rotations. In this example the forest 
manager has two very simple management options: 

1) Eliminate the deciduous species by herbicide treatment at the start of each rotation to remove 
light competition with the conifer. 

2) To obtain benefits of nitrogen input but reduce effects of light competition later in the rotation, 
let the deciduous species grow for 20 years, then cut it down and leave the slash and stems on 
the forest floor. . 

In both cases, the simulation is composed of three 100 year rotations, with the conifer harvested at 
the end of each rotation (stemwood and branches removed). 

The forest manager would be hard pressed to find field data that could allow him to rank 
between those two alternatives (if such data exist at all). This manager has to somehow compare the 
future scenarios and make a decision (even if it is not the best one). This can be done by simulating 
the proposed silvicultural prescriptions using the FORCYTE-ll program MANAFOR. The specific 

6 This simulation example is based on a preliminary data set for Douglas fir and red alder (Kimmins et 
al. 1989a, 1989b). The data have not been verified and confidence has not been determined. 
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initial stocking and management interventions are defined in the MANADATA file and in case 
overlays using PREP ARE. 

7.1 Results 

FORCYTE-11 simulation results indicate that 
at the end of the first rotation, conifer yield (as 
expressed by stemwood biomass) is slightly better 
when the competing deciduous species is allowed to 
grow until year 20 rather than removed at the start 
of each rotation (Figure 9). This trend is magnified 
over the next two rotations, so that by the end of 
the third rotation, the conifer yields when the 
deciduous species is allowed to grow early in the 
rotation is approximately 25% better than in the 
case where it is removed at the start. 

When the conifer is released at year 20 in each 
rotation, there is an immediate increase in stem­
wood biomass because there is no longer any 
competition for light. As well, the portion of the 
nutrient pool that has been captured by the de­
ciduous species (now contained within the slash) is 
released as a nutrient "pulse" and is available to the 
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Figure 9 Example Mixedwood (Coniferous and 
N-flXing Deciduous Species) Simulation With 
FORCYI'E-l1. Variable Shown is Stemwood 

coniferous species. When the deciduous species is 
used as a "nurse crop" the conifer yield is not only 
higher, but it increases faster (and MAl peaks at an 
earlier age). This is believed to be due to site 
quality improvement associated with the nitrogen- Biomass. 
fixation by the deciduous species. From a forester's 
perspective, it means shorter rotations may be possible. 

7.2 FORCYTE-ll Summary 

The FORCYTE-l1 model illustrates an approach to simulation of the resource competition of 
light and nutrients at the ecosystem level The flexibility that this approach uses is very important. 
"Hard" data can be combined with knowledge and wisdom to try and get a better insight into what 
might happen in the future. This information is provided to help managers to make decisions for the 
future. It allows decision makers to explore different options to reinforce or to challenge their 
hunches. Both the short- and long-term effects of management options can be examined and 
compared_ In this particular example, in both cases, site fertility did not degrade, and in fact, the 
presence of the nitrogen fixer improved the site fertility over time - something a researcher might 
have to wait a number of years to prove using a field experiment approach. The approach used by 
FORCYTE-ll makes it attractive as a potential tool to help in decision support. Whether it will 
actually is used by forest managers, will depend, in part, on the outcome of the current Forestry 
Canada evaluation of the model, and the availability of calibrated data sets for the user's area of 
interest. 
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8 Conclusions 

There are many changes in the factors affecting the Canadian forest industry at present, 
including: growth in world fibre demand, increased competitiveness to supply the resource, changing· 
public environmental awareness (which lead to constraints on the forest industry) and technical 
developments in -the availablesilvicultural and harvesting procedures (which allow more sizes and 
types of materials to be used in manufacturing finished products). These factors, leading to an 
intensification of management, will require smarter resource management decisions - ie. require 
decision makers to be better informed about possible future consequences. Data is required to help 
in the decision making process but past data may not accurately describe future conditions. Managers 
may not be able to wait for experimental data to become available and forecasting models, therefore, 
will be increasingly required to address decision needs. These models, which must predict forest-stand 
dynamics, should operate at the ecosystem level. They have to encompass more than simply the tree 
species of interest because of the ecosystem interactions. 

The changes described above are going to put pressure on scientists to meet two tasks. Task 
one is to provide the best possible estimates of the future, even if they have to be built on "mushy" 
(unproven and speculative) science. The alternative will be to let those decisions be made on the 
basis of corporate goals or government policy without the benefit of current scientific insight. 
Forecasting models which incorporate this insight, even if based on expert speculation can be used 
to assist in the decision making process. This leads, however, to the second task, which is to identify 
the "mushy" parts and to find ways to replace them with solid scientific foundations. In other words, 
scientists should state their opinions while being careful to differentiate between speculation and 
confirmed knowledge. We can take encouragement from the knowledge that our job is not to be 
100% right, it is just not to be 100% wrong. 
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