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Abstract

A simulation model, predicting individual
tree growth and mortality, is developed using
data from a red pine spacing trial. Changes in
relative growth rates as related to changes in tree
size, the size of the individual tree relative to the
median population size, and the overall stand
density are central elements of the model. The
model parameters arebiologically interpretable as
measures of the process of competition. Data from
six spacings were used to develop the model
whereas a different data set from eight spacings
served to validate the model. Inclusion of random
but correlated error components provided the
basis for stochastic simulations. Based on in-
dividual stem volume and stand area at age 10 as
input, the model was used to predict trends in tree
volume distributions until age 35. A detailed
graphical representation of model output (sum-
mary statistics of stem volume distributions) is
presented and compared with observed data.
Prediction errors of most results were as a rule
below 25%; smaller errors were associated with
shorter prediction periods. It is concluded that the
model realistically generates the temporal
dynamics of volume distributions in even-aged
red pine plantations. Failure to predict stand
development beyond a square spacing of 3.0 m,
and poor predictions for the 1.2 m, spacing limits
model application to initial spacings between 1.5
m and 3.0 m. The limited requirement for input
data makes the model an attractive tool for growth
and yield simulation.

Résumé

Un modele de simulation de la croissance et de la
mortalité des individus a été construit a 'aide des
expériences sur I’espacement des plantations de
pins rouges. Les changements des taux de crois-
sance relatifs se rapportant a la taille des arbres, a
la taille des individus par rapport a la taille
moyenne de la population et a la densité du
peuplement en général sont les principaux
éléments du modele. Du point de vue biologique,
les parametres du modele permettent de mesurer
le processus de compétition. Les données
provenant de six essais d’espacement ont servi a
créer le modele qui a été validé par les résultats
des huit autres essais d’espacement. Les simula-
tions stochastiques s’appuient sur l'inclusion
d’erreurs aléatoires, mais corrélatives. A partir du
volume individuel des tiges et de la superficie
d’un peuplement agé de 10 ans, le modele permet
de prévoir la tendance dans la distribution du
cubage des arbres jusqu’a I'dge de 35 ans. Les
résultats obtenus a l'aide du modele (résumé
statistique de la distribution du cubage) sont
présentés au moyen d’un graphique détaillé et ils
sont comparés aux données d’observations. En
général, la marge d’erreur des prévisions était
inférieure a 25 % et alle était plus faible pour des
périodes de prévision plus courtes. Les auteurs
arrivent a la conclusion que le modele reproduit
de fagon réaliste la dynamique temporelle de la
distribution du cubage dans une plantation
équienne de pins rouges. En raison de I’échec des
prévisions de la croissance d’un peuplement pour
un espacement en quinconce de plus de 3 m et du
manque de précision pour un espacement de
1,2 m, I'application du modele est restreinte a des
espacements initiaux variant entre 1,5 et 3 m.
Puisqu’un petit nombre de données d’entrée suffit
a créer le modéle, celui-ci se révele un outil
intéressant pour simuler la croissance et la
possibilité.







A COMPETITION PROCESS DRIVEN GROWTH MODEL FOR RED PINE

Introduction

Models of forest growth have long been used by
forest managers to support decision making
(Avery and Burkhart 1983). Reliable predictions,
of mean tree attributes and stems per hectare at
different ages, were the main purpose of most
management models in the past (Borders and
Bailey 1986, Clutter et al. 1983, Ek 1974). Because
the future distribution of stem sizes is essential to
the solution of a broad array of problems as-
sociated with forest management, a new class of
models, including those predicting the size dis-
tribution of stands, were developed. This new
class of models predicts the parameters of a
known distribution function from whole stand
variables. This, in turn, allows a breakdown of
total yield into specified size-classes (Bailey 1980,
Bailey and Dell 1973, Hyink and Moser 1983, Mag-
nussen 1986). Apart from compatibility between
growth and yield (Clutter 1963) and various other
mathematical constraints, such models do not at-
tempt to reflect the dynamics of stand growth,
only its outcome (Clutter et al. 1983, Hann and
Ritchie 1988).

Although both the process and importance of
inter-tree competition on stand development are
well known (Ford 1975, Hamilton 1969, Perry
1985, Westoby 1982) progress towards a growth
model that is consistent with the body of current
theory has been slow (Holdaway 1984, Hyink and
Moser 1983). Recent attempts to incorporate the -
3/2 power rule of self thinning” into existing
model structures do little to elucidate the under-
lying process of competition; they only describe
an idealized outcome (Hardwick 1987, Sterba
1975, Yoda et al. 1963, Zeide 1987). Several
published theoretical studies and simulation
models still await empirical evaluation (Aikman
and Watkinson 1980, Ford and Diggle 1981, Hara
1984). Spatial models with competition indices as-
signed to each tree as a growth modifier have ex-
tensive input requirements that have limited their
practical use (Alemdag 1978, Martin and Ek 1984,
Wykoff et al. 1982).

The intent here is to present a framework for
modeling tree growth consistent with our theory
of the competition process in an even-aged plan-

tation of forest trees. A red pine (Pinus resinosa
Ait.) spacing trial served to validate our approach.
Brand and Magnussen (1988) described the com-
petition process in this and other spacing trials as
being asymmetric and two-sided in the later
stages of more intense density-stress. The
proposed model reflects these findings and
modifies the theoretical model of one-sided com-
petition proposed by Aikman and Watkinson
(1980). Inclusion of stochastic (random) distur-
bances of growth enabled repeated simulations to
be run and computation of standard errors for the
predicted outcome.

Model description

Tree growth is the net balance between anabolic
gains (constructive metabolism) and cataboliclos-
ses (destructive metabolism) (Tait 1988). The
former is generally proportional to available
photosynthetically active radiation (PAR) while
the latter is proportional to plant weight (Harper
1977).

After canopy closure trees begin to compete
for light through crown encroachments among
neighbouring trees. Gradually less vigourous
trees will receive less and less PAR and their
growth rate will decline or eventually cease due
to reduced constructive metabolism. The process
of competition tends to exaggerate initial differen-
ces in size through the development of a hierarchy
of resource exploitation. Competition can be
described in terms of symmetry and one- or two-
sidedness. Symmetry implies that resources are
shared in relation to size (Weiner and Thomas
1986). Two-sided competition infers that all
population members are affected to some degree.
With one-sided competition larger plants affect
the growth of smaller neighbours only. In study-
ing the competition process, it is important to use
measures of tree vigour or efficiency, rather than
size. Otherwise the size of the tree is a greater
determinant of growth than the influence of com-
petition and determining the specific process of
competition is made difficult. A sensitive measure
of a tree’sresponse to its competitive environment
is the relative growth rate (Ford 1975, Perry 1985).



Asstand density increases therelationship be-
tweenrelative growth rate (RGR) and tree size un-
dergoes progressive change. In open grown
young stands the highest relative growth rates are
commonly found in smaller sized trees, whereas
the opposite is true in older stands (Perry 1985,
Weiner and Thomas 1986). Figure 1 displays a
general pattern of progressive changes in the
relationship between tree size and growth rate
(Perry 1985). Curve t1is for a young, open-grown
stand within which there is a minimum of com-
petition while t6 represents the curve for an older
stand within which there is intense competition.

relative growth rate

relative tree size

Figure 1. The general relationship between relative growth
rate and relative tree size (tree size divided by the median
size). RGR___is a potential upper limit of growth. Curves t
to t, illustrates the change in relative growth rate over time
(t,>t; > .. >t)as competition intensifies.

Figure 1 shows that the negative effects of
competition on growth appear first in the smallest
trees, but spread to increasingly larger trees as
competition intensifies. In the later and most in-
tensive phases of competition all members of the
population have reduced growth due to the over-
all density of the stand. Brand and Magnussen
(1988) have described this process in greater
detail. We concluded that competition in red pine
is asymmetric (resource sharing is not strictly
proportional to size) and that competition
progresses from a one-sided (only small trees suf-
fers reductions in growth) to a two-sided (bigger

trees are also effected by competition) process as
stand density increases.

To model the relationship between relative
growth rate and tree size can therefore by a ve
complex task (Aikman and Watkinson 1980).
However, the complexity can be reduced con-
siderably by introducing the concepts of an upper
limit to the relative growth rate (RGR ) that
defines site quality and a growth modifier or
index of growth vigour d = RGR/RGR_,,, that
defines the competition, microsite, and genetic ef-
fects. When d is plotted against the size of a tree
relative to the median size of the population the
dynamic changes over time can be described by a
single family of exponential functions. Figure 2 il-
lustrates a transformation of the relative growth
rates in Figure 1 to relative vigour indices. The
curves can all be described by the function

[1] d=RGR/RGR_, = a(1-e"D*S)

where s is the relative tree size (s = size/median
size), a and b are parameters of downward one-
sided competition (b) and of two-sided competi-
tion (a). The a-parameter affects all trees
regardless of size, whereas the magnitude of b in-
dicates the extent of competition effects in in-
dividual size classes (see Figure 2). High b-values
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Figure 2. Growth vigour index (d) as a L.mction of b and rela-
tive tree size (s). Model: d = a*(1-e 5) with 2 =0.50.



(b>20) indicate that virtually no trees are affected
by competition, and low b-values (b<0.5) show
that all stand members suffer from growth reduc-
tions due to competition. Although the
parameters can be associated with one-sidedness
and two-sidedness of the competition process, it
doesn’t necessarily mean that this separation can
be upheld when fitting data to this model. Cor-
relations among a and b will tend to obscure the
distinction.

The model projects stem volume growth of in-
dividual red pine (Pinus resinosa Ait.) trees grow-
ing in an even-aged plantation. Initial spacing of
the plantation is assumed to be uniform (square).
Growth is estimated from a site specific relation-
ship between tree size (stem volume), maximum
relative growth rate (RGR___.), and the growth
modifier d (0<d<1). The relationship between tree
size and maximum relative growth rate simply
recognizes that, as trees increase in size, the net
balance between anabolic and catabolic processes
decreases. Thus larger trees have lower potential
growth rates than small ones.

A tree’s vigour index (d) is influenced by (i) a
tree’s status in the size hierarchy of the stand, (ii)
the overall density (volume) of the plantation,and
(iii) apparently random (positive or negative)
deviations from the norm in individual tree con-
ditions (including genetics), microsites and local
competition. Tree status was measured as size
relative to the median size of the population (the
median was preferable to the mean as a measure
of central tendency due to its distribution-free
properties). Population (or plantation) densities
were measured by a relative density index (RDI),
which is the ratio between the actual mean tree
volume and the theoretical maximum (Smith and
Hann 1984) for a given number of live stems per
hectare.

Tests of the model in equation [1] revealed a
poor fit at the lower extreme of tree size distribu-
tion. Growth of small trees were consistently over-
estimated. By subtracting half the minimum tree
size fromall tree volumes before dividing them by
the median, we obtained a much improved model
fit for these very small trees (e.g. s = (vol -
vol ;,/2)/median)).

Mortality can be either density induced (i.e.
concentrated in smaller trees) or random (por-
cupine damage, lightning, windthrow, insects
and diseases) (Belli and Ek 1988, Buchman 1985).

