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A NATIONAL SYSTEM OF EQUATIONS FOR ESTIMATING OVENDRY
MASS OF TREMBLING ASPEN POPULUS TREMUL OIDES MICHX.

Abstract

This report presents a single national
system of equations for estimating the
aboveground ovendry mass of single trees
and of their individual components for

trembling aspen (Populus tremuloides
Michx.). This system is based on data
from six geographic regions across

Canada. When applied to the sample data
from individual geographic regions, esti-
mates of aggregate ovendry mass of all
sample trees in any of the six regions
differed from observed values by not more
than 6%, with approximately half the
estimates being within 2% of observed
values.

Résumé

La rapport présente un systéme national
unique d'équations pour évaluer, chez un
peuplier faux-tremble, Populus
tremuloides Michx.) la masse anhydre de
I'ensemble de sa partie aérienne et de ses
éléments. Ce systéme est basé sur les
données provenant de six régions géogra-
phiques du Canada. Comparées aux
données de chaque région, les estimations
de l'aggrégat de la masse anhydre de tout
I'échantillon des arbres de n'importe
laquelle des régions ne différent pas de
plus de 6 % des valeurs observées, la
moitié s'en écartant de 2 %.

INTRODUCTION

Standard or two-entry (dbh and height)
equations are fundamental to all regional
and/or national estimates of ovendry mass
for whole trees and for their individual
components. They are also fundamental
to forecasting growth and yield of ovendry
mass because all techniques of forecasting
involve, as the first step, estimation of
initial values or the taking of an inven-
tory.

There are now at least ten regional
systems of standard equations in existence
in Canada for estimating the ovendry
mass of trembling aspen (Populus tremu-
loides Michx.), based on direct measure-
ments on at least 700 sample trees. Each
regional system consists of equations for
estimating ovendry mass of whole trees
aboveground, and of each of their com-
ponents--stem wood, stem bark, live
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branches, and twigs plus leaves. Some
regional systems are based on fewer than
100 sample trees; others, on more than
200. Some samples form the basis for
more than one system of equations.

There is reason to think that a single
integrated national system of equations
would have both practical and theoretical
advantages over the many regional
systems presently in use.

First, the combined sample of an
integrated national system is more likely
to represent a wider range of tree sizes
than any of the regional samples. There-
fore, a single national system would
provide accurate estimates for a wider
range of tree sizes in all regions than any
of the regional systems. Such a sample
would also facilitate regression analysis
because the variance of the estimated
regression coefficients decreases with
increase in the range of independent
variables (Schumacher and Chapman
1954). In any case, an adequate sample,
either regional or national, for a given
species should include the full range of
diameter classes of the species, and
within each diameter class, the full range
of height classes. Such regional samples,




however, are uncommon on account of the
great expense involved in obtaining them.

Second, a single national system will
facilitate the comparison of estimates of
regional inventories and the results of
national studies such as the interprovin-
cial forest fertilization program
(Weetman et al. 1976), parts of which are
being carried out in a number of regions.
It will also facilitate the comparison of
growth and yield data collected in differ-
ent regions, the exchange of such data,
and if justified, integration of such data
into a single national growth and yield
system.

The objective of this study is to
integrate available data sets for trembling
aspen collected in various geographic
regions of Canada into a single national
system of standard or two-entry equa-
tions. This system should meet the
following requirements:

1) Provide the means for obtaining accur-
ate ovendry mass estimates for trees
of all sizes.

2) Provide for the sum of estimated
individual components of the whole
tree to be equal to the independent
estimate of the whole tree.

3) When applied to the sample data from
the individual geographic regions, the
estimates of the aggregate ovendry
mass (Eomi ) of:

a) all sample trees within a given
region, and

b) all sample trees within each of the
three size classes--small, medium,
large--in a given region,

should be within a predetermined per-
cent of the observed values. Because
there is no objective method of deter-
mining what these predetermined
percent values should be, limits were
set subjectively--10 percent for all
sample trees, and 15 percent for all
sample trees within each of the three
size classes.

4) When used as a means for forecasting
stand growth, by forecasting the indi-
vidual component variables in a stand
ovendry mass equation:

a) forecasting of the component vari-
ables should be practically feasible,
and

b) the sum of estimated individual
components of the stand--the oven-
dry mass of stem wood, stem bark,
live branches, and twigs plus
leaves, should be equal to the
independent estimate of the oven-
dry mass of the whole stand.

