荂

New stem taper functions for 12 Saskatchewan timber species

J. Gál and I.E. Bella
Northwest Region • Information Report NOR-X-338

The Canadian Forest Service's Northwest Region is responsible for fulfilling the federal role in forestry research, regional development, and technology transfer in Alberta, Saskatchewan, Manitoba, and the Northwest Territories. The main objectives are research and regional development in support of improved forest management for the economic, social, and environmental benefit of all Canadians. The Northwest Region also has responsibility for the implementation of federal-provincial forestry agreements within its three provinces and territory.

Regional activities are directed from the Northern Forestry Centre in Edmonton, Alberta, and thereare district offices in Prince Albert, Saskatchewan, and Winnipeg, Manitoba. The Northwest Region is one of six regions and two national forestry institutes of the Canadian Forest Service, which has its headquarters in Ottawa, Ontario.

Le Service canadien des forêts, région du Nord-Ouest, représente le gouvernement fédéral en Alberta, en Saskatchewan, au Manitoba et dans les Territoires du Nord-Ouest en ce qui a trait aux recherches forestières, à l'aménagement du territoire et au transfert de technologie. Cet organisme s'intéresse surtout à la recherche et à l'aménagement du territoire en vue d'améliorer l'aménagement forestier afin que tous les Canadiens puissent en profiter aux points de vue économique, social et environnemental. Le bureau de la région du Nord-Ouest est également responsable de la mise en oeuvre des ententes forestières fédérales-provinciales au sein de ces trois provinces et du territoire concerné.

Les activités régionales sont gérées à partir du Centre de foresterie du Nord dont le bureau est à Edmonton (Alberta); on trouve également des bureaux de district à Prince Albert (Saskatchewan) et à Winnipeg (Manitoba). La région du Nord-Ouest correspondà l'une des six régions du Service canadien des forêts, dont le bureau principal est à Ottawa (Ontario). Elle représente également deux des instituts nationaux de foresterie de ce Ministère.

NEW STEM TAPER FUNCTIONS FOR 12 SASKATCHEWAN TIMBER SPECIES

J. Gál and I.E. Bella

© Minister of Supply and Services Canada 1994
Catalogue No. Fo46-12/338E
ISBN 0-662-22782-4
ISSN 0704-7673
This publication is available at no charge from:
Natural Resources Canada
Canadian Forest Service
Northwest Region
Northern Forestry Centre
5320-122 Street
Edmonton, Alberta T6H 355
A microfiche edition of this publication may be purchased from:
Micromedia Ltd.
Place du Portage
165, Hôtel-de-Ville
Hull, Québec J8X 3X2

CANADIAN CATALOGUING IN PUBLICATION DATA
Gál, Janos, 1956-
New stem taper functions for 12 Saskatchewan timber species
(Information report ; NOR-X-338)
Includes an abstract in French.
Includes bibliographical references.
ISBN 0-662-22782-4
Cat. no. Fo46-12/338E

1. Timber - Saskatchewan. 2. Tree trunks - Saskatchewan. 3. Forest productivity - Saskatchewan. I. Bella, Imre E., 1935- . II. Northern Forestry Centre (Canada). III. Series: Information rcport (Northern Forestry Centre) (Canada)) ; NOR-X-338.

SD437.G34 $1994 \quad 333.75^{\prime} 11^{\prime} 097124$ C95-980005-0

Gál, J.; Bella, I.E. 1994. New stem taper functions for 12 Saskatchewan timber species. Nat. Resour. Can., Can. For. Serv., Northwest Reg., North. For. Cent., Edmonton, Alberta. Inf. Rep. NOR-X-338.

Abstract

Three taper functions were fitted to tree section data of 12Saskatchewan timber species to provide a means for estimating individual tree volume in the provincial timber inventory inSaskatchewan, Canada. The fitted functions performances were evaluated in terms of bias, standard error of estimate of volume, and log assortment estimation. The three functions differed in quality of results.

RÉSUMÉ

Trois formules de défilement ont été fixées aux données de sections transversales de 12 espèces d'arbres économiques du Saskatchewan àfin de permettre une estimation du volume des arbres de l'inventaire forestier de la province. Les formules ont été évaluées en fonction des biais, de l'erreur standard de l'estimation du volume et del'estimation de classification desbillots. Les trois formules diffèrent quant à la qualité des résultats obtenus.

CONTENTS

INTRODUCTION 1
DATA 1
ANALYSIS 4
K1 Function 4
K2 Function 6
Hilt Function 6
MODEL PERFORMANCE TEST 8
DISCUSSION 9
CONCLUSIONS 10
ACKNOWLEDGMENTS 10
REFERENCES 10
TABLES

1. Data summaries and screening results by species and criterion used 3
2. Parameter estimates and R^{2} statistics for Equation (3) 5
3. Parameter estimates and R^{2} statistics for Equation (4) 5
4. Parameter estimates and residual sum of squares for Equation (1) 6
5. Parameter estimates and residual sum of squares for Equation (6) 7
6. Parameter estimates and R^{2} statistics for Equation (8) 8
7. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes for the three selected taper functions 11
8. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for white spruce 12
9. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for black spruce 13
10. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for jack pine 14
11. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for balsam fir 15
12. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for tamarack larch 16
13. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for lodgepole pine 17
14. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for trembling aspen 18
15. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for black poplar 19
16. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for white birch 21
17. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by $D B H$ classes for green ash 22
18. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for Manitoba maple 23
19. Summary of percentage bias and percentage standard error of estimate of total stem and merchantable volumes using three taper functions by DBH classes for white elm 24
20. Log volume biases in four log size classes estimated by the three functions for each species 25

A timber inventory is expected to provide accurate estimates of timber resources of an area, both in total stem volume and merchantable volume for any desired utilization standard. Taper functions describe stem profiles of trees and are used to estimate total stem volume and merchantable volume to specified utilization standards. They are also used to estimate volumes of certainsized logs in each stem.

The Saskatchewan Provincial Timber Inventory system (SPTI) in Saskatchewan, Canada, uses a combined-variable volume equation for calculating tree volumes, and taper functions for calculating log volumes. Professor A. Kozak fitted these functions using results published earlier (Demaerschalk and Kozak 1977). In the last few years, officials responsible for this inventory have become concerned that the system might underestimate the volumes of small-sized trees (David Lindenas, Saskatchewan Environment and Resource Management, Prince Albert, Saskatchewan, July 1993. Personal communication.). To address this
concern, additional data were collected for small trees and refitting of the old taper function was initiated.

The objective of this current study was to pool and screen all available data; choose new taper functions of potential usefulness for the 12 timber species of Saskatchewan; fit these functions to the data, and; through analysis of their fit, select the function or functions that provide the best fit and most-accurate volume estimates over the range of size classes present. The 12 species used were: white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), jack pine (Pinus banksiana Lamb.), lodgepole pine (Pinus contorta var. latifolia Engelm.), balsam fir (Abies balsamea [L.] Mill.), tamarack larch (Larix laricina [Du Roi] K. Koch), trembling aspen (Populus tremuloides Michx.), black poplar (Populus balsamifera L.), white birch (Betula papyrifera Marsh.), green ash (Fraxinus pennsylvanica var. lanceolata [Borkh.]Sarg.), Manitoba maple (Acer negundo L.), and white elm (Ulmus americana L.).

DATA

Tree section data (from a total of 11032 trees) were provided on a data tape from Saskatchewan Environment and Resource Management. About 70% of the data were collected prior to 1979; for those trees, location was not recorded. The lack of location information prevented an evaluation of whether significant differences in tree shape occur among regions. In Alberta, Huang (1994) found significant differences in tree forms among ecoregions, and developed an ecoregion-based treevolume estimating system that improves the accuracy of tree-volume estimates.

When using taper functions for inventory purposes, it is important to ensure that the sample of sectioned trees represents the potential range of heights and diameters of the given species population, and that the frequencies in size classes are similar to the frequencies in the inventory population. Marek Zieba of Saskatchewan Environment and Resource Management (pers. com.) found that the frequencies in the tree section data for the seven main commercial timber species, (white spruce,
black spruce, jack pine, balsam fir, trembling aspen, black poplar, and white birch) were approximately proportional to their frequencies by volume in the inventory data.

As the first step in data screening, stem profiles were plotted and visually examined for all the data sets with $d_{\text {rel }}$ as abscisa and $h_{\text {rel }}$ as ordinate. In this paper, $d_{\text {rel }}$ equals diameter inside bark (d) divided by diameter at breast heightoutside bark (DBH); $h_{\text {rel }}$ equals 1 minus the ratio of height from the base to a specified section (h) divided by total stem height (H). The formulae are therefore expressed as:
$d_{\text {rel }}=d / D B H$
$h_{\text {rel }}=1-(h / H)$
The resulting plots showed high variation in data quality, with old data generally less variable than the new. Many trees in the trembling aspen data had unreasonably large diameters in the tip section, or incorrect section length at the tip. The
plots also indicated other possible discrepancies in the data, and suggested possible screening criteria.

The data files, consisting of a header record and an appropriate number of section records, were checked and trees with inconsistencies were deleted based on the criteria (Table 1):

1. Total height given in the header record differed from the running sum of the section record at the tip.
2. Diameter of the last section (tip) was not zero.
3. The section data, other than the tip, had zero diameter.
4. Increasing diameter with increasing height on the stem. If the increase exceeded 5%, both that section and the one below were deleted. A tree with more than two such discrepancies was deleted.
5. Relative diameter too large: $d_{\text {rel }}>\left(0.4+1.6 h_{\text {rel }}\right)$ when $h_{\text {rel }} \geq 0.1$.
6. Relative diameter near the top too large:

$$
\frac{d_{r e l}}{h_{r l}}>4 \text { when } h_{r e l}<0.1 .
$$

7. $D B H / H$ ratio too high: $D B H / H>4$.
8. Relative diameter too small:
$\frac{d_{r l}}{h_{r l}}<0.5$ when $h_{r l}>0.1$.
9. DIB (diameter at breast height inside bark) computed from section data differed more than 20% from the $d b h$ in the header record.
10. Height of the first section was greater than 0.75 m .
11. The difference between $d b h$ in the header record and that computed from the section data
differed more than 10%. In these cases, the value in the header record was replaced with the computed value while retaining the tree.

Next, the stem profiles were replotted using the screened data to check for further outliers. To estimate the relative height of the inflection in relation to total tree height (called parameter ' p ' in Kozak's [1989] equation), dot style plots were prepared from the stem section data for each species. The ' p^{\prime} ' values were: 0.15 for white spruce, black spruce, balsam fir, white birch, and tamarack larch; 0.17 for lodgepole pine, trembling aspen, and Manitoba maple; and 0.19 for jack pine, black poplar, green ash, and white elm.

Actual stem volumes were calculated from section data using the following procedure:

- The stump section, which contains the butt swell ${ }^{1}$, was calculated as a cylinder using the upper diameter. This led to a slight underestimation of the total stem volume.
- The volume of the second section was calculated as a neiloid frustum ${ }^{2}$.
- The upper sections were treated as cone frustums ${ }^{3}$, which became cones for the tips when the top diameter was zero.

Merchantable height for such volumes was calculated using linear interpolation between sections bracketing the specified merchantable diameter limit.

Log volumes were calculated using a $2.6-\mathrm{m}$ log length and a minimum of 8 cm upper diameter inside bark. Log end diameters were calculated using linear interpolation from the two section diameters bracketing the log end. The individual logs were then assigned to three log classes based on upper-end diameter: small ($8 \mathrm{~cm} \leq d<14 \mathrm{~cm}$), medium ($14 \mathrm{~cm} \leq d<20 \mathrm{~cm}$), and large ($d \geq 20 \mathrm{~cm}$). Their volumes were added up in each class.

[^0]Table 1. Data summaries and screening results by species and criterion used

Criterion	White spruce	Black spruce	Jack pine	Balsam fir	Tamarack larch	Lodgepole pine	Trembling aspen	Balsam poplar	White birch	Green ash	Manitoba maple	White elm
HTOT $\neq \boldsymbol{h}$ at tip section	1	- ${ }^{\text {a }}$	3	1	-	-	11	-	-	-	-	-
d of last section $\neq 0$	-	-	-	-	-	-	-	-	-	-	-	-
Section with 0 diameter	-	-	-	-	-	-	-	-	-	-	-	-
Increasing diameter	-	-	-	-	-	-	2	12	1	-	2	2
Relative d too large	-	4	2	-	-	1	18	6	2	-	2	1
Relative d too large near top	34	9	38	8	6	15	133	35	12	2	6	4
DBH/HTOT ratio too large	-	-	-	-	-	-	2	1	-	-	1	2
Relative d too small	1	1	-	-	-	-	2	13	3	-	-	7
DBH-DIB discrepancy	-	-	1	-	-	-	1	10	-	-	-	1
First section too high	-	2	10	-	-	-	17	6	3	-	2	-
Number of stems in sample	1603	2405	1681	396	379	117	2413	810	605	137	228	258
Number of stems used	1567	2389	1627	387	373	101	2227	727	584	135	215	241
Deleted number	36	16	54	9	6	16	186	83	21	2	13	17
Deleted percent	2.2	0.7	3.2	2.3	1.6	13.7	7.7	10.2	3.5	1.5	5.7	6.6
Corrected DBH values	8	2	10	4	5	1	579	110	41	0	2	9

[^1]
ANALYSIS

The taper function currently used in the SPTI was developed by Demaerschalk and Kozak (1977) and is referred to as K1 in this study. The parameters of this function had to be recalibrated with the additional data collected since its first calibration.

In addition, a literature review suggested two other recently developed taper functions with potential usefulness. The two functions are:

K2 by Kozak (1988), also called the variable exponent model; and

Hilt presented by Hilt (1980) as a modification of a function proposed by Bruce et al. (1968).

Using screened data for each species, the above taper functions were fitted with appropriate nonlinear algorithms. Although requiring considerably more computing power and more complex analysis, nonlinear methods provide better fit and a more realistic residual analysis than the various linear transformations used for fitting these functions in the past (Huang 1994).

K1 Function

This function was included in the analysis because it is currently used in the SPTI for volume estimation. The function describes the stem form with two functions: one for the butt, and one for the top section. The two functions merge at the inflection point of the stem profile. The parameters are conditioned so that at inflection point, the diameters predicted by either function are equal.

The form of the upper stem function is:
$d=\left[\left(\frac{h / H}{R H}\right)^{b_{1}} b_{2}\left(1-\frac{h / H}{R H}\right)\right] D I$
where: $R H=1-\frac{H}{H I}$
and $D I$ is the diameter inside bark of the stem profile at the inflection point; HI is height of the inflection point from the base; and b_{1}, b_{2} are parameters.

The form of the butt function is:

$$
\begin{equation*}
d=\left[b_{3}-\left(b_{3}-1\right)\left(\frac{1-h / H}{R H I}\right)^{b_{4}}\right]_{D I} \tag{2}
\end{equation*}
$$

where: $\mathrm{RHI}=1-\mathrm{RH}$
and b_{3}, b_{4} are parameters.
These values also had to be estimated from $D B H$ because the functions use diameter inside bark at the inflection point. Demaerschalk and Kozak (1977) suggest using two functions. First, estimate diameter inside bark at breast height, and from this value use another function to estimate diameter inside bark at the inflection point. These functions are:
$D I B=a_{1}+a_{2} D B H+a_{3} D B H^{2}$
$D I=a_{4}+a_{5} D I B+a_{6} D I B^{2}$
where: a values are parameters.
The coefficients for the regressions $D B H$ over $D I B$, and DIB over DI, were calculated using multiple regression techniques. In estimating $D I$, the estimated value instead of the real value of $D I B$ was used because, in application of the functions for estimating DI again, the estimated value of DIB will be used. These values were calculated from section data using linear interpolation because the original data contained no DIB and DIvalues. The estimated parameters and R^{2} (coefficient of determination) statistics for Equations (3) and (4) are in Tables 2 and 3, respectively.

In some instances, coefficients $a_{1}, a_{3}, a_{4}, a_{6}$ were nonsignificant; nevertheless, they were also included for consistency.

The coefficients b_{1} and b_{2} of the K1 function were estimated using a nonlinear parameter estimation procedure. This function describes the tree stem only above the inflection point, so the lower sections were deleted and regressions were fitted on the reduced data set. The fit statistics for Equation (1), therefore, represent only this upper part of the tree (Table 4).

Parameter b_{3} can be calculated with the following equation:

Table 2. Parameter estimates and $\mathbf{R}^{\mathbf{2}}$ statistics for Equation (3)

Species	Parameter				a_{3}
a_{1}	a_{2}	$\mathrm{~N}^{\mathrm{a}}$	R^{2}		
White spruce	-0.393221	0.950448	0.000262	1567	0.9878
Black spruce	-0.172585	0.938378	0.000396	2389	0.9964
Jack pine	-0.551719	0.955305	-0.000078	1627	0.9921
Balsam fir	-0.374458	0.970875	-0.000367	387	0.9987
Tamarack larch	-0.499043	0.977679	-0.000167	373	0.9977
Lodgepole pine	0.301728	0.914611	0.000805	101	0.9978
Trembling aspen	-0.457064	0.966300	-0.000709	2227	0.9911
Black poplar	-0.052826	0.904434	-0.000119	727	0.9877
White birch	-0.924184	1.025530	-0.001684	584	0.9934
Green ash	0.305634	0.856641	0.000935	135	0.9922
Manitoba maple	-0.064417	0.888189	0.000814	215	0.9932
White elm	0.001498	0.861505	0.000743	241	0.9906

${ }^{\mathrm{a}} \mathrm{N}=$ number of observations.

Table 3. Parameter estimates and \mathbf{R}^{2} statistics for Equation (4)

	Parameter				
Species	a_{1}	a_{2}	a_{3}	$\mathrm{~N}^{\mathrm{a}}$	R^{2}
White spruce	1.151978	0.894175	-0.001173	1567	0.9878
Black spruce	0.295805	0.973551	-0.002627	2389	0.9904
Jack pine	0.273784	0.927046	-0.001413	1627	0.9733
Balsam fir	0.622374	0.939691	-0.001417	387	0.9928
Tamarack larch	0.336730	0.993247	-0.003947	373	0.9904
Lodgepole pine	-0.177269	0.994172	-0.002008	101	0.9836
Trembling aspen	0.369581	0.945650	-0.002546	2227	0.9758
Black poplar	1.197019	0.839997	-0.001101	727	0.9743
White birch	0.972290	0.890632	-0.000858	584	0.9749
Green ash	-0.177666	1.009932	-0.005035	135	0.9675
Manitoba maple	0.435907	0.934107	-0.001428	215	0.9685
White elm	0.355853	0.894385	-0.001483	241	0.9725

${ }^{a} \mathbf{N}=$ number of observations.