In the version of the growth model presented, a
simple life-table (age of deathknown for each tree)
was used to account for mortality. An integrated
modelling approach to mortality is presented ina
later section. Every tree that died in the sample
plots were eliminated after the growing season in
which they died. Details about mortality record-
ings are given by Brand and Magnussen (1988).

A summary of the sequence of individual
steps in the growth model is shown in Figure 3.
The stochastic elements of growth were intro-
duced via random but correlated “errors” in the
variables of the model. Growth predictions
would, therefore, vary from one run of the model
to the next. A stable prediction of mean volume*
was obtained after 25 growth simulations for a
particular plantation. All model predictions are
based on this number of simulations.

The database

A red pine spacing trial, established in 1953 on
abandoned agricultural lands now belonging to
Atomic Energy of Canada Ltd. (Chalk River, On-
tario), and consisting of windblown sands over-
laying glacial-fluvial outwash, provided the data
used for model development and verification.

The experiment included plantations of 1.2,
1.5,1.8,2.1,24, and 3.0 m square spacing. In addi-
tion, an area of 2.1 metre spacing was systemati-
cally thinned to 4.3 metre spacing at age 5** and
an area of 3.0 metre spacing was systematically
thinned to 6.0 m spacing at age 8**. At the point of
re-spacing, minimal inter-tree competition was
occurring and trees had live branches to ground
level. Dead trees were refilled after the first grow-
ing season. The plantations were measured in
1962 and then every five years to 1987. Measure-
ments included stem diameter at 1.37 m above
ground level for all trees, and heights for a repre-
sentative sample from each diameter class.
Remaining heights were estimated from height-
diameter regressions. To increase the accuracy of
stem volume calculations, a series of sample trees
were measured for stem diameter at 1.52 m inter-
vals up the tree. Stem volume (outside bark) was
then calculated from taper equations developed
for each plot (Stiell and Berry 1977). A summary
of the stem volume data is presented in Table 1.

'Themoving average changed by less than 1% between succes-
sivesimulations.
From planting.




0 START

1| Read Initial stem volun?es, plot area and age ]
2| Compute relative density index (RDD |
3| Predict competition glrowth modifiers (a,b) |
4 | Add random deviations to aand b |
&6 [ Convert voiumesl to relative sizes [
6 ‘ Compute growth vig]our(d) for each tree ]
7 | Add random d‘evlations to d |
8 |  Obtain relative growth rate (RGR) from RGAMAX and d |
9 | Derive annual growth fro:n RGR and stem volume |
10 | Compute new [stem volumes |
1] Assign status (dead, alive) to each tree |
12 | Summarize volume aind growth estimates |
13| Print/store | summaries |
14| Add one year to age |
Has age reached a preset maximum?
' ‘yes GOTO 16 ‘no” GOTO 2
Another slimulation?
® ‘yes™ GOTO 1 ‘no: GOTO 17
17 | Summarize predictions

18 STOP

Figure 3. Flowchart of model.

Data summary
Stem volume

Average stem volume increased markedly with
available initial tree spacing (Table 1). At age 10
the average stem volume in the widest spacing
(3.0 m) was 3.5 times as large as the average
volume in the 1.2 m plots. This relationship was
more or less maintained until age 25. Beyond age
25, the widely spaced (23.0 m) plots enjoyed a
continued rapid increase in mean stem volume
whereas growth in denser plots was visibly
slowed. Accordingly, the ratio of mean volumes

of widely spaced plots to that of denser plots kept
rising,.

Stem numbers

Self thinning was evident inboth the 1.2 mand the
1.5 m spacing (Figure 4). In the former, mortality
increased dramatically from around age 20, while
in the latter mortality commenced at age 25. Den-
sity-induced mortality became apparent in the 1.8
m spacing after age 30 (Figure 4). Plots with wider
spacings showed no signs of self-thinning during
the measurement period.
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Figure 4. Stems per hectare from ages 10 to 35 years from
planting in plots used for validation of the general prediction
model.

Regression models of stem volume, volume
increment, and relative growth rate

Stem volume (V) at any age (t) between the first
and last measurement of a given tree was
predicted from age using a three parameter
Richards function (Hunt 1982) fitted to the ob-
served data. (Regression estimates of a parameter
x, say, is denoted by x to distinguish it from the
error free value x.)

2] V;=V,/( +e(hrket)y

where V. is estimated stem volume, V__ is the es-
timated hypothetical asymptotic stem volume for
t—eo (Shifley and Brand 1984), k is a growth rate
determining constant, and h determines the inflec-
tion point. The ratio h/k equals the age where
predicted volume is half its asymptotic value. Fit
statistics of the least squares solutions are
presented in Table 2. Predicted volumes at age 15
explained with one exception over 93% of the
variation in the observed data (see RSQ in
Table 2). Predictions of age 20 and older stem
volumes accounted for 98% -99.9% of the variance
encountered (exception: 6.0 m spacing). A poor fit
was obtained with the 10 years’ results and with

data from the 6.0 m spacing. The relative mean ab-
solute prediction error amounted in most spac-
ings to no more than 1-3% for trees aged 25 years
and older. Age 15 and age 20 results were, as a
rule, predicted with relative mean absolute error
of approximately 10%. A combination of poor fit
(RSQ~0) and low volume figures made the rela-
tive prediction errors at age 10 very high.

Estimation of stem volume growth (V) at
time t was derived for a single tree via the first
derivative of equation [2] with respect to time.

3] VI, =V, ekeeltket) /(1 elhket)2

From [3] and [2] the relative stem volume
growth rate (RGRy) at time t of an individual tree
was found to be

[4] RGR, = YIt/V, = keeket) /(1 ehkety

All above estimates were used as "observed’
values in the derivation and validation of the
simulation model. The satisfactory fit of the
Richards function to the actual observations jus-
tifies this approach.