METHODS

Data

Source data were, firstly, computer print-
outs of individual tree information from
six geographic regions and, secondly,
published equations from the six regional
studies.  Published regression data are
shown in Table 1, and the distribution of
individual tree information is shown in
Table2 by 2cm dbh and 3 m height
classes, for each of the six regions. Some
reduction in the number of sample trees in
Table 2 from the number in Table | is due
to a preliminary screening of Ontario
data.

Analysis

Solutions to the requirements that the
system provide (i) accurate estimates of
ovendry mass for trees of all sizes and (ii)
that the sum of estimated individual
components of the tree must equal the
independent estimate of the whole tree,
appear to be interrelated. For instance,
least squares equations using the same
mode!l and fitted from the same data will
be "additive" (Kozak 1970), but experience
with tree volume equations has shown that
they may be poor estimators of small-tree
volumes (Evert 1969). Weighted least
squares equations tend to be good estima-
tors of the volumes of trees of all sizes
(Evert 1969), but their estimates will not
necessarily be additive.

To obtain both "additivity", and
"good" estimates of small-tree ovendry
mass, it was decided to fit weighted least
squares equations to individual compon-
ents of the trees cumulatively instead of
separately.

The cumulative variables involved
the ovendry mass in kg of individual trees:




stem wood = om(1)

stem wood + bark = om(2)

stem wood + bark + live branches =
om(3), and .

stem wood + bark + live branches +
twigs and leaves = om(4)

Mass of components other than stem wood
could be calculated as the difference
between estimates obtained from any two
appropriate equations. Mass of stem bark,
for instance, would be calculated as the
difference between estimated masses
from equations for om(2) and om(1).

The method used for weighting the
ovendry mass residuals of trees was to
divide the appropriate ovendry mass of
the tree, om(i), by the product of tree
basal area at breast height, g, and the
total tree height, h. Thus, the following
four quantities were regressed on both dbh
and height--om(1)/gh, om(2)/gh, om(3)/gh,
and om(4)/gh. Ovendry mass (om(i))
equations would be obtained as a separate
step, by multiplying both sides of the
equations fitted to om(i)/gh, by the pro-
duct gh.

The first step in the analysis
involved verifying whether or not the
least squares equations were poor estima-
tors of ovendry mass of small trees, and
whether or not the weighted least squares
equations provided accurate estimates for
trees of all sizes. All models to be tested,
both weighted and non-weighted, were
based on the 327 observations available
from Ontario, mainly because this sample
was particularly well balanced for tree
sizes (see Table 2). All models involved
the fitting of equations to stem wood plus
bark because the Petawawa National
Forestry Institute (PNFI) did not have
stem wood data available separately.

The second step in the analysis
involved verifying whether or not equa-
tions based on data from a region could be
applied in other regions. Standard or two-
entry ovendry mass equations should give
accurate estimates throughout the range
of the species because, although they are
rarely applied directly, they will be the
principal means of obtaining local ovendry
mass equations that will be applied
directly. Preparation of local equations

from standard equations simply requires
(i) construction of a curve of height on
dbh for the site or stand to be estimated,
and (ii) substitution of height in the
standard equation with its estimated value
in terms of diameter. Thus, once
prepared, standard equations will usually
serve as the basis for all local equations.
This verification was also based on equa-
tions for estimating ovendry mass of stem
wood plus bark as was the case in the first
step in the analysis.

The third and last step in the
analysis involved (i) integrating and
regressing all sample data from six
regional sources into a single national
system of equations, and (ii) verifying fit
of the national equations for estimating
ovendry mass of trembling aspen through-
out its range as far as possible.

All calculations were preceded by a
further screening of basic data. Thus, the
final calculations involved a total of 675
sample trees instead of 695 trees shown in
Table 2.

Because PNFI data did not include
information on stem wood except in com-
bination with stem bark, this information
was estimated from the stem wood plus
bark samples of the PNFI data, using the
stem wood/(stem wood+bark) relationship
developed from the remaining data. Thus,
all four equations in the system including
that for stem wood were based on the
same 675 sample trees.

RESULTS

Least squares versus weighted least
squares equations
Two least squares and four weighted least
squares equations are presented in
Table 3, and a verification of whether or
not they will fit the complete range of
basic data from which they were prepared
is shown in Figures | and 2. The goodness
of fit of least squares versus weighted
least squares equations cannot be com-
pared using either R? or SEE because of
the different scale of the residuals
involved (see also Appendix 2).