Table 4. Parameter estimates and residual sum of squares (RSS) for Equation (1)

Species	Parameter			
	a_{2}	Na	RSS	
	0.964888	1.384107	11863	3.46
	0.775441	1.248411	10224	0.68
Jack pine	0.801665	1.280415	7926	2.32
Balsam fir	0.949868	1.375446	2644	1.62
Tamarack larch	0.977913	1.272527	1575	1.12
Lodgepole pine	0.963767	1.690012	1471	3.35
Trembling aspen	0.991947	1.794499	10499	3.88
Black poplar	1.101415	1.915244	4322	7.14
White birch	1.208500	1.990195	3205	5.58
Green ash	0.742181	1.179841	422	1.94
Manitoba maple	1.208500	1.990195	998	3.48
White elm	1.197396	1.649205	1034	5.08

${ }^{\text {a }} \mathrm{N}=$ number of obser vations.
$b_{3}=\frac{\left(\frac{D I B}{D I}\right)-\left(\frac{1-\frac{H-1.3}{H}}{R H I}\right)^{b_{4}}}{1-\left(\frac{1-\frac{H-1.3}{H}}{R H I}\right)^{b_{4}}}$

The coefficient b_{4} is conditioned to make the top and bottom functions continuous at the inflection point. The values of b_{4} and, subsequently, b_{3} and d, are determined for each tree by an iterative process; therefore no fit statistics are presented for Equation (2).

K2 Function

This function describes the whole stem with a varying exponent of the X term in Equation (6). The exponent includes the relative height from the ground, DBH, and H as independent variables. The form of the function is:
$d=a_{0} D B H^{a_{1}} a_{2} D B H^{b_{1} Z^{2}+b_{2} \ln (Z+0.001)+b_{3} \sqrt{Z}+b_{4} z_{+} b_{5}\left(\frac{D B H}{H}\right)}$
(6)
where:

$$
\begin{aligned}
& Z= h / H \\
& X= \frac{1-\sqrt{h / H}}{1-\sqrt{p}} \\
& p= \text { relative height of inflection point } \\
& \quad \text { from the ground }
\end{aligned}
$$

The coefficients for the K2 taper function were also fitted using nonlinear regression procedures. To obtain reasonably good initial parameter estimates, the model first was linearized using logarithmic transformation, and the coefficients of the transformed model were estimated with multiple linear regression techniques. With the initial parameters obtained from the transformed model, the parameters and fit statistics were then recalculated using nonlinear regression procedures (Table 5). These realistic initial parameter values also likely ensured convergence to global rather than local minimum of residual sum of squares.

Hilt Function

The original idea for this function was presented by Bruce et al. (1968), who suggested describing the $d^{2} / D B H^{2}$ ratio by the following function:

Table 5. Parameter estimates and residual sum of squares (RSS) for Equation (6)

Species	Parameter								$\mathrm{N}^{\text {a }}$	RSS
	a_{0}	a_{1}	a_{2}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}		
White spruce	1.028894	0.942483	0.999984	2.162679	-0.520780	3.553711	-1.922393	0.154525	15824	3.99
Black spruce	0.933348	0.993014	0.998033	1.634033	-0.377332	2.839266	-1.523830	0.224967	15158	0.59
Jack pine	0.738222	1.080307	0.994994	0.946525	-0.215280	1.529815	-0.769171	0.167008	12284	1.73
Balsam fir	0.850978	1.037410	0.996623	1.726301	-0.374214	2.879779	-1.535010	0.205714	3580	1.49
Tamarack larch	0.745588	1.123195	0.990416	1.119887	-0.295350	1.562785	0.756463	0.151162	2301	1.16
Lodgepole pine	0.965401	0.970357	1.000435	1.507149	-0.263651	1.450598	-0.942382	0.191585	1824	2.08
Trembling aspen	0.758908	1.053024	0.996492	-0.148669	0.067875	-1.892333	1.009093	0.076416	15523	3.85
Black poplar	0.767020	1.017008	0.997743	-0.367639	0.056375	-2.018467	1.238476	-0.037714	6060	7.26
White birch	0.790913	1.062430	0.995247	-0.194606	0.024172	-1.853877	1.153796	-0.040530	4396	5.64
Green ash	1.000092	0.936587	1.000235	1.467591	-0.483600	2.919951	-1.370717	-0.039554	734	1.79
Manitoba maple	0.766925	1.059614	0.995625	0.205406	-0.034736	-0.720112	0.529446	0.016027	1545	2.97
White elm	0.784025	1.006287	0.998168	0.393405	-0.097708	-0.616395	0.407093	0.073362	1625	5.18

[^2]$\frac{d^{2}}{D B H^{2}}=a_{1} x^{3 / 2}+\sum_{i=1}^{n} \sum_{j=0,0=0}^{1} \sum_{i k}^{1} a_{i k}\left(x^{3 / 2}-x^{k}\right) D B H^{i} H^{*}$
where:
\[

$$
\begin{aligned}
x & =\frac{H-h}{H-1.3} \\
b_{1} & =\text { vector of possible exponents } \\
i & =\text { subscript for possible exponents } \\
j, k & =\text { index variables }
\end{aligned}
$$
\]

Bruceetal.(1968) used DBH overbark. To condition the function to go through $D I B$, the term $a_{1} x^{3 / 2}$ had to be equal to the average $d^{2} / D B H^{2}$ ratio. The elements of vector b were determined by trial and error. Bruce et al. (1968) suggested using a twoelement vector with elements 3 and 30 .

In his version, Hilt (1980) used inside bark diameters. In this case, the constant of the term $x^{3 / 2}$
is set to 1 , forcing the model to go through DBH.A separate function is used to estimate $D I B$ from $D B H$.

In this analysis, the parameters of the Hilt functions were fitted with multiple linear regression techniques. First, the b_{i} values in Equation (7) were chosen to be 3 and 30 as suggested above. Then, substituting these b_{i} values into the function, the a parameters could be estimated with multiple linear regression methods. The function form used was:

$$
\begin{gather*}
\frac{d^{2}}{D I B^{2}}=a_{1} x^{3 / 2}+a_{2}\left(x^{3 / 2}-x^{3}\right) H+a_{3}\left(x^{3 / 2}-x^{3}\right) D I B \cdot H+ \\
a_{4}\left(x^{3 / 2}-x^{30}\right) D I B+a_{5}\left(x^{3 / 2}-x^{30}\right) D I B \cdot H \tag{8}
\end{gather*}
$$

Coefficient a_{1} was forced equal to 1 . Only with the trembling aspen data did a trial fitting the above function with nonlinear techniques give the same parameters as the linear regression. The parameter estimates and fit statistics are in Table 6.

MODEL PERFORMANCE TEST
Taper functions are used to predict total and merchantable volumes and log volumes. Evaluating their accuracy in use for estimating such volumes is best done in terms of those respective volume estimates. Estimated stem and log volumes
were therefore calculated and compared to the actual volumes.

The K1 and K2 functions are not integrable, so stem volumes can only beestimated numerically by

Table 6. Parameter estimates and \mathbf{R}^{2} statistics for Equation (8)

Species	Parameter				$\mathrm{N}^{\text {a }}$	R^{2}
	a_{2}	a_{3}	a_{4}	a_{5}		
White spruce	$0.44894 \mathrm{E}-02^{\text {b }}$	-0.29500E-03	0.27711E-04	-0.84550E-05	15824	0.9423
Black spruce	$0.45465 \mathrm{E}-01$	-0.16784E-02	$0.27150 \mathrm{E}-03$	--0.68984E-04	15158	0.9806
Jack pine	$0.40571 \mathrm{E}-01$	-0.95925E-03	$0.62940 \mathrm{E}-03$	--0.12800E-03	12284	0.9738
Balsam fir	$0.14669 \mathrm{E}-01$	-0.52808E-03	0.34490E-06	-0.11650E-06	3580	0.9671
Tamarack larch	-0.54220E-02	-0.75656E-03	$0.80641 \mathrm{E}-04$	-0.22620E-04	2301	0.9596
Lodgepole pine	$0.55494 \mathrm{E}-01$	-0.67898E-03	0.21819E-02	-0.26818E-03	1824	0.9861
Trembling aspen	$0.28511 \mathrm{E}-01$	-0.49355E-03	$0.39810 \mathrm{E}-03$	-0.98228E-04	15523	0.9709
Black poplar	$0.56280 \mathrm{E}-04$	$0.69961 \mathrm{E}-04$	$0.48610 \mathrm{E}-03$	-0.10903E-03	6060	0.9650
White birch	$0.51208 \mathrm{E}-02$	$0.64262 \mathrm{E}-04$	$0.70180 \mathrm{E}-03$	-0.16898E-03	4396	0.9529
Green ash	-0.86645E-04	$0.67701 \mathrm{E}-03$	$0.26261 \mathrm{E}-02$	-0.35176E-03	734	0.9782
Manitoba maple	$0.74041 \mathrm{E}-02$	$0.12284 \mathrm{E}-03$	$0.60650 \mathrm{E}-03$	-0.11801E-03	1545	0.9662
White elm	-0.12131E-01	$0.30834 \mathrm{E}-03$	0.14944E-02	$-0.25396 \mathrm{E}-03$	1625	0.9634

adding up section volumes. In order to ensure compatibility with the estimation system currently used inSaskatchewan, the subroutines provided by Kozak (for the K1 function in 1982, and for the K2 function in 1993) were used to estimate log volumes for those functions. Volumes for the Hilt function, although integrable, were also calculated with the same algorithms as used in the Kozak subroutines. Log volumes estimated by the functions were also added up by the three log size classes.

To compare the three models' performances, statistics were calculated for each species by DBH class and by $D B H, H$ class within a species.

Average bias of volume prediction is calculated as follows:
$\operatorname{Bias}(\%)=100 \frac{\sum_{i=1}^{m}\left(\hat{v}_{i}-\bar{v}\right)}{m \bar{v}}$
where:
$\hat{v}_{i}=$ predicted volume
$\bar{v}=$ average observed volume
$m=$ number of observations

It should be noted that the bias calculated here is different from the usual bias calculations because it gives positive values for overestimation and negative values for underestimation.