Simulation Model
Maximum relative growth rate

The hypothesized relationship between tree size
and maximum relative growth rate (RGR_,, ) was
defined as the upper limit of ‘observed’ values of
RGR versus size. Relative growth rates (see equa-
tion [4]) were computed for all trees beginning at
the age of the first measurement, and further for
every third year until the last measurement or
mortality occurred. Individual size class (width 5
dm?) maxima of relative growth rate are plotted
against the corresponding mid-class stem volume
in Figure 5. The boundary line displayed served
as the estimator of maximum relative growthrate.
It can be expressed mathematically as

0.94-5.739V for V < 0.01 m>
o(1/(-1.2833+0.57634In (V)

X

[5] RGR__ = {
for V> 0.01m3

Itisevident that sections of thisboundary line
havebeen determined from data in different spac-
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Table1l.  Average (observed) stem volume (dm® over bark) in plots of different ages and spacings.
Standard deviations are enclosed in brackets.

Age*
Spacing, m Plot szize,

(PSP) m 10 15 20 25 30 35
12 1010 6 (3|17 (8| 39 (22) ; 63 (36) - -
364)

12 1010 5 @17 8 38 20| 60 32 - -
(365)

1.5 1010 11 G |24 (9| 46 AN | 75 (1) | 106 @7)] 130 (61)
(373)

15 1010 11 G |24 @] 47 (A8 | 77 (33) | 109 (50} 137 (64
(374)

1.8 1010 13 G| 29 (an | 59 21| 97 36y | 131 (53)] 156 (66)
371)

18 1010 13 (530 (10| 60 (200 | 98 (35) | 134 (51| 161 (63)
372)

2.1 1010 17 (6) | 40 (13) | 83 (26) |142 (46) | 196 (67)] 232 (81)
(368)

2.1 1010 15 (6) | 38 (14) | 82 (30) | 143 (533) | 203 (73)| 239 (88)
(375)

24 1010 16 (6 | 39 (14) | 88 (29) |161 (50) | 232 (72)| 279 (88)
(376)

2.4 1010 17 (| 42 (15) | 92 (30) [167 (53) | 243 (76)] 295 (95)
377)

3.0 1010 20 (8 | 50 (17) | 113 (33) |211 (56) | 309 (81| 374 (100)
(366)

3.0 1010 21 (8| 53 (17) | 121 (33) {229 (59) | 339 (91)] 415 (115)
(378)

43 2020 42 (17) | 105 (37) 1225 (66) | 373 (76)] 484 (115)
(369)

6.0 4050 72 (20) | 166 (37) {337 (60) | 563 (92)| 761 (132)
(385)

*from planting. Age from seed is obtained by adding four years to table entries.

Table2.  Mean absolute error in per cent of predicted stem volume (RMAE?*), and the coefficient of determina-
tion (RSQ*) in the nonlinear regressions of single tree stem volume as a function of age (see equa-

tion [2]).
. Age
Spacing
(PST) 10 15 20 25 30 35
m RMAE| RSQ |RMAE| RSQ [RMAE| RSQ |[RMAE| RSQ [RMAE[ RSQ |RMAE[ RSQ

12 (364) 0.248 | 0.811 | 0.062 | 0.987. ] 0.002 | 0.997 | 0.006 | 0.998 - - - -
1.2 (365) 0.196 | 0.930 | 0.049 | 0.991 | 0.015 { 0.997 | 0.005 | 0.998 - - - -
1.5 (373) 0.846 | 0.283 | 0.038 | 0.984 | 0.084 | 0.987 | 0.019 | 0.998 | 0.046 | 0.996 | 0.020 | 0.999
1.5 (374) 0.907 | 0.129 | 0.040 | 0.980 | 0.085 | 0.987 | 0.020 | 0.997 | 0.049 | 0.996 | 0.022 | 0.999
18 @371 0.945 | 0.327 | 0.035 | 0.987 | 0.079 | 0.990 | 0.016 | 0.998 | 0.038 | 0.996 | 0.039 | 0.999
18 (372) 0.999 | 0362 | 0.036 | 0.986 | 0.077 | 0.991 | 0.016 | 0.997 | 0.039 | 0.996 | 0.019 | 0.999
2.1 (368 1.047 | 0480 | 0.040 | 0.979 | 0.082 | 0.990 | 0.016 | 0.998 | 0.028 | 0.998 | 0.015 | 0.999
2.1 (375 1.171 | 0.404 | 0.044 | 0.982 [ 0.078 | 0.993 | 0.015 | 0.999 | 0.002 | 0.998 | 0.013 | 0.999
24 (376) 1.517 | 0.019 | 0.099 | 0.977 | 0.082 | 0.990 | 0.012 | 0.997 | 0.033 | 0.998 | 0.015 | 0.999
24 (377) 1577 |1 0.103 | 0.097 | 0.963 | 0.087 | 0.991 | 0.013 | 0.997 | 0.033 | 0.997 | 0.015 | 0.999
3.0 (366) 1674 | 0.000 { 0.133 | 0.962 | 0.080 | 0.987 | 0.018 | 0.996 | 0.039 | 0.995 | 0.016 | 0.999
3.0 (378 2.000 | 0.000 | 0.170 | 0.960 | 0.086 | 0.991 | 0.023 | 0.995 | 0.042 | 0.996 | 0.017 | 0.999
43 (369) 1.603 | 0.000 | 0.362 | 0.934 | 0.072 | 0.981 | 0.032 | 0.995 | 0.029 | 0.997 | 0.009 | 0.999
6.0 (385) - - 0442 | 0.741 [ 0574 | 0.738 | 0466 | 0.774 | 0382 | 0.843 | 0.266 | 0.869

*RMAE = (¥l obs - pred i! )/ Zobs
i i i

MRSQ = (1~ residual)/ O observed = coefficient of determination.



ings. As volume increases the influence of denser
plots diminish and the more widely spaced plots
increasingly serve to define RGRmax.
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Figure 5. Boundary line (RGR,. ) and observed relative
growth rates (maxima of 0.018 m3-wide size classes) in the
six plots used to derive the general model (see equation [5)).