The fit of these equations was veri-
fied by expressing their estimates as a
percent of observed value and by



comparing percentages obtained by the
least squares versus the weighted least
squares equations. Equation (6) shown in
Table 3 was not included in the compari-
son because, despite an added variable, it
is not an improvement over Equation (5).
The sum of ovendry mass of basic data
estimated by weighted least squares equa-
tions does not necessarily equal the sum
of their observed values as is the case
with estimates of non-weighted equations.
The procedure used for correcting this
potential bias was (i) to determine the
ratio of the two sums, estimated over
observed, and (ii) to use the reciprocal of
this ratio as a correction factor for the
appropriate equation as shown in Figure 2.

The position of the plotted points in
Figures 1 and 2 in relation to the 100%
line indicates that both least squares and
weighted least squares equations provide
about equivalent estimates for trees 5 cm
and larger in dbh, but for smaller trees,
least squares equations are indeed poor
estimators of ovendry mass even though
the basic sample included a large number
of such trees (see Table 2). Weighted
least squares equations, however, do
provide accurate estimates for trees of all
sizes.

Applicability of regional equations
throughout the range of the species

Table 4 presents a matrix of values that
shows the accuracy of five regional two-
entry equations for estimating ovendry
mass of aspen stem wood plus bark for six
regional samples from across Canada.
Each row shows the fit of the five
equations when applied to a given regional
sample, and each column, the fit of a
given regional equation when applied to
the six regional samples. All estimates
are expressed as a percent of the observed
values. Several observations relevant to
sampling for and preparation of ovendry
mass equations are evident from it. They
are:

1) that except for Eq. (5) estimates for
samples from Alberta, Ontario (1) and
Ontario (2), and Eq. (1) and (4) esti-
mates for the sample from PNFI, all
five regional equations provide

estimates of aggregate ovendry mass
of all trees of the six regional samples
that are within ten percent of the
observed values. The five regional
equations are based on as few as 46
and as many as 252 sample trees.

The failure of Eq.(5) to provide
accurate estimates for the regional
samples in Alberta, Ontario (1) and
Ontario (2) may result from its small
basic sample size-only 46 trees,
limited range of heights sampled
within each diameter class (see
Table 2), and the use of a logarithmic
regression model:

In om = -3.0560 + 2.3536In d +
0.2326 Inh

or

om = 0.04708d2'3536h0’2326

This model shows that, for a given
diameter, ovendry mass increases directly
with height to the power of 0.2326. Most
plottings show that for a given diameter,
ovendry mass increases directly with
height to the power of 1.

2) the failure of the Alberta regional
equation, Eq. (1), to provide accurate
estimates for the PNFI sample that
consists of small trees only seems to
verify the previously expressed opinion
that least squares equations are poor
estimators of both small-tree volumes
(Evert 1969) and their ovendry mass
(see Fig. 1).

3) that Eq. (2) and (3) estimates for the
sample from PNFI are within ten
percent of the observed values for the
aggregate ovendry mass of all trees.
But they underestimate the ovendry
mass of 0.1-2.0 cm trees, the aggre-
gate estimates being 68.3 and 66.5
percent of the observed values respec-
tively. The model used for Eq. (2) and
(3) is:

om(i) = bd?h

or
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Figure 1. The fit of two least squares equations for estimating the oven-
dry mass for trees of all sizes.

LEGEND
Equation(3) emmw= om(2)= 0.981(0.0549+0.01794 d2n)
Equation(4)eeeeesom(2)= 1031 {0.046+0.01629d%h+0.01634d2)
Equation(5) == == =om(2)= 1.020(0.017196d%h +0.024448h)

lor

100

90

Number of sample trees

i i A i J

0 5 10 5 20 25 30 35 40 a5
Midpoints of dbh classes (cm)

70

Estimates as percent of observed values

Figure 2. The fit of three weighted least squares equations for estimating
the ovendry mass for trees of all sizes.




om(i)/d?h = b

In other words, the quantity om(i)/gh is
assumed to be independent of tree size.
Table 3, however, presents evidence that
the coefficient of determination, r? or
R?, between the quantity om(i)/gh and
tree size can be as high as 0.85 to 0.90.