Percentage standard error of estimate (SEE \%) is calculated as follows:
$\operatorname{SEE}(\%)=\frac{100}{\bar{v}} \sqrt{\frac{\sum_{i=1}^{m}\left(\hat{v}_{i}-v_{i}\right)^{2}}{m-k}}$
where:

$$
\begin{aligned}
v_{i} & =\text { observed volume } \\
k & =\text { number of estimated parameters } \\
& \text { in the function }
\end{aligned}
$$

DISCUSSION

A comparison of biases and standard errors of estimate between total and merchantable volumes (Table 7) shows similarity within a species; therefore, only total volumes are discussed here. Biases of volume estimates arising from the use of functions K1 and K2 were also similar, and were under 3% in absolute value. In comparison, the Hilt function underestimated total stem volumes for white spruce, black spruce, and balsam fir. For hardwoods, the K2 function gave the best estimates for trembling aspen, while for black spruce and white birch, K1 and Hilt gave similar estimates in terms of bias, while the K2 function slightly underestimated these volumes. For the minor species, except tamarack larch (lodgepole pine, Manitoba maple, and white elm) the Hilt function gave better estimates than K 1 and K 2 . The K2 function estimated green ash with a large positive bias.

To investigate the effect of tree size on volume estimation, the percentage volume biases were summarized by species and DBH and H classes for both total and merchantable volumes ${ }^{4}$.

Generally the lowest biases, in the -2% to $+2 \%$ range, were observed in $H / D B H$ cells near the mean values of height-diameter relationship of each species, coinciding with the highest tree frequencies. Higher biases of up to 60-70\%, near the extremities of the data range, arise from some outliers. These biases are of minor consequence.

To investigate the overall effect of DBH on volume estimates regardless of heights, summaries were prepared for each species by diameter class. The results showed that DBH had little effect on the volume estimation bias. Tables $8-19$ present the results for all species.

In another analysis, the biases of estimated log volumes were compared in three log size classes to actual \log volumes in the same classes. The results showed that log volume predictions using the K1 and K 2 functions were similar (Table 20), and even outperformed the Hilt function except in cases of large logs for green ash and Manitoba maple, and small logs for Manitoba maple and white elm. The

[^3]prediction biases for log volumes and merchantable volumes were also similar, although there was a considerable variation in bias for different log size
classes. This variation might be due to bias in estimating small trees or the top of larger trees.

CONCLUSIONS

Generally, the K1 and K2 functions provided better estimates for the main coniferous timber species than the Hilt function. The latter, however, provided somewhat better results for the broadleaved species. The K2 function outperformed the K1 function in estimating small tree volumes. If one model form is preferred for all species, the K2 function should be the choice for volume estimation in Saskatchewan because of its
superior overall performance and mathematical elegance.

The results in this study are based on a sample of tree section data. Further analysis would be required to evaluate the effects, in terms of actual inventory volume estimates, of implementing new taper functions into the SPTI system.

ACKNOWLEDGMENTS

This study was requested by the Forestry Branch of Saskatchewan Environment and Resource Management, and supported by the Canada-Saskatchewan Partnership Agreement in Forestry. J. Benson, D. Lindenas, and M. Zieba were the Saskatchewan contact persons, and provided data, background information, and advice throughout the study. P. Loseth, Canadian Forest Service, Prince Albert, Saskatchewan, provided the necessary liaison. C. Cieszewski, Northern Forestry Centre, Edmonton, Alberta, was involved in the
planning phases of the study. He and A. Wawrikowicz also advised on regression and computational techniques. Special thanks to \mathbf{Z}. Somogyi, Postdoctoral Fellow at the Northern Forestry Centre, for initial data processing and preliminary analysis for the seven main commercial tree species, and to A. Kozak, University of British Columbia (UBC), for advice and for providing a subroutine to estimate stem and log volumes. P. Marshall ofUBC provided the VTAPER package for fitting K2 (although it was not used in this study).

REFERENCES

Bruce, D.; Curtis, R.O.; Vancoevering, C. 1968. Development of a sy stern of taper and volume tables for red alder. For.Sci. 14:339-350.

Demaerschalk, J.P.; Kozak, A. 1977. The whole bole sy stem: a conditioned dual equation system for precisc prediction of tree profiles. Can. J. For. Res. 7:488-497.

Hilt, D. E 1980.Taper-based system for estimating stem volumes for upland oak. U.S. Dep. Agric., For. Serv., Northeast. For. Exp. Stn., Broomall, Pennsylvania. Res. Pap. NE-458.

Huang, S. 1994. Eologically based individual tree volume estimation for major Alberta tree species. Individual tree volume estimation procedures for Alberta: methods of formulation and statistical foundations. Alberta Environ. Prot., Land For. Serv., For. Manage. Div., Edmonton, Alberta. Rep. 1. Publ. T/288.

Kozak, A. 1988. A variable-exponent tap er eq uation. Can. J. For. Res. 18:1363-1368.

Table 7. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes for the three selected taper functions

Species	Number of stems	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
White spruce	1567	-2.7	-2.9	-5.4	14.3	14.2	16.2	-2.9	-2.9	-4.3	14.8	14.8	16.3
Black spruce	2389	0.3	0.3	-3.0	11.9	11.0	12.8	-0.8	-0.5	-3.6	14.0	13.2	15.1
Jack pine	1627	0.3	0.5	0.1	14.9	12.4	13.3	-0.5	0.2	-0.1	15.9	13.7	14.6
Balsam fir	387	-2.4	-1.2	-4.0	11.3	10.6	11.9	-2.3	-1.3	4.2	11.9	11.3	12.2
Tamarack larch	373	-0.2	-1.1	-8.3	13.4	11.7	18.2	-1.4	-1.3	9.2	14.8	14.0	20.5
Lodgepole pine	101	-2.2	2.2	0.5	12.5	9.6	12.5	-2.1	2.3	0.6	12.6	9.9	12.8
Trembling aspen	2227	2.0	0.7	1.4	21.9	21.4	21.6	1.3	0.8	1.5	22.6	22.5	22.6
Balsam poplar	727	1.2	-2.0	1.5	22.3	23.2	22.0	0.0	-2.1	1.3	23.4	24.1	22.8
White birch	584	0.9	-2.0	1.5	26.2	25.6	25.5	-0.5	-2.0	1.4	27.8	27.4	27.3
Green ash	135	2.5	9.1	1.5	14.6	17.7	13.6	0.9	8.9	1.0	16.0	19.2	15.4
Manitoba maple	215	-0.9	-3.7	-1.2	24.5	22.3	21.8	-2.8	-4.0	-1.7	25.0	25.2	24.8
White elm	241	-2.4	-3.7	-1.2	17.9	18.7	17.7	-3.5	-3.7	-1.5	19.9	20.5	19.3

Table 8. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for white spruce

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	10	-100.0	48.0	11.2	-a	-	-	-	-	-	-	-	-
6	12	-69.2	14.6	-2.8	-	-	-	-	-	-	-	-	-
8	8	2.8	6.2	3.0	-	-	-	-18.8	-62.9	-50.4	-	-	-
10	81	3.4	3.0	-6.7	15.0	11.0	12.5	-8.5	-1.5	-16.8	23.6	22.5	27.5
12	100	-1.8	1.3	-6.8	12.5	10.6	12.6	-6.7	-0.5	-12.9	18.3	16.4	21.7
14	87	-2.6	0.6	-7.4	12.9	9.9	12.6	-6.5	-0.2	-10.8	15.1	12.8	17.3
16	82	0.2	0.6	-5.5	15.7	9.5	11.9	-3.9	0.0	-7.1	14.3	11.7	15.0
18	79	-1.7	-1.9	-5.4	11.1	8.2	10.1	-4.9	-2.5	-6.0	12.1	10.1	12.3
20	92	-0.7	-0.5	-4.2	12.1	10.2	10.6	-3.2	-0.7	-4.0	11.8	11.5	11.9
22	61	-3.6	-2.1	-5.4	11.9	10.3	12.5	-5.4	-2.7	-5.4	13.6	11.6	13.6
24	60	-5.6	-4.2	-7.1	12.9	10.4	13.4	-6.9	-4.5	-6.6	13.9	11.2	13.9
26	71	-3.6	-2.5	-4.8	12.5	11.1	12.6	-4.6	-2.6	-4.0	13.7	12.3	13.5
28	46	-6.7	-4.8	-7.7	13.0	11.6	13.3	-7.4	-4.8	-6.9	13.9	12.2	13.4
30	56	-3.9	-2.5	-4.7	9.3	8.4	9.7	-4.4	-2.5	-3.6	10.0	8.9	9.7
32	64	-5.5	-4.8	-7.5	16.5	9.7	12.2	-6.5	-4.7	-6.5	13.1	10.2	12.1
34	58	-5.6	-3.3	-6.6	10.0	8.1	10.7	-5.8	-3.4	-5.7	10.3	8.4	10.4
36	84	-4.2	-2.2	-5.4	10.6	9.8	11.2	-4.3	-2.1	-4.4	11.0	10.2	11.0
38	73	-3.6	-1.9	-4.9	10.8	10.2	11.4	-3.5	-1.7	-3.6	11.2	10.6	11.4
40	66	-3.2	-2.5	-4.5	11.1	11.0	11.4	-3.3	-2.4	-3.4	11.4	11.3	11.3
42	62	-5.0	-4.0	-6.7	9.5	9.1	10.4	-5.0	-4.0	-5.6	9.7	9.3	10.0
44	61	-2.5	-2.3	-4.3	9.2	9.7	9.6	-2.3	-1.9	-2.9	9.5	9.9	9.4
46	48	-2.3	-2.7	-4.2	11.1	11.1	11.7	-2.4	-2.8	-3.1	11.5	11.4	11.6
48	47	-1.8	-2.6	-4.1	10.3	10.3	11.0	-1.8	-2.5	-2.9	10.6	10.6	10.9
50	43	-1.9	-2.8	-4.6	11.1	11.2	12.0	-1.9	-2.8	-3.4	11.5	11.5	11.9
52	19	-3.3	-4.2	-6.5	11.5	11.8	12.7	-3.3	-4.2	-5.4	12.0	12.3	12.4
54	17	-3.5	-5.4	-6.6	17.1	17.2	17.4	-3.5	-5.4	-5.5	16.9	17.0	16.6
56	17	0.1	-2.0	-3.6	17.9	17.0	17.2	-0.2	-2.3	-2.7	18.5	17.6	17.6
58	14	-3.9	-6.0	-8.2	14.9	14.7	16.9	-4.0	-6.2	-7.2	15.5	15.2	16.7
60	14	-0.3	-4.6	-4.1	13.0	15.6	12.4	-0.1	-4.4	-2.6	14.0	15.9	12.7
62	12	4.0	1.0	-1.2	-	-	-	4.0	0.9	-0.1	-	-	-
64	6	-1.0	-3.1	-7.5	-	-	-	-1.1	-3.3	-6.7	-	-	-
66	6	-1.3	-4.9	-7.1	-	-	-	-1.4	-5.1	-6.1	-	-	-
68	4	-4.4	-6.8	-11.5	-	-	-	-4.5	-7.1	-10.8	-	-	-
70	0	-	-	-	-	-	-	-	-	-	-	-	-
72	1	4.7	6.1	-9.9	-	-	-	4.7	5.8	-9.6	-	-	-
74	1	9.4	7.7	-3.1	-	-	-	9.0	7.2	-2.7	-	_	-
76	4	2.9	-2.1	-5.9	-	-	-	2.2	-3.0	-5.6	-	-	-
78	0	-	-	-	-	-	-	-	-	-	-	-	-
80	1	4.6	-0.4	-5.9	-	-	-	4.4	-0.7	-5.1	-	-	-