Plot and age specific estimation of parameters a and b.

Predictions of the growth vigour index (d) from
relative tree size (see equation [1]) appeared
feasible in stands with a distinct size hierarchy
and established inter-tree competition. In such
stands the model explained 46%-88% of the ob-
served variance in d and allowed predictions of d
with a standard error of 0.02-0.04. In stands with
a weak or no inter-tree competition, d was nearly
constant for any relative tree size and the model
approached (through high b-values) a straight line
with zero slope throughout most of its range.
Prediction errors of d during this early growth
phase were, as a rule, two to three times larger
than during periods with strong competition.

Nonlinear regression estimates of 2 and b are
listed in Table 3. The two estimates are in most
cases highly and negatively correlated (Table 3).
Estimates of a varied from 0.48 to 0.70 at age 13,
when competition in most plots was negligible.
Thisrangeillustrates how growth vigour (realized
growth) can vary from one plot to another in the

absence of competition. Compared to the mag-
nitude of the standard errors of a, it is concluded
that the realized growth potential (d) varied sig-
nificantly among plots. a tended to decline rapid-
ly with age as competition (b<2) intensified.
Estimates of b were in the range 0.55-100. An ex-
ponential decline was observed in all plots be-
tween ages 19 and 34. Estimates of batage 13 were
lower than estimates at age 19 in three plots (374,
376, 378). However, in these cases the age 13
values of b were sufficiently high (b>7) to
preclude any competition effects in the plots. This
reversal of the age trend in b is, therefore, not sig-
nificant in practice, and it can be safely ignored in
the modelling process that follows.

Modelling a and b as a function of the plot relative den-
sity index RDI

Bothaand bchange inaregular manner over time.
However, these changes are difficult to interpret
without a measure of the intensity of competition
in the plots. A relationship between plot density
and the above parameters was therefore deemed
desirable. Drew and Flewelling (1979) introduced
the relative density index (RDI) as the ratio be-
tween the observed mean stand volume (V) and a
hypothesized maximum (V, , ) mean volume for
a given number of trees per hectare (N). The max-
imum mean tree volume was obtained by plotting
values of In(V) against the logarithm of the live
number of trees per hectare in the plot. The ap-
parent upper limit of these plotted points defined
theboundary lineor V.. Using the same data as
in thisstudy, Smith and Hann (1984) found the fol-
lowing expression for the relative density index
(subscripts refer to age)

[6] RDIt - Vt/vmax - Vt/(e]0.077-1.47‘1n(N))

where N is the number of trees per hectare. Using
this density index, the following functional
relationships between a and b and RDI were pos-
tulated:

[7] a= clo(l-e C2/RDI)

Estimates of the four parameters ¢;-¢, were
obtained through non-linecar least-squares ap-
plied to the results presented in Table 3.




Table3. Regression estimates of 4 and b obtained from the model in equation [1]. Standard errors of estimates
are provided in brackets.

Spacin a b * "o .
(PSP) Age (s.e) (s.e) R{a,b) Sregr RSQds)
12m 13 0.702 1.54 -0.90 0.11 0.60
(364) (0.013) (0.08)

16 0.697 147 -0.91 0.10 0.71
(0.013) (0.07)
19 0.669 1.01 -0.95 0.08 0.77
(0.017) (0.05)
22 0.533 0.81 -0.96 0.06 0.76
(0.017) (0.05)
25 0.371 0.61 -0.97 0.04 0.72
(0.019) (0.05)
15m 13 0.464 7.07 -0.45 0.14 0.00
(374) (0.012) (2.04)
16 0.462 5.89 -0.29 0.11 0.10
(0.009) (3.36)
19 0470 2.26 -0.87 0.02 0.75
(0.010) 0.12)
22 0516 1.09 -0.94 0.05 0.82
(0.016) (0.07)
25 0.575 0.68 -0.97 0.04 0.88
(0.027) (0.05)
28 0.539 0.54 -0.97 0.04 0.87
(0.027) (0.06)
31 0.529 0.36 -0.98 0.04 0.85
(0.036) (0.06)
34 0.427 0.32 -0.96 0.03 0.77
(0.018) 0.09)
1.8m 13 0.497 14.12 -0.15 0.04 0.20
371) (0.002) (1.76)
16 0.495 6.26 -0.49 0.03 0.36
(0.002) (0.38)
19 0.487 3.11 -0.71 0.03 0.68
(0.003) (0.13)
22 0.468 1.99 -0.82 0.04 0.70
(0.004) (0.09)
25 0.445 1.28 -0.92 0.04 0.79
(0.007) (0.07)
28 0414 0.84 -0.97 0.04 0.79
(0.013) (0.07) :
31 0.387 0.539 -0.99 0.03 0.78
(0.021) (0.07)
34 0.340 0.37 -0.99 0.02 0.75
(0.022) (0.07)
*R (a,b) = asymptotic correlation of estimates
S = standard error of regression