Preparation and testing of a national
system of equations

The national system of equations is pre-
sented in Table 5, and a test of its
application, in Table 6.

All four equations in Table 5 had the
term 1/d? entering first. The term l/h
was also a significant variable in all four
equations, but its significance increased
consistently from the equation for esti-
mating om(!) to that for estimating om(#).
The goodness of fit of the national equa-
tions for om(l) and om(4) cannot be
compared to that of the corresponding
regional equations, by using their respec-
tive R?s and SEEs, because of the differ-
ent scale of residuals involved (see also
Appendix 2).

Table 6 presents a matrix of values
that shows the accuracy of ovendry mass
estimates obtained with the national
system for stem wood, stem bark, live
branches, and twigs and leaves, cumula-
tively.

Each column shows the fit of a given
equation when applied to six regional

samples. All estimates are again
expressed as a percent of the observed
values. All estimates of aggregate

ovendry mass of all sample’'trees in any of
six regions differ from observed values by

no more than six percent; and all aggre-
gate estimates within each of the three
size classes in every one of the six regions
differ from the observed values by no
more than 14 percent.

DISCUSSION AND CONCLUSIONS

It remains for us to elaborate on the
evidence presented and to conclude
whether or not a single system of standard
or two-entry equations would meet the
requirements specified in the introduction
of this study.

First, does it provide the means of
obtaining accurate estimates of ovendry
mass for trees of all sizes? The answer to
this question seems to depend on the
extent of sampling and the method of
regression analysis used. Figure 2
provides a strong indication that equations
based on a well-distributed sample and
fitted by the method of weighted least
squares, the weight being the reciprocal
of the product of tree basal area and the
total tree height, would provide this
means.

Second, when applied to the sample
data from the individual geographic
regions, would the estimates of the aggre-
gate ovendry mass of (a) all sample trees
in a given region, and (b) all sample trees
within each of the three size classes--
small medium, and large--in a given
region meet the specified accuracy
requirements?

Evidence presented in Table 6 which
is summarized below indicates that this
requirement will also be met by the single
national system of equations, as follows:

Estimated ovendry mass as

Distribution of cells (from Table 6)

a percent of observed value

Small Medium Large All
Class Intervals trees trees trees trees
0.0 - 2.0 12 11 5 11
2.1 - 4.0 4 4 10 6
4.1 - 6.0 4 5 8 7
6.1 - 8.0 2 4 1
12.1 - 14.0 2 - - -
All 24 24 24 24




Estimates of the aggregate ovendry mass
of (a) all sample trees in any of the six
regions differ from the observed values by
not more than six percent, with approxi-
mately half the estimates being within
two percent of the observed values, and
(b) all sample trees within each of the
three size classes in any of the six regions
differ from the observed values by not
more than 14 percent, with 97 percent of
the estimated values being within eight
percent of the observed values.

It could be argued that although the
national equations meet the specified
accuracy requirements, evidence pre-
sented in Table 6 suggests that they would
systematically underestimate or overesti-
mate for a given region. But what
equations would not underestimate or
overestimate for a particular sample
except on data from which they were
derived? What counts is how much and is
it acceptable!

Third, when used as a means for
forecasting stand growth, will a single
national system provide for:

a) the component variables in stand oven-
dry mass equations that would be
practicably predictable, and

b) the sum of estimated individual com-
ponents of the stand--ovendry mass of
stem wood, stem bark, live branches,
and twigs and leaves, to be equal to
the estimated ovendry mass of the
whole stand.

Efficient stand growth forecasting
should involve stand ovendry mass equa-
tions used with easily predictable stand
variables. One system of stand ovendry
mass equations will derive

(om = b, d2h + b,h + b, 2

from the basic model used for estimating
the ovendry mass of trees (see Table 5):
Algebraic conversion of this equation to a
stand ovendry mass equation will yield:

oM =)30mi
2
=byZdih; +b,Th, +byzd?

By factoring I diz h;» one obtains:

2y, 2 2
£d?h, = z df)(z: d hi)/(Z di)
and:

OM = b, (Zd)Zd? h,)/(2dD)
+ by Th, + by Zd?

where OM is stand ovendry mass of
stem wood, or stem wood plus bark,
etc. for which estimates are being
sought,

Zd?is the sum of squared diameters,
(Zd? h)/NZdD is the average height
weighted by basal area or Lorey's
height (h, ), based on the estimated
heights of all trees for which oven-
dry mass estimates are being sought,
and

Zh, is the sum of estimated heights
fof all trees for which ovendry mass
estimates are being sought.