[^4]Table 9. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for black spruce

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	10	-100.0	51.3	32.6	-a	-	-	-	-	-	-	-	-
6	11	-20.1	5.2	0.3	-	-	-	-	-	-	-	-	-
8	16	-8.1	0.5	-4.0	39.5	8.9	10.2	-5.0	-19.7	-13.7	54.5	49.9	47.1
10	525	1.7	2.8	-1.3	10.0	9.1	8.7	-2.8	0.2	-3.6	18.4	18.3	18.4
12	527	-0.5	0.7	-2.9	10.3	7.7	8.4	-4.7	-1.1	-5.2	14.1	12.2	13.7
14	341	0.0	1.5	-1.5	10.3	9.0	9.2	-2.0	0.6	-2.5	12.8	12.1	12.6
16	333	-0.5	0.8	-2.0	8.7	7.3	8.0	-1.9	-0.1	-2.7	10.1	9.1	10.1
18	224	-1.4	-0.3	-3.1	8.1	7.8	8.4	-2.0	-0.9	-3.3	9.3	9.2	9.7
20	148	-0.4	0.1	-2.8	9.1	8.1	9.4	-0.8	-0.3	-2.9	10.1	9.2	10.5
22	96	0.2	-0.9	-3.2	7.8	7.6	8.4	-0.1	-1.2	-3.1	8.5	8.5	9.1
24	56	2.7	1.8	-2.1	8.7	8.2	8.4	2.7	1.8	-1.8	9.5	9.0	9.2
26	46	1.6	-1.3	-4.3	10.9	11.5	11.3	1.6	-1.4	-4.0	11.7	12.2	11.9
28	30	2.2	-1.4	-5.0	7.6	7.9	9.3	2.1	-1.5	-4.8	8.4	8.7	9.9
30	16	1.2	-3.7	-7.5	17.2	15.3	18.7	0.8	-4.0	-7.6	17.9	16.1	19.5
32	4	4.5	-0.8	-6.3	-	-	-	4.5	-0.9	-6.2	-	-	-
34	4	0.9	-2.0	-12.9	-	-	-	1.2	-1.7	-12.9	-	-	-
36	1	14.6	5.8	0.1	-	-	-	15.2	6.3	0.8	-	-	-
38	0	-	-	-	-	-	-	-	-	-	-	-	-
40	0	-	-	-	-	-	-	-	-	-	-	-	-
42	1	15.4	6.9	-10.5	-	-	-	17.3	8.6	-9.6	-	-	-

${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

Table 10. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for jack pine

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	6	-100.0	1.6	-7.0	$\sim^{\text {a }}$	-	-	-	-	-	-	-	-
6	11	-85.4	3.3	1.2	-	-	-	-	-	-	-	-	-
8	15	-25.4	-2.7	-3.7	94.7	10.6	15.1	-21.5	-73.7	-49.4	109.8	147.7	100.0
10	131	1.4	-0.2	-2.3	17.1	12.1	12.9	-15.2	-16.9	-12.8	33.8	32.8	31.5
12	154	3.9	6.0	3.2	14.8	14.8	12.9	-0.2	6.1	2.9	21.4	23.7	21.4
14	186	4.0	6.3	4.0	14.8	14.7	13.1	1.6	7.3	4.3	17.8	19.8	18.0
16	169	3.0	6.6	4.0	14.5	14.7	13.2	1.7	7.6	4.5	16.2	18.3	16.5
18	145	-1.0	4.2	1.2	12.7	13.1	12.3	-2.1	4.0	0.6	14.8	15.0	14.4
20	148	0.7	4.2	2.4	12.4	12.1	12.0	-0.3	3.9	2.0	13.8	13.5	13.6
22	109	-0.4	1.8	0.4	12.6	10.0	10.6	-1.5	1.5	0.1	12.4	11.0	11.7
24	129	-4.6	-2.7	-3.7	12.5	10.4	11.7	-5.3	-3.1	-4.1	13.2	11.1	12.5
26	128	-3.3	-1.5	2.9	9.2	8.7	8.9	-3.5	-1.7	-3.0	9.8	9.2	9.5
28	112	-1.9	-2.3	-2.3	10.1	9.8	10.0	-1.9	-2.2	-2.1	10.5	10.3	10.5
30	71	1.3	-1.3	0.1	10.5	9.9	10.3	1.1	-1.4	0.2	11.1	10.7	11.1
32	25	3.3	-1.0	1.2	12.4	10.5	11.5	2.7	-1.4	1.0	12.2	10.8	11.8
34	17	4.4	-2.6	1.6	13.8	11.4	11.8	4.1	-2.7	1.8	14.2	12.1	12.6
36	16	6.3	-0.5	2.3	14.8	10.3	11.6	6.5	-0.3	2.7	15.3	11.1	12.4
38	11	14.0	1.0	9.5	-	-	-	13.8	1.4	10.2	-	-	-
40	3	12.9	-0.6	7.3	-	-	-	13.0	-0.1	8.2	-	-	-
42	3	14.9	0.6	8.3	-	-	-	14.5	0.4	8.4	-	-	-
44	2	27.1	14.3	16.3	-	-	-	27.5	14.5	16.4	-	-	-
46	0	-	-	-	-	-	-	-	-	-	-	-	-
48	1	1.4	-13.3	-6.8	-	-	-	0.7	-13.9	-7.4	-	-	-
50	0	-	-	-	-	-	-	-	-	-	-	-	-
52	0	-	-	-	-	-	-	-	-	-	-	-	-
54	1	24.3	1.6	11.0	-	-	-	24.7	1.8	11.3	-	-	-

${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

Table 11. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for balsam fir

DBH	Stemquantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	10	-100.0	36.4	21.5	- ${ }^{\text {a }}$	-	-	-	-	-	-	-	-
6	11	-24.7	7.2	3.3	-	-	-	-	-	-	-	-	-
8	11	-4.9	-1.9	-5.1	-	-	-	-	-	-	-	-	-
10	19	-3.2	-2.9	-5.7	12.4	9.3	12.3	-10.2	-11.9	-15.3	24.9	23.0	27.6
12	31	-1.0	3.3	-2.9	12.7	12.5	12.2	-4.3	2.2	-7.8	19.4	18.2	20.3
14	21	-2.3	0.0	-4.2	14.8	13.0	14.2	-4.2	-0.1	-6.1	20.3	18.3	20.1
16	26	-3.8	1.8	-5.0	11.9	9.0	12.1	-4.9	1.7	-6.4	14.9	11.3	15.5
18	23	-0.9	3.7	-2.2	13.0	11.1	12.2	-1.1	4.5	-2.0	13.9	12.3	13.8
20	21	-4.7	-1.0	-5.6	12.7	8.0	12.3	-5.7	-1.7	-6.2	14.0	9.1	13.8
22	18	-7.2	-3.2	-8.1	14.5	9.4	14.0	-7.4	-3.2	-7.9	15.7	10.7	15.1
24	27	-5.3	-1.6	-6.1	10.3	7.3	10.4	-5.3	-1.7	-5.8	11.1	8.3	11.1
26	25	-4.8	-0.4	-5.9	8.0	5.0	8.7	-4.6	-0.3	-5.5	8.4	5.6	8.9
28	29	-5.2	-3.1	-6.4	9.4	7.0	10.0	-5.3	-3.3	-6.0	9.9	7.6	10.2
30	21	-6.9	-4.6	-8.5	11.9	9.8	12.5	-7.1	-5.0	-8.2	12.2	10.2	12.4
32	24	-3.7	-0.7	-5.7	8.6	7.1	9.6	-3.5	-0.8	-5.2	8.6	7.3	9.3
34	20	-2.5	-0.6	-4.9	11.2	10.7	11.7	-2.1	-0.5	-4.1	11.6	11.2	11.6
36	16	1.6	1.3	-1.2	11.6	11.7	10.2	1.9	1.5	-0.2	12.3	12.2	10.6
38	11	0.6	-0.7	-2.5	-	-	-	0.7	-0.8	-1.7	-	-	-
40	8	4.0	1.0	0.3	-	-	-	4.8	1.7	2.0	-	-	-
42	5	-0.5	-2.8	-4.6	-	-	-	-0.4	-2.8	-3.7	-	-	-
44	7	0.6	-5.4	-3.5	-	-	-	-0.1	-6.2	-3.1	-	-	-
46	1	-0.4	-3.0	-6.7	-	-	-	0.4	-2.3	-5.4	-	-	-
48	1	11.4	4.2	5.4	-	-	-	11.0	3.6	6.0	-	-	-
50	0	-	-	-	-	-	-	-	-	-	-	-	-
52	1	7.3	0.6	-0.4	-	-	-	8.5	1.5	1.5	-	-	-