Tegr

***R5Q(d, s) = coefficient of determination between d and s, given the model in equation{1]



Table 3 (cont'd) 9
Spacin a b
?I’SP)g Age (s.e.) (s.e.) Riab) Sregr RSQ(d.s)
2.1m 13 0.558 4.55 -0.62 0.05 0.67
(368) (0.005) (0.33)
16 0.564 4.21 -0.63 0.03 0.77
(0.003) (0.26)
19 550 353 -0.67 0.05 047
(0.004) (0.25)
22 0.516 2.60 -0.80 0.05 042
(0.007) 0.19)
25 0.464 1.85 -0.91 0.05 0.49
(0.010) (0.16)
28 0.404 1.27 -0.96 0.05 0.52
(0.017) (0.14)
31 0.353 0.82 -0.98 0.04 0.46
(0.026) (0.13)
34 0.272 0.62 -0.98 0.03 0.49
(0.019) (0.14)
24m 13 0.585 6.46 -0.23 0.05 0.05
(376) (0.003) (1.28)
16 0.596 10.37 -0.20 0.06 0.00
(0.004) (3.82)
19 0.592 7.02 -0.23 0.06 0.00
(0.005) (1.58)
22 0.553 5.08 -0.29 0.06 0.00
(0.005) (1.12)
25 0479 3.78 -0.52 0.06 0.17
(0.006) (0.66)
28 0.384 2.80 -0.76 0.06 0.25
(0.008) (0.41)
31 0.291 201 -0.88 0.05 0.29
(0.010) (0.31)
34 0.214 141 -0.94 0.04 0.33
(0.012) (0.27)
3.0 13 0.627 16.18 -0.16 0.04 0.72
(0.004) (3.05)
16 0.655 18.38 1.00 0.08 0.20
(0.009) (11.84)
19 0.657 100.* - 0.08 0.00
(0.008) -
22 0.621 21.10 -0.72 0.08 0.00
(0.012) (0.65)
25 0.599 2.54 -0.86 0.08 0.04
(0.016) (0.35)
28 0.551 1.50 -0.94 0.07 0.39
(0.024) (0.24)
31 0.520 0.85 -0.98 0.06 0.52
(0.039) (0.20)
34 0.549 0.441 -0.99 0.04 0.53
(0.073) (0.19)

*Upper limitreached.




A graphical display of the regression solu-
tions to [7] and [8] are displayed in Figures 6 and
7; the numerical results are given in Table 4. The
prediction model proposed for a provided
reasonably accurate results for three plots (371,
368, and 376), and a rather poor accuracy for two
plots (364, 378) at medium to high relative den-
sities (RDI > 0.4). For one plot (374), the ¢,
parameter was so high that the prediction model
led to a virtually constanta value throughout most
of the range of RDI. It is quite clear that each plot
(spacing) follows an unique a trajectory for in-
creasing values of RDI and that statistically sig-
nificant differences must exist among plots (no
formal testing was done). However, it was not
possible to establish any consistent relationship
between spacing and the model parameters ¢; and
c, (Pearson’s correlation coefficients were less
than 0.19).

Apparently, random rank changes in the a-
values of plots between high (RDI > 0.8) and low
(RDI < 0.2) relative densities (Spearman rank cor-
relations were below 0.1) add further complica-
tions. Two plots (371 and 374) caused this low
correlation; the remaining four plots showed no
rank changes. One common feature among a
majority of plots is therelative constancy of a until
RDI reaches a value of approximately 0.2. Beyond
this density a declines at an average rate of 0.03 for
every 0.1 increase in RDI. Simple averages for ¢,
and ¢, served as parameters in the general predic-
tion model. This average model predicts a 10%
decline in a when RDI goes from 0.01 to 0.3. At
RDI = 0.7 this decline amounts to 30%. In effect,
as stand density increases, competition becomes
more two-sided.

Parameters c; and ¢, were derived from a
reduced data set. Owing to irregular trendsin b at
low RDI-values (see Table 3) and the limited sig-
nificance of b-values above 5 it was decided to
restrict the regression analyses to RDI values
above 0.3. Estimates of c; and ¢4 are listed in
Table 4 and a graphical display of the individual
plot models is presented in Figure 7. In spite of
generally high coefficients of determination
(RSQ), b was estimated with a substantial error.
The model for plot 378 (3 m spacing) predicts
much lower b-values for any RDI-value than any
other. At the other extreme was plot 376 (spacing
24 m).

This contrasting behaviour by the two most
widely spaced plots supports the contention of no
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Figure 6. Regression models of the relationship between com-
petition parameter a (see equations {1] and [7] for details)
and therelative density index (RD]). Parameter estimates are
givenin Table 4.
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Figure 7. Regression models of the relationship between com-
petition parameter b (see equations [1] and {8] for details)
and therelative density index (RDI). Parameter estimates are
given in Table 4.
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spacing effects on the level of b for a given RDI. A
b value of 2 or higher is found in most plots with
RDI below 0.3, which indicates that only trees
smaller than the median tree are affected by one-
sided competition (see Figure 2). Virtually all the
trees had their growth depressed by competition
once b was less than 0.5 (see Figure 2). This seems
to occur in most plots when RDI exceeds 0.7.
Simple averages of ¢y and ¢, were used for general
predictions of b from RDIL

Simulation of stochastic disturbances

The sequential nature of the model is shown in
Figure 3; at the beginning of each sequence the
model parameters are “updated” according to es-
tablished deterministic relationships and new
growthis predicted. Moreover, to generate realis-
tic predictions, the probabilistic nature of the
model parameters must be taken into considera-
tion (Harrison and Stevens 1976). This was done
by generating stochastic variation in the
parametersa, b, and d. It follows from the sequen-
tial nature of the predictions that these sources of
variation become integrated in future predictions;
the model is driven by past predictions (Harrison
and Stevens 1976). Disturbances (errors) were
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Table4.  Estimates of ¢;-c, in equations [7] and [8]

limited to the parameters a, b, and d. The remain-
ing parameters RGRmax and Vmax are associated
with unknown bias and their potential influence
is builtinto the site specificity of our regression es-
timates of a4, b, and d. Observed correlations
among estimates and residuals were used to simu-
late realistic disturbances at all levels.