The sum of estimated heights for all
trees could also be expressed as the
product of number of trees, N, times the
arithmetic mean height of all trees, h,:

Zh = N(Ehi/N) = Nh

to facilitate the forecasting of it when
forecasting stand growth. Furthermore,
the sum of squared diameters for all trees
could also be expressed as the product of
number of trees, N, times the quadratic
mean diameter, dé,:

2 2
z d; = ng
Thus:
OM = Nd;(bl hy +bs) + b, Nh

The answer to the third question,
therefore, seems to be affirmative. All
the individual component variables in the
stand ovendry mass equation as presented
above have been used in forecasting stand
volume and its growth. It is thus clear
that they can also be used to forecast
stand ovendry mass and growth.

The method for deriving stand oven-
dry mass equations algebraically from
tree ovendry mass equations will also
ensure that the sum of the estimated



ovendry mass of individual components of
the stand will equal the estimated ovendry
mass of the whole stand.

Based on evidence presented, the
following conclusions seem to be well
supported:

1) To be able to prepare a well-fitting
system of ovendry mass equations for
both regional and national application,
it should be:

a) based on a sample that includes the
full range of diameter classes of
the species and, within each
diameter class, the full range of
height classes. Size range of the
sample trees seems to be more
important than their geographic
distribution;

b) fitted by the method of weighted
least squares instead of the least
squares method, the weight being
the reciprocal of the product of
tree basal area and the total tree
height.

2) To ensure additivity of equations when
fitted by the method of weighted least
squares, fitting should be done to the
individual tree components cumula-
tively instead of separately.
Conditions specified by Kozak (1970)
would also have to be satisfied. These
are:

a) Exactly the same model should be
fitted for all equations.

b) Any transformation of the depen-
dent variable should be linear in
scale.

c) All equations in a given system
should be fitted from the same
observations.

3) To maintain the good fit and the
additivity of tree ovendry mass equa-
tions when used for forecasting stand
growth, stand ovendry mass equations
should be algebraically derived from
tree ovendry mass equations.

As a general recommendation, it
seems well worthwhile to examine the

feasibility of integrating into a single
national system all other regional systems
now in use which involve species with a
wide geographic range.
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APPENDIX 1:

TABLES



Table 1. Regression data on the prediction of ovendry mass, om(i), of trembling

aspen in six geographic regions

11

(a) Ontario

(i) Great Lakes - St. Lawrence Forest Region (Alemdag & Horton 1981)
Model om(kg) = bd%h (cm) (m)
n=128, dbh range 5.2 to 43.5 cm

b
om(1)? 0.014483
om(2)?2 0.017939
om(3)3 0.020610
om(4)* 0.021087

(ii) Boreal Forest Region (Alemdag & Horton 1981)
Mode! om(kg) = bd?h (cm) (m)
n=96, dbh range from 5.2 to 35.4 cm

b
om(1) 0.014748
om(2) 0.017496
om(3) 0.019690
om(4) 0.020259

(iii) Petawawa National Forestry Institute (Berry & Stiell 1978)
Model om(kg) = by + by d2h + b, (d2h)? (cm) (m)
n and dbh range are not reported

bo bl bz
om(3) 0.0992 0.02175 -7.01 x 10”°¢

(b) Alberta (Johnstone & Peterson 1980)

Model om(kg) = by + b,d + byd? + byd® + b,h + bsd?h (cm) (m)

n=254, dbh range from 2.0 to 31.5 cm

by b, b, b, b,

om(1) 1.493  0.238%  -0.0046 -0.0004  -0.3040
om(2) 1.618 0.3110  0.0178 -0.0005 -0.3916
om(3) -1.367 2.4238 -0.1551  0.0043 -0.8636
om(4) -1.316  2.5077 -0.1566  0.0045 -0.9072

(c) Newfoundland (Lavigne & van Nostrand 1981)
Mode! om(kg) = by + b, d 2h (cm) (m)
n=70, dbh range from 2.2 to 44.7 cm

bo b,
om(2) 0.2420 0.01691
om(3) 0.1927 0.01933

om(4) 0.5497 0.01987

by
0.0144
0.0167
0.0183
0.0184
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Table 1. (cont'd)