[^5]Table 12. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for tamarack larch

DBH	Stemquantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
2	1	-100.0	36.9	21.1	-a	-	-	-	-	-	-	-	-
4	9	-24.6	5.0	0.0	-	-	-	-	-	-	-	-	-
6	11	-25.8	-1.2	-5.0	-	-	-	-	-	-	-	-	-
8	9	9.9	-3.0	-7.3	-	-	-	73.6	-38.0	-47.8	-	-	-
10	59	-4.6	-3.7	-6.3	11.5	10.8	12.2	-10.1	-14.0	-15.2	20.6	23.0	24.5
12	58	0.9	-2.2	-5.3	15.0	9.9	12.4	-4.2	-5.6	-10.7	16.8	14.9	19.5
14	47	1.0	-0.2	-5.4	16.4	10.1	14.6	-2.1	-0.8	-8.0	17.6	13.7	19.9
16	35	0.5	-0.1	-6.8	14.2	10.1	14.4	-2.0	-0.2	-8.5	14.2	12.6	18.3
18	32	0.2	-1.8	-7.7	16.5	9.9	17.3	-2.6	-2.2	-8.7	15.9	12.2	21.0
20	32	-1.4	0.2	-9.3	11.4	6.7	17.5	-1.9	0.6	-9.7	11.8	8.1	19.7
22	21	-3.4	-3.0	-11.2	11.3	10.5	17.1	-4.3	-3.1	-11.5	12.4	12.0	18.1
24	23	-1.5	-1.3	-10.5	10.5	11.8	16.6	-1.7	-0.9	-10.2	11.8	13.0	17.1
26	21	0.2	-0.8	-9.4	10.7	10.1	15.1	-0.1	-0.4	-9.0	11.8	11.4	15.8
28	7	2.2	-0.8	-7.0	-	-	-	1.6	-0.6	-6.4	-	-	-
30	5	2.9	-0.3	-9.1	-	-	-	3.4	1.0	-7.9	-	-	-
32	2	2.4	-5.8	-6.9	-	-	-	0.5	-6.3	-6.5	-	-	-
34	1	24.2	13.4	11.8	-	-	-	23.1	13.7	13.0	-	-	-

[^6]Table 13. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for lodgepole pine

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
8	1	-9.1	-0.5	-9.8	$\sim^{\text {a }}$	-	-	40.6	-79.0	-43.4	-	-	-
10	1	1.8	12.8	3.1	-	-	-	0.3	28.1	10.4	-	-	-
12	3	-11.0	-2.9	-9.1	-	-	-	-15.9	-0.5	-11.4	-	-	-
14	4	-10.7	-1.3	-7.1	-	-	-	-13.7	-0.7	-8.8	-	-	-
16	6	-0.5	5.6	2.3	-	-	-	-2.3	7.0	2.3	-	-	-
18	2	-4.6	7.6	1.5	-	-	-	-3.3	10.4	3.2	-	-	-
20	5	-3.2	4.6	1.6	-	-	-	-3.6	5.1	1.7	-	-	-
22	8	-11.2	-2.3	-5.9	-	-	-	-11.6	-2.3	-6.1	-	-	-
24	5	-10.5	-4.8	-6.1	-	-	-	-11.1	-5.1	-6.4	-	-	-
26	9	-5.8	2.0	-0.6	-	-	-	-5.8	2.2	-0.5	-	-	-
28	4	-6.6	0.0	-1.8	-	-	-	-6.4	0.2	-1.6	-	-	-
30	10	-4.7	2.4	0.0	-	-	-	-4.1	2.9	0.6	-	-	-
32	10	1.2	4.7	5.1	-	-	-	1.4	5.1	5.7	-	-	-
34	6	-1.2	5.0	2.7	-	-	-	-0.8	5.4	3.1	-	-	-
36	5	0.4	6.0	3.7	-	-	-	0.5	5.9	3.7	-	-	-
38	6	-6.5	-3.3	-4.1	-	-	-	-6.6	-3.5	-4.3	-	-	-
40	3	-0.9	2.4	1.0	-	-	-	-0.9	2.3	0.9	-	-	-
42	3	-2.3	1.6	-1.1	-	-	-	-2.1	1.6	-1.0	-	-	-
44	4	2.7	5.0	3.2	-	-	-	2.6	4.8	3.0	-	-	-
46	2	3.9	3.8	4.1	-	-	-	4.1	3.7	4.0	-	-	-
48	2	-3.3	-0.6	4.6	-	-	-	-2.4	0.2	-4.0	-	-	-
50	0	-	-	-	-	-	-	-	-	-	-	-	-
52	1	-5.2	-2.5	-8.7	-	-	-	-5.6	-3.1	-9.6	-	-	-
54	0	-	-	-	-	-	-	-	-	-	-	-	-
56	1	26.7	14.6	27.4	-	-	-	26.2	13.4	27.0	-	-	-

[^7]Table 14. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for trembling aspen

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	11	-100.0	-14.8	-3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	10	-70.5	-12.3	-10.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	33	-25.3	-7.2	-6.6	59.1	19.0	18.7	-50.1	-71.1	-49.8	106.5	122.7	103.2
10	214	8.0	-1.7	0.7	15.6	12.2	12.2	4.2	-25.9	-6.3	28.4	38.6	28.7
12	194	8.9	1.0	2.5	16.5	11.1	11.7	9.0	-0.1	0.9	21.5	18.7	19.4
14	173	6.8	1.5	2.6	13.6	11.0	11.5	6.1	2.0	1.1	16.5	15.0	15.4
16	179	4.2	0.5	1.2	11.1	10.0	10.2	3.1	0.7	0.2	12.9	12.3	12.5
18	157	2.5	-0.1	0.5	11.4	10.9	11.0	1.5	0.0	-0.1	12.9	12.6	12.7
20	147	1.9	0.0	0.4	11.7	11.3	11.4	1.1	0.2	0.2	12.7	12.5	12.6
22	139	1.6	0.6	0.8	10.7	10.3	10.4	1.0	0.8	0.8	11.3	11.0	11.2
24	125	0.4	-0.4	-0.1	12.3	12.4	12.2	-0.3	-0.3	0.0	13.0	13.1	12.9
26	109	2.8	2.2	2.6	12.1	11.8	11.9	2.3	2.4	2.9	12.5	12.4	12.5
28	116	0.9	0.0	0.7	12.2	12.1	12.1	0.2	0.1	1.0	12.6	12.6	12.6
30	108	0.2	-0.2	0.3	11.5	11.5	11.4	$\bigcirc 0.5$	-0.1	0.5	11.9	11.9	11.8
32	105	-0.5	-1.2	-0.4	13.5	13.3	13.3	-1.3	-1.1	-0.2	13.9	13.8	13.8
34	83	0.2	-0.4	0.4	14.7	14.8	14.5	-0.5	-0.3	0.7	15.3	15.4	15.2
36	58	1.2	0.3	1.4	15.3	15.6	15.0	0.7	0.7	1.9	15.8	16.2	15.6
38	64	1.9	1.6	2.1	16.7	17.0	16.4	1.4	1.9	2.5	17.3	17.7	17.1
40	44	2.0	1.1	2.0	15.1	14.8	14.7	1.3	1.3	2.4	15.4	15.3	15.1
42	33	4.5	3.5	4.4	20.0	19.3	19.3	3.9	4.0	5.0	20.3	19.9	19.8
44	26	4.2	2.6	4.1	19.4	18.5	18.4	3.4	3.0	4.5	19.7	19.1	19.0
46	23	-0.5	-1.9	-0.9	20.5	19.8	19.5	-1.4	-1.7	-0.6	20.9	20.2	19.7
48	15	-7.3	-8.4	-7.8	17.9	18.3	16.1	-8.2	-8.4	-7.8	19.3	18.7	16.5
50	18	-2.7	-4.6	-3.4	17.8	17.4	16.6	-3.6	-4.3	-3.1	17.9	17.2	16.4
52	12	8.4	7.1	7.1	0.0	0.0	0.0	7.5	7.4	7.4	0.0	0.0	0.0
54	15	13.2	11.0	11.5	29.8	26.2	25.1	12.0	11.3	11.7	29.2	27.0	25.6
56	4	-1.7	-3.8	-3.4	0.0	0.0	0.0	-2.3	-3.1	-2.8	0.0	0.0	0.0
58	2	9.6	8.2	6.8	0.0	0.0	0.0	8.2	8.2	6.4	0.0	$0: 0$	0.0
60	6	8.6	5.3	6.1	0.0	0.0	0.0	7.4	5.8	6.3	0.0	0.0	0.0
62	3	25.7	21.5	22.8	0.0	0.0	0.0	24.8	22.6	23.6	0.0	0.0	0.0
64	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
66	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70	1	10.7	10.8	1.2	0.0	0.0	0.0	10.1	11.5	1.2	0.0	0.0	0.0