Stochastic elements were added in the growth
simulation at steps 4 and 5 of the model (Figure 3).
The parametersa and binstep 4 are subject to three
kinds of errors:

€41, €p1 = error of estimate for a given age in a
given plot

€49/ €y = error in predictions of a and b via RDI
(see Table 4).

€a3- Epz = Whole plot error due to plot specific
deviations from the average model.

In step 5 the average growth vigour index 4
for an individual tree with a relative size s was
determined from the parameters a4 and b. In-
dividual d-values, in turn, were obtained by ad-

S?Pasci;;g ('1 C2 Sregr.“* RS Q**** c3** C4** Sregl'. RS Q
12

(364) 0.70 -0.86 0.08 048 5.0 3.0 0.24 0.98
(3}'}3) 0.49 347+ 0.05 0.00 5.0 3.0 0.19 0.93
(31.%%) 050 -0.99 0.01 0.95 10.0 4.0 0.10 0.99
(3238) 058 0.56 0.03 0.88 10.0 4.0 0.12 0.97
(3?%) 0.59 035 0.05 0.84 20.0 5.0 0.22 0.99
(3?'}%) 0.62 -0.92 0.03 0.26 5.0 5.0 0.32 032
Avg. 058 074 . . 9.17 4.0

*not included in the average (outlier)
*excluding observations for which RDI <0.3

Las —_ 3
*sregr = standard error of regression

RSO = coefficient of determination




ding a random error (g 4) to the regression predic-
tions.

All random deviations were generated from
appropriate estimates of error-variances (6“¢) and
normally distributed “pseudo random” numbers
(Z) with mean zero and a variance of one (Fish-
manand Moore 1982). Correlations (temporal and
otherwise) among errors were generated through
modifications or restrictions on Z (Ripley 1987).

Estimates of the error variances crzm1 and

eb1 associated with €,; and g, respectively,

were obtained from the following least squares
solutions

9] o

[10] &%y, = (0.1319eb + 0.0004eb%)?

ea1 = (0.07940a - 0.09650a2)?

Both equations were obtained by fitting the
standard errorsin Table (3) to a quadratic function
of the estimated parameters (a and b, respective-
ly). Expression of ¢"¢ , and €b% was ap-
proximated by linear regressions of observed
variances of estimates on the estimates themsel-
ves, i.e.

11 &
[12] &

2
eap = (0.0902)

2
ey = (0.10b)

Finally, approximations of 028 a3 and o
were obtained by a Taylor series expansion ofgf%
and [8] around the mean value of ¢ (Gellert et al.
1975)

[13] o%,,=(1-e/RPL2s2 1(c /RDI

¢ /RDI2 co/RDI
oc©2/RDI, '0’2C2—2/RDIOG 2 *Cc1c2

[14] W%y = 4*RPL22 1 (RDIec,)?

o(e 'RTDI)2 '02C4 +2°RDI‘GC4.RDI.GC3;C4

where ¢; and O'ZC. denote the mean and variance,
respectively, of individual plot estimates of c;
(i=1,2,3,4) (see Table 4 for details). Seici stands for
the sample covariance of plot estimatds ¢ and ¢
Using the sample means ¢;=.58, ¢,=-0.74, c3=9.17l,
¢,=-4 and the following among-plot variances ané:l
covariances of the c-parameters ¢, =0-08%,

_ 2 _ 2 _ 2 -1
=027, (=367, & (=089, G, ,=0.0054,

12

and o, C4=-O.72 solutions to [13] and [14] for any
RDI va?ue can be obtained.

Adding 0'28 to o* yiclds the within-plot
. a2 €al
error variance ot a. The same for b was found as

eb2 T O ebr

The final random component added to a in
year t was then computed as

(15] &5 ¢=2Z;, oV 0%, + O Za,plot'°£a3

€a1 €az +
where

Z, t is the random disturbance used for a at
time t;Z, 1t is a plot (simulation) specific ran-
dom number. A new Z, | value was generated
for each initialization of ?he growth process (step
1 in Figure 3). g, ; was obtained in a manner
similar to [15]. Correlation analyses of regression
residualsindicated that the correlations displayed
in Table 5 provides a mechanism to simulate
residuals with desired properties. Algorithms for
generating random numbers, subject to the
restrictions in Table 5, are given by Ripley (1987),
for example.

Random deviations of d for individual trees
atage t were computed as

[16] 2g,t=Zq,10q,¢

where 64 { is the standard error of the predicted
average value of d for trees of relative size s. Od,t
could be expressed as a function of the relative
density index (RDI) at time t.

[17] 64¢=0.062 - 0.024eRDI;

Residual analysis indicated a strong correla-
tion among Zj  values over time. A one year lag
correlation of (/8 was deemed appropriate for all
ages (i.e. r(eq 1, £4 1.1) = 0.8). Correlations among
residuals of different trees were assumed to be
zero.

Mortality

All dead trees in the database were assigned an
age of death. Ages were determined by choosing
an integer at random within the time period
during which death was known to have occurred.
When a tree reached its age of death during the
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Table5.  Average correlation among random numbers (Z) used to generate random deviations of aand
b.
t = age subscript.
za,t-l Za,t zb,t-l Zb,t Za,plot Zb,plot
Zat1 1.0 0.7 -0.9 -03 0 0
Zat 1.0 -0.3 -0.9 0 0
Zp 11 1.0 0.5 0 0
Zpy 1.0 0 0
Za,plot 1.0 0
Zp plot 1.0

growth simulations it was automatically deleted
from the stand being modeled.