(d) Nova Scotia (Ker 1980)
Model In om(kg) =b, +b, Ind+b, In h (cm)(m)
n=46, dbh range from 1.8 to 33.3 cm

b, b, b,

om(l) -3.3596 2.3670 0.2548
om(2) -3.0560 2.3536 0.2326
om(4) -2.6224 2.4827 -

1/ stem wood

2/ stem wood plus bark

3/ stem wood plus bark plus live branches

4/

stem wood plus bark plus live branches plus twigs and leaves
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Table 3. Equations for estimating ovendry mass, based on 327 observations from

Ontario

Equation Equation r? SEE

No. or R? %
Least squares equations
(1) om(2)* = -0.1043 + 0.01764d 2h 0.985 19.4
) om(2) = -1.8161 + 0.01961d?h - 0.0548d® + 0.3747h  0.985 19.4
Weighted least squares equations

(3) om(2)/gh = 228.417 + 699.421(1/d?h) 0.847 12.6
om(2) = 0.0549 + 0?61794d2h - -

(4) om(2)/gh = 207.447 + 587.70(1/d?h) + 208.05(1/h) 0.876 11.4
om(2) = 0.0460 + 0?61629d2h +0.01634d? - -

(5) om(2)/gh = 218.943 + 311.286(1/d?) 0.898 10.3
om(2) = 0.0l7l96dg; + 0.024448h - -

(6) om(2)/gh = 218.461 + 309.837(1/d?) + 5.3084(1/h) 0.898 10.3

or
om(2) = 0.01716d?%h + 0.02433h + 0.0004169d2

*om(2) = ovendry mass of stem wood + bark
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Table 4. The fit of five regional équations for estimating the dvendry mass for six regional
samples from across Canada

Sample dbh No. Equations*
location range of (1) (2) (3) 4) (5)%*
(em) sam- Estimated ovendry mass of stem wood plus
ple  bark as percent of observed values
trees
Alberta 0.1 - 10.0 102 100.1 96.7 9.4 93.5 91.0
10.1 - 16.0 8 100.7 102.7 100.2 97 .4 87.0
l6.1 - 32.0 66 100.8 105.7 103.1 99.8 84.6
All 252 100.7 104.4 101.9 98.8 85.6
Ontario (1) 4.1 - 12.0 45 99.5 101.9 98.4 97.4 84.7
Great Lakes and 12.1 - 18.0 39 97.5 102.4 99.9 96.9 76.3
St. Lawrence Forest 18.1 - 44.0 40 95.3 101.2 98.8 95.5 76.6
Region All 124 95.9 101.5 99.0 95.9 77.0
Ontario (2) 4.1 - 14.0 34 105.1 110.1 107.4  104.7 85.4
Boreal Forest 4.1 - 20.0 27 100.8 105.6 103.0 99.8 80.2
Region 20.1 - 36.0 32 95.3 100.6 98.1 94.9 80.2
All 93 97.1 102.3 99.8 96.6 80.6
Ontario (3) 0.1 - 2.0 31  368.1 68.3 66.5 159.5 78.8
PNFI 2.1 - 4.0 62 146.4 92.0 89.8 111.6 96.8
4.1 - 6.0 17 115.6 101.0 98.5 103.3 l10l.1
All 110 147.9 94.3 92.0 112.1 97 .4
Newfoundland 2.1 - 14.0 25 107.3 102.6 100.1 98.5 98.0
Central 14.1 - 22.0 21 97.3 100.5 98.1 95.0 85.4
22.1 - 46.0 24 102.4 107.8 105.2 101.7 96.4
All 70 101.4 105.9 103.3 99.9 93.8
Nova Scotia 0.1 - 12.0 16 95.9 85.2 83.1 82.6 92.3
Cumberland 12.1 - 22.0 14 99.3 100.9 98.3 95.3 9.5
County 22.1 - 34.0 16 106.0 110.5 107.8 104.3 105.9
All 46 103.9 107.2 104.5 101.3 102.6

*(1) om(2) = 1.6176 + 0.311d + 0.0178d? - 0.0005d® - 0.3916h + 0.0167d2h (Alberta)
(2) om(2) = 0.01794d 2h (Ontario (1))
(3) om(2) = 0.01750d *h (Ontario (2))
(#) om(2) = 0.2420 + 0.01691d%h (Newfoundland)
(5) In om(2) = -3.0560 + 2.3536 In d + 0.2326 In h (Nova Scotia)
** Eq. (5) was used as given, without a correction factor (=1.01) as suggested by the authors,
because its use would not have noticeably changed the estimates obtained.
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Table 5. Regression data on the production of ovendry mass of trembling aspen,
based on 675 observations from six regional samples from across Canada

Equation R2 SEE

Stem wood om(1)/gh = 181.987 + 181.911(1/d?) 0.559 11.0
- 39.5058(1/h)

or
om(1) = 0.014293d%h + 0.014287h - -

- 0.0003103d?
Stem wood om(2)/gh = 213.425 + 280.854(1/d?) 0.735 11.1
+ bark +95.0715(1/h)

or
om(2) = 0.01676d*h + 0.022058h - -
+ 0.0074669d?

Stem wood om(3)/gh = 225.672 + 246.244(1/d?) 0.704 12.4
+ bark + live + 303.008(1/h)
branches

or
om(3) = 0.017724d?h + 0.0193%h - -
+ 0.023798d?

Stem wood + bark om(4)/gh = 225.033 + 244.864(1/d?) 0.708 13.5
+ live branches +434.416(1/h)
+ twigs & leaves or

om(4) = 0.01767d%h + 0.01923h - -
+0.034119d?
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Table 6. The fit of four national equations for estimating the ovendry mass of trembling
aspen for six regional samples from across Canada

Sample dbh No. of Equations*
location range sample (1) (2) (3 4)
(cm) trees Estimated ovendry mass as percent of

observed values

Alberta 2.1 - 10.0 90 99.8 97.9 103.9 106.0
10.1 - 16.0 82 102.7 100.3 105.2 107.0

l6.1 - 32.0 67 103.2 101.5 101.9 102.9

All 239 102.9 101.0 102.7 104.0

Ontario (1) 4.1 - 12.0 45 99.0 100.3 101.8 98.0
Great Lakes - 12.1 - 18.0 39 99.7 98.9 102.6 101.5
St. Lawrence Forest 18.1 - 44.0 40 98%.6 97.5 95.6 95.1
Region All 124 98.9 97.9 97.2 96.4
Ontario (2) 4.1 - 14.0 34 101.7 107.4 114.0 113.4
Boreal Forest 14.1 - 20.0 27 98.6 101.8 106.3 106.1
Region 20.1 - 36.0 32 94,1 96.4 96.5 95.9
All 93 95.6 98.3 99.7 99.2

Ontario (3) 6.1 - 2.0 30 100.9 101.9 105.4 104.9
PNFI1 2.1 - 4.0 62 104.9 105.2 105.8 106.3
4.1 - 6.0 17 105.8 105.8 104.1 103.9

All 109 105.0 105.3 105.0 105.4

Newfoundland 2.1 - 14.0 23 98.7 101.5 106.9 102.6
Central 14,1 - 22.0 21 96.5 97.1 99.5 99.8
22.1 - 46.0 24 102.7 103.5 101.6 101.3

All 68 101.1 101.9 101.3 101.0

Nova Scotia 2.1 - 14.0 14 100.0 101.1 103.9 104.8
Cumberland County 14.1 - 22.0 12 104.5 100.5 99.2 100.5
22.1 - 34.0 16 105.2 106.4 97.8 98.9

All 42 104.8 104.9 98.3 99.4

*(1) om(1) = (0.014293d2h + 0.014287h - 0.0003103d?) x 1.002
(2) om(2) = (0.01676d2h + 0.022058h + 0.0074669d2) x 1.003
(3) om(3) = (0.017724d%h + 0.01934h + 0.023798d?2) x 1.028
(4) om(%) = (0.01767d *h + 0.01923h + 0.034119d?) x 1.028
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APPENDIX 2:

A note on the use of s; x and R?

to compare equations
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Appendix 2. A Note on the Use of s; x and R? to Compare Equations

» D.A. Macl_eod ‘
Computing and Applied Statistics Directorate
Place Vincent Massey, Hull, Quebec

When linear regression is employed to fit an equation of the form:
Y=a+b,; X, +b,X, +...+mem

to a set of data, the values of a, b,, b, ..., bm that are obtained are the best values in
a specific sense; namely that RSS, the sum of squares of the residuals, are minimized.

Other quantities obtained are the residual mean square s; " given by

s; < = RSS/(n-m) where n = no. of data points

and the multiple correlation coefficient R? given by:
R? = 1 - RSS/SS(Y)

where SS(Y) is the sum of squares of the deviations Yi - Y. Since RSS is always less
than SS(Y) and represents the portion of SS(Y) that is not explained by the regression,

R? can be considered the fraction of SS(Y) that is explained.

Considering R? from another angle, if the simple equation Y = a were
fitted to the data, the value obtained for a would be Y and the deviations Y, - Y would
be the residuals. This means that R? represents the fraction of SS(Y) that is explained

when the terms (b, X, +b, X, + ... mem) are added to the simple equation Y = a.

Let om, d and h represent the biomass, diameter and height of a tree

respectively. For the three equations being considered in this report:

om = a + b(d%h) (1)
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om = b(d?h) (2)

om/d?h = a + b/d? | (3)

each equation makes different assumptions. One of these differences is the form of
the equation - equ. (1) expresses om as a standard linear function of d*h, equ. (2) is a
straight line through the origin (i.e. om = 0 when d?h = 0) and equ. (3), when each side

is multiplied by d2h, gives the more complex form om = a(d2h) + bh which also goes

through the origin. Another difference is the scale of the residuals -equations (1) and
(2) assume that the residuals of om should be minimized while equ. (3) assumes that

those of om/d2h should be minimized.

If the equations are to be compared as to their goodness of fit to a set of
data, using either s;.x or R?, problems will arise from these differences in the
assumptions. Equations (1) and (2) may be readily compared using s; x (provided that
the correct formula of RSS/(n-1) is used for equ. (2)), but neither can be compared to
that for equ. (3) because the residuals are on a different scale. It is possible to
transform equ. (3) and obtain residuals on the om scale, and from these get a

transformed s; x* But this will put equ. (3) at a disadvantage since it was obtained by

minimizing residuals on the scale of om/d?h, not of om.

If the fit on one set of data is to be compared to the fit on another, a
further difficulty will be present if, as is likely, the residuals tend to be larger for the
larger trees. Here s ;.x would represent an overall average and not the value at each
point in the range of d or h. For the s; % of one data set to be comparable to that of

another, the data sets would have to occur in the same range of d and h.

Although there would be problems making comparisons using s; 5 the
problems using R? are much greater. In fact, no useful comparisons can be made
among equations (1), (2) or (3) using the R® values output by standard computer

programs.
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The R? value for equation (1) is valid, representing the improvement when
b(d*h) is added to om = a. But for equation (2) the value of a is set at zero. Most
computer programs do not adjust for this, and simply calculate the improvement when
b(d?h) is added to om = 0. Since the equation om = 0 does not fit the data at all (in
contrast to om = a), there is a tremendous improvement when b(d%h) is added. The

resulting R? is artificially large.

On the other hand, the R? for equation (3) is artificially small. It repre-
sents the improvement when b/d? is added to om/d2h = a. Multiplying through by d?h
shows that this is the improvement when bh is added to om = (d?h). But the equation
om = a(d?h) is already a reasonably good fit, so that the improvement when bh is added
would not be that large. This would give a low R? even though the fit may be very
good. A further complication is that this improvement is calculated on the scale of

om/d®h, not on the scale of om as it is for equations (1) and (2).

A possible solution, although it is not ideal, is to modify the R? to make it
more comparable. It is first necessary to decide on what scale the comparisons will be
made. For simplicity, assume that the om scale is selected. Then obtain a residual
sum of squares RSS in that scale for each equation, transforming the equations where

necessary, and define a modified R? to be
R2 (mod) = 1 - RSS/SS(om)

where SS(om) is the sum of squares of the deviations om, - om. What this does is to
compare each equation (after transforming it if necessary so that om is alone on the
left side) with the equation om = a. For equation (1), R? (mod) is simply the ordinary
R? value. For equations (2) and (3), extra calculation would be necessary to get

R2 (mod).
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Finally, it should be noted that R? (mod) compares equations at the level of
the individual tree using the deviations (omi - om). In practice, however, the ultimate
use of the equations is to obtain the biomass of stands rather than of individual trees.
There is no guarantee that the equation that fits best on a tree basis will also give the
best results on a stand basis. This can only be determined by applying the equations to

stands of known biomass as is done in this report.