Table 15. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for black poplar

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	11	-100.0	-10.3	7.6	-a	-	-	-	-	-	-	-	-
6	7	-86.1	-17.1	-3.7	-	-	-	-	-	-	-	-	-
8	7	3.2	-2.5	9.6	-	-	-	-15.1	-51.0	-5.2	-	-	-
10	16	1.7	-14.1	-7.6	19.0	26.2	20.8	6.4	-38.7	-15.6	37.7	63.9	42.4
12	21	18.0	-5.1	5.4	28.6	11.5	12.8	22.4	-11.6	6.6	34.6	23.2	21.7
14	21	9.1	-4.4	0.8	15.0	10.9	10.3	9.7	-7.2	-1.9	19.9	17.8	16.4
16	27	10.0	-1.3	2.5	19.3	14.7	14.3	0.0	-1.9	1.1	22.8	18.8	17.8
18	30	8.2	-0.9	1.6	14.6	10.8	10.8	7.5	-1.3	0.6	15.7	12.8	12.6
20	39	3.5	-4.9	-2.6	11.7	11.5	10.7	1.6	-5.7	-3.8	11.9	13.2	12.5
22	32	6.9	0.9	1.9	14.6	11.7	12.3	6.3	0.8	1.7	15.1	13.0	13.5
24	38	-0.5	-5.3	-4.5	16.9	17.6	17.3	-1.6	5.9	5.0	19.0	19.7	19.4
26	36	2.1	-2.2	-1.4	11.3	11.3	10.4	1.1	-2.5	-1.6	12.0	12.1	11.2
28	38	5.9	1.5	3.0	14.9	13.1	13.4	5.0	1.6	3.3	15.4	14.2	14.6
30	42	1.4	-1.8	-1.3	12.5	12.6	12.1	0.5	-2.0	-1.2	13.3	13.4	12.9
32	52	-0.9	-3.8	-3.0	12.2	12.6	12.4	-1.9	-4.0	-3.0	12.9	13.3	13.0
34	41	-0.2	-3.1	-1.7	15.4	15.7	15.0	-1.2	-3.2	-1.6	16.8	16.9	16.1
36	24	1.2	-1.4	0.1	13.1	12.9	12.1	0.3	-1.4	0.3	13.5	13.3	12.6
38	21	1.1	-0.9	-0.2	13.9	13.4	13.0	0.8	-0.4	0.5	14.2	13.6	13.4
40	17	0.0	-2.9	0.0	15.2	14.9	13.8	-0.8	-2.4	0.7	14.8	14.4	13.3
42	16	5.2	2.9	5.0	18.6	16.5	16.5	4.3	3.0	5.4	19.4	17.9	17.8
44	16	-4.2	-6.4	-4.2	17.7	17.7	16.2	-5.4	-6.4	-4.1	19.0	18.4	16.9
46	13	2.3	0.0	2.5	17.9	16.1	15.4	1.2	0.2	2.7	18.2	16.6	15.8
48	14	0.3	-2.0	1.0	13.3	12.7	11.7	-0.7	-1.8	1.2	14.5	13.6	12.6
50	15	3.7	1.5	4.4	17.9	15.9	16.7	3.0	2.0	4.9	17.7	16.1	17.0
52	13	7.2	5.0	8.0	23.6	20.3	20.0	6.4	5.4	8.3	23.3	20.9	20.6
54	12	4.6	2.6	5.3	-	-	-	3.8	2.9	5.7	-	-	-
56	16	-2.0	-4.1	-1.2	25.1	24.3	22.2	-3.2	-4.1	-1.3	25.8	24.6	22.5
58	11	-2.5	-5.0	-1.0	-	-	-	-3.9	-5.1	-1.2	-	-	-
60	12	0.4	-2.3	1.9	-	-	-	-0.9	-2.2	1.8	-	-	-
62	12	5.5	2.9	6.8	-	-	-	4.2	2.9	6.6	-	-	-
64	8	-2.8	-5.5	-1.2	-	-	-	-4.2	-5.6	-1.5	-	-	-
66	11	9.8	6.5	11.8	-	-	-	8.4	6.8	11.7	-	-	-
68	6	1.6	-1.9	3.8	-	-	-	-0.5	-2.3	3.0	_	-	_
70	3	7.7	4.4	8.3	-	-	-	6.0	4.2	7.7	-	-	-
72	8	-9.3	-13.4	-6.0	-	-	-	-11.9	-14.0	-7.2	-	-	-
74	4	-8.9	-12.4	-6.7	-	-	-	-10.9	-12.8	-7.6	-	-	-
76	5	13.8	9.1	17.0	-	-	-	12.0	9.3	16.6	-	-	-
78	2	-4.6	-9.7	0.3	-	_	-	-6.4	-9.1	0.2	-	-	-
80	0	-	-	-	-	-	-	-	-	-	-	-	-

Table 15. Concluded

DBH	Stem $\underset{\text { (no.) }}{\underset{\text { quantity }}{ }}$	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
82	5	8.7	4.5	9.5	-	-	-	7.7	4.9	9.3	-	-	-
84	1	-4.6	-8.2	-5.0	-	-	-	-5.5	-8.0	-5.2	-	-	-
86	1	4.2	-1.1	7.9	-	-	-	2.2	-1.2	7.1	-	-	-
88	0	-	-	-	-	-	-	-	-	-	-	- -	-
90	0	-	-	-	-	-	-	-	-	-	-	-	-
92	2	-7.5	-13.0	-4.1	-	-	-	-9.7	-13.2	-5.1	-	-	-
94	0	-	-	-	-	-	-	-	-	-	-	-	-
96	1	-20.4	-25.3	-17.9	-	-	-	-22.3	-25.7	-19.1	-	-	-

[^8]Table 16. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for white birch

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	10	-77.6	-15.2	-20.5	$\sim^{\text {a }}$	-	-	-	-	-	-	-	-
6	10	-0.2	-22.5	-20.2	-	-	-	-	-	-	-	-	-
8	9	20.9	-10.8	-3.7	-	-	-	8.4	-54.0	-35.7	-	-	-
10	59	2.1	-5.6	-0.3	14.9	14.0	13.7	2.0	-21.0	-9.4	29.0	35.4	30.5
12	63	9.9	-2.7	2.8	24.8	15.8	17.7	7.0	-5.7	-1.2	28.2	25.5	26.9
14	36	7.3	-2.0	1.7	16.4	11.3	11.3	4.3	-2.9	-0.8	15.9	15.5	15.3
16	49	0.8	-4.7	-1.8	13.3	11.5	11.3	-1.6	-5.6	-3.7	14.2	14.7	14.7
18	33	4.5	-3.4	0.1	18.2	15.5	14.1	0.3	-4.2	-1.3	17.5	18.6	17.2
20	34	3.4	-0.9	2.5	16.7	16.3	15.7	2.3	-0.3	2.9	19.1	18.9	18.1
22	27	4.2	1.6	3.5	14.1	12.4	12.5	3.8	2.2	4.2	14.0	13.2	13.3
24	24	3.5	0.4	2.8	20.5	18.4	17.4	1.9	0.4	2.9	20.4	19.6	18.7
26	24	3.9	2.3	4.5	18.1	17.4	17.2	3.3	2.6	5.0	19.8	19.1	18.9
28	22	3.8	-2.1	0.4	30.7	18.9	18.3	-0.2	-2.3	0.4	21.2	20.1	19.4
30	32	1.9	0.7	2.8	21.8	21.9	20.7	1.1	0.8	3.0	23.9	23.8	22.6
32	31	0.2	-0.9	1.2	22.4	22.7	21.0	-0.4	-0.6	1.7	24.1	23.9	22.3
34	31	-5.7	-7.3	-4.1.	15.6	16.1	14.2	-6.9	-7.3	4.2	16.9	16.8	14.9
36	21	0.6	-1.2	2.2	20.2	20.7	19.0	-0.7	-1.2	2.2	21.7	21.4	19.8
38	16	3.5	2.5	5.1	23.0	21.6	21.0	3.0	2.8	5.5	24.0	22.6	22.1
40	11	2.8	1.0	4.7	-	-	-	1.8	1.3	4.8	-	-	-
42	42	-7.7	-9.7	-5.3.	17.2	18.2	12.1	-9.2	-9.9	-5.7	19.3	18.5	12.7
44	6	4.3	1.5	5.8	-	-	-	3.8	2.7	6.7	-	-	-
46	6	-6.2	-8.3	-3.9	-	-	-	-6.7	-7.6	-3.6	-	-	-
48	6	3.4	0.1	5.2	-	-	-	1.5	0.2	4.7	-	-	-
50	2	10.4	8.1	11.9	-	-	-	10.0	8.7	12.1	-	-	-
52	2	-16.4	-20.1	-13.1	-	-	_	-19.2	-20.7	-14.6	-	-	-
54	2	-17.7	-21.7	-14.4	-	-	-	21.4	-23.0	-16.9	-	-	-
56	2	-6.8	-10.0	-4.6	-	-	-	-7.3	-9.2	-4.4	-	-	-
58	1	24.2	18.1	29.4	-	-	-	21.5	18.5	28.3	-	-	-
60	1	17.0	9.3	22.9	-	-	-	13.7	10.2	21.8	-	-	-
62	0	-	-	-	-	-	-	-	-	-	-	-	-
64	0	-	-	-	-	-	-	-	-	-	-	-	-
66	0	-	-	-	-	-	-	-	-	-	-	-	-
68	0	-	-	-	-	-	-	-	-	-	-	-	-
70	1	63.3	53.6	65.4	-	-	-	63.1	55.9	66.0	-	-	-

[^9]Table 17. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for green ash

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt	K1	K2	Hilt	K1.	K2	Hilt	K1	K2	Hilt
8	1	28.4	11.3	5.0	-a	-	-	26.1	-16.8	-19.7	-	-	-
10	8	15.8	15.8	5.8	-	-	-	-0.9	8.1	-5.7	-	-	-
12	10	6.7	9.9	0.0	-	-	-	2.6	9.5	-4.2	-	-	-
14	14	8.7	12.5	2.6	18.6	22.3	12.2	7.9	14.2	1.5	24.6	29.4	18.5
16	22	4.3	9.5	-0.4	10.5	15.0	8.4	2.9	9.0	-2.2	12.8	17.0	11.4
18	17	4.4	9.6	0.6	15.8	19.1	13.3	3.2	9.3	-0.4	19.1	21.6	16.9
20	19	7.4	9.2	0.6	22.3	17.7	14.4	3.8	8.7	-0.2	16.5	18.5	15.9
22	10	4.4	11.4	2.3	-	-	-	4.1	11.5	2.3	-	-	-
24	10	3.2	9.1	2.3	-	-	-	2.7	9.9	2.8	-	-	-
26	7	-3.9	3.3	-3.9	-	-	-	-4.9	2.9	-4.2	-	-	-
28	6	1.0	9.4	2.6	-	-	-	-0.3	8.8	2.1	-	-	-
30	4	4.8	14.1	8.1	-	-	-	3.9	14.3	8.3	-	-	-
32	2	-1.8	9.2	1.1	-	-	-	-1.4	9.7	2.1	-	-	-
34	3	-0.6	9.3	5.0	-	-	-	-1.8	9.4	5.1	-	-	-
36	1	-6.0	6.1	-0.8	-	-	-	7.4	4.7	-1.6	-	-	-
38	1	-9.4	1.3	-1.7	-	-	-	1.2	0.6	2.4	-	-	-

[^10]Table 18. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for Manitoba maple

DBH	Stem quantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	4	-100.0	0.8	12.2	-a	-	-	-	-	-	-	-	-
6	5	-28.8	-12.3	-4.9	-	-	-	-	-	-	-	-	-
8	6	-40.9	-4.1	0.3	-	-	-	-33.3	-48.5	-27.4	-	-	-
10	16	9.9	0.4	2.2	25.6	18.4	16.2	5.0	-11.2	-7.1	42.7	43.3	37.3
12	19	4.1	-0.3	0.2	21.1	15.2	16.0	1.9	-1.9	-4.8	24.4	22.0	23.4
14	31	4.9	2.2	1.8	19.5	15.8	16.5	4.6	4.2	0.7	23.9	22.3	22.7
16	24	-0.8	-1.4	-2.2	21.5	18.5	20.1	-2.2	-1.4	-4.0	25.8	23.3	25.2
18	21	-6.8	-5.9	-7.6	17.0	14.0	16.1	-8.6	-6.8	-9.4	19.3	16.3	19.1
20	19	-4.9	-5.3	-5.7	18.9	17.1	17.4	-7.1	-6.1	-7.0	21.4	19.3	19.8
22	17	-2.0	-3.6	-2.5	24.8	23.2	22.4	-4.5	-4.3	-3.4	28.4	26.6	25.6
24	12	-7.5	-7.6	-7.2	-	-	-	-8.6	-7.8	-7.3	-	-	-
26	9	1.0	-0.9	1.9	-	-	-	-0.4	-1.0	2.0	-	-	-
28	5	-4.8	-4.7	-3.8	-	-	-	-5.9	-5.3	-4.1	-	-	-
30	9	3.4	-7.0	-2.2	-	-	-	-2.2	-6.4	-1.4	-	-	-
32	8	8.8	2.8	9.5	-	-	-	6.5	3.1	10.0	-	-	-
34	5	0.0	-2.6	2.3	-	-	-	-0.3	-2.2	3.1	-	-	-
36	2	-7.6	-11.6	-4.9	-	-	-	-8.8	-11.9	-4.9	-	-	-
38	3	-0.9	-6.7	2.7	-	-	-	-1.6	-6.3	3.4	-	-	-

[^11]Table 19. Summary of percentage bias and percentage standard error of estimate (SEE) of total stem and merchantable volumes using three taper functions by DBH classes for white elm

DBH	Stemquantity (no.)	Total stem volume						Merchantable volume					
		Bias (\%)			SEE (\%)			Bias (\%)			SEE (\%)		
		K1	K2	Hilt									
4	5	-100.0	-12.6	9.8	- ${ }^{\text {a }}$	-	-	-	-	-	-	-	-
6	3	-100.0	-0.2	13.8	-	-	-	-	-	-	-	-	-
8	5	19.1	3.2	8.8	-	-	-	61.1	-48.3	-20.2	-	-	-
10	12	17.5	-0.9	6.4	-	-	-	7.5	-22.9	4.9	-	-	-
12	12	17.6	8.2	12.5	-	-	-	18.4	9.8	17.0	-	-	-
14	17	5.5	3.1	4.5	14.8	14.5	12.4	4.5	5.8	4.7	23.3	25.0	20.1
16	19	-0.8	-2.6	-1.9	13.6	13.5	11.9	-4.4	-2.3	-3.8	18.4	18.2	16.7
18	15	-4.5	-2.7	-4.6	14.5	12.6	13.3	-5.9	-1.9	-5.8	17.5	14.9	16.3
20	14	-8.6	-7.0	-8.1	19.4	16.7	16.3	-10.8	-7.5	-9.8	22.7	18.1	18.7
22	21	-3.1	-3.3	-2.1	16.3	16.4	14.8	-5.3	-3.4	-2.9	19.3	18.6	17.0
24	17	-4.0	-3.2	-3.2	15.5	15.0	13.8	-6.1	-3.8	-4.3	19.0	17.6	16.4
26	14	-1.5	-1.0	-1.1	17.4	19.3	13.7	-2.9	-0.9	-1.4	20.6	21.9	15.6
28	19	-7.4	-7.9	-6.4	21.1	21.0	19.0	-9.1	-8.2	-6.8	23.5	22.6	20.6
30	16	-5.8	-4.2	-5.4	21.5	21.5	18.1	-6.7	-4.6	-5.9	23.1	22.5	18.7
32	8	-1.7	-2.6	-0.2	-	-	-	-2.7	-2.4	-0.1	-	-	-
34	11	-5.1	-5.6	-3.7	-	-	-	-5.8	-5.4	-3.5	-	-	-
36	6	-4.9	-6.6	-2.7	-	-	-	-5.8	-6.6	-2.7	-	-	-
38	6	-4.4	-6.2	-2.3	-	-	-	-6.0	-7.0	-3.1	-	-	-
40	5	1.8	0.3	2.9	-	-	-	1.7	0.8	3.4	-	-	-
42	3	-5.4	-7.1	-3.6	-	-	-	-7.4	-8.5	-5.1	-	-	-
44	4	-1.7	-2.0	-2.3	-	-	-	-0.6	-0.8	-1.2	-	-	-
46	1	-8.8	-21.5	-0.7	-	-	-	-12.0	-21.8	-1.1	-	-	-
48	3	9.8	5.6	12.8	-	-	_	11.6	7.9	15.2	-	-	-
50	0	-	-	-	-	-	-	-	-	-	-	-	-
52	0	-	-	-	-	-	-	-	-	-	-	-	-
54	1	-7.1	-11.5	-5.1	-	-	-	-7.0	-11.0	-4.7	-	-	-
56	1	4.5	-3.0	9.7	-	-	-	2.4	-4.2	8.2	-	-	-
58	2	11.5	6.2	12.2	-	-	-	10.7	5.7	11.3	-	-	-
60	0	-	-	-	-	-	-	-	-	-	-	-	-
62	1	-2.1	-8.5	-0.1	-	-	-	-1.9	-7.9	0.2	-	-	-

[^12]Table 20. Log volume biases in four \log size classes estimated by the three functions for each species
$\left.\begin{array}{lrrrrrrrrrrr}\hline \begin{array}{c}\text { Log size class } \\ \text { and taper function }\end{array} & \begin{array}{c}\text { White } \\ \text { spruce }\end{array} & \begin{array}{c}\text { Black } \\ \text { spruce }\end{array} & \begin{array}{c}\text { Jack } \\ \text { pine }\end{array} & \begin{array}{c}\text { Balsam } \\ \text { fir }\end{array} & \begin{array}{c}\text { Tamarack } \\ \text { larch }\end{array} & \begin{array}{c}\text { Lodgepole } \\ \text { pine }\end{array} & \begin{array}{c}\text { Trembling } \\ \text { aspen }\end{array} & \begin{array}{c}\text { Balsam } \\ \text { poplar }\end{array} & \begin{array}{c}\text { White } \\ \text { birch }\end{array} & \begin{array}{c}\text { Green } \\ \text { ash }\end{array} & \begin{array}{c}\text { Manitoba } \\ \text { maple }\end{array} \\ \hline \text { Small logs }(8 \mathrm{~cm} \leq d<14 \mathrm{~cm}) & & & & & & & & & & \\ \text { White } \\ \text { elm }\end{array}\right]$

[^0]: 1 Butt swell refers to the swelling in diameter of larger trees near the base, usually below 1.3 m in height.
 2 Neiloid frustu m, or conic section, essentially refers to \log shape. Neiloid means that there is a narrowing of diameter in the midsection of the \log. This is in contrast to a paraboloid frustum, in which the diameter increases in the midsection of the log.

 3 Cone frustum refers to a log shape that decreases in diameter in a straight line taper from the large end to the smallend of the log.

[^1]: Note: HTOT = total tree height; $h=$ height; $d=$ diameter inside bark; $D B H=$ diameter at breast height; and DIB = diameter at breast height inside bark.
 a Dash indicates no trees in this category for the species.

[^2]: ${ }^{\text {a }} \mathrm{N}=$ number of observations.

[^3]: 4 These summaries are available from the ænior author upon request.

[^4]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^5]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^6]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^7]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^8]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^9]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^10]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^11]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

[^12]: ${ }^{\text {a }}$ Dash indicates SEE not calculated due to diameter class with number of trees <12.