Although no attempt was made to model or
simulate tree mortality it was noted that mortality
was indeed closely related to the growth vigour
index (d). The probability that a tree would die in
any given year (Pmort) increased with decreasing
d-values. Table 6 gives the empirical values ob-
tained from analysis of the entire database. In-
cluding these mortality probabilities in the model
would allow an integrated modelling approach to
stochastic simulation of the mortality process.

Table 6.  Average probability (P, ,.¢) that a
tree will die in any given year
V. X
Growthd ;glc())gr inde Port X 102

0-5 4.2
6-15 14
16-25 1.9
26-35 09
36-45 0.7
46-55 0.3
56-65 0.3
66-75 0.2
76-85 0.1
286 0.0

Statistical validation of model output

The repeated stochastic simulation of stem-
volume growth enabled the calculation of a stand-
ard deviation of model predictions. This standard
deviation is considered an unbiased estimate of
the standard error of predictions. The sampling
errors associated with the observed plot values
were ignored in most cases (exceptions: standard
deviations of observed valuesand maximum stem
volume). Ordinary t-tests were performed to
make inference about the significance of the dif-
ference between model predictions and
‘observed’ values. ‘Observed’ is here understood
as summary statistical results derived directly
from the individual tree growth equations
described in an earlier section (page 5).

t-tests were performed under the following
assumptions: (i) variance of a variance is equal to
the squared variance divided by its degrees of
freedom, (ii) the standard error of an extreme
value (maximum) is equal to one-half the sample
standard deviation, (iii) the standard deviation of
skewness is equal to V6/n where n = sample size,
and (iv) the standard deviation of kurtosis is equal
to V24 /n (Snedecor and Cochran 1971).

Statistical inferences about the observed and
predicted size-class distribution of stem volumes
were based on three tests: 1) a Kolmogoroff-Smir-
nov test of the maximum difference in the cumula-
tive density distributions, 2) a runs-test of
sign-sequences in the deviations, and 3) a multi-
variate Hotellings T-test. The 5% risk level of ac-
cepting the ‘no-difference” hypothesis when it is




wrong was chosen as the cut-off point for assess-
ing statistical significance.

Simulation results and validation

Simulation results are illustrated in Figures 8 to 15
and in Tables 7 and 8. They are all based on 25
simulations of individual tree growth and stand
development from an initial set of stem volumes
at the age of the first measurement (see Figure 3).

Comparisons of individual plot model predictions and
observed values

Predictions of growth using plot specific
parameters (cy,.., ¢;) are displayed in Figures 8 to
11 and a quantitative comparison with observed
values is given in Table 7.

Mean stem volume was predicted within 10%
of the observed values in four plots representing
the 1.2 m to 2.1 m spacing. Larger relative devia-
tions were encountered in the 2.4 and 3.0 m spac-
ings. With a prediction standard error of
approximately 6%, only mean stem volume devia-
tions in excess of 10% were statistically significant
(5% risk level or lower). Negative deviations
prevailed in all plots throughout the prediction
period. Aninitial underestimation of growth rates
during the first five years caused this bias in stem
volumes and hence of relative growth rates which
are directly related to tree size (see model deriva-
tion).

Maximum stem volume was prone to a larger
error (average 8%), which is essentially the error
in predictions for a single tree. In five plots predic-
tions deviated less than 16% from the observed
maxima; in the sixth plot (PSP364) the model over-
estimated the maximum value by more than 25%.

Relative growth rates (RGR) were predicted
for a period of up to 10 years within 11% of the ob-
served values. Substantially larger prediction er-
rors was encountered towards the end of the time
period. However, these large relative errors are
based on numerically low RGR values. They sig-
nify that the biological age (size) of the trees no
longer match the chronological age. Considering
the sharp declinein RGR overage, such large rela-
tive errors must be expected from even minor
deviationsin stem volume. The sensitivity of RGR
to tree size and plot density is seen in a con-
siderable prediction error of RGR (average 18%).
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Mean annual increment (MAI) was predicted
within 15% of the observed valuesin five of the six
plots, and there was generally no tendency
towardsanincreasein prediction errors over time.
The predicted MAI for the sixth plot (378) reflected
a failure to describe trends in mean tree volume.

Standard deviations of simulated stem-
volume were generally slightly underestimated
by the models, but all observed values were well
within twice the standard error of prediction.
However, the hypothesis Opred = Oops tested with
Bartlett’s U statistic of variance homogeneity
could only be accepted (at the 5% risk level) within
the first 10 years of predictions in five plots.
Predictions in the 1.2 m spaced plots failed the test
after just five years. No significance was detected
in plots 374 and 378.

Skewness of the stem volume frequency dis-
tribution was significantly positive in the 1.2- 1.8
m plots. Predicted skewness differed significantly
from the observed in those plots. In the remaining
plots the agreement between model output and
observed values were good.

Kurtosis of stem size distributions stayed sig-
nificantly below the expected value 3.0 of a nor-
mal distribution (i.e. the distributions were flat
topped). Kurtosis was significantly underes-
timated in plots 364 and 374 from age 18 and
beyond. These statistics, however, are very sensi-
tive and even slight changes in the overall dis-
tribution can have a serious impact on both
kurtosis and skewness.

A graphical display of the predicted and ob-
served stem volume size-class distribution is
provided in Figure 11. Only two of the predicted
distributions differed significantly at the 5% risk
level from the observed results (plot 378 after 20
years of predictions and in plot 376 after 25 years
of predictions. Tests: Kolmogoroff-Smirnov and
Runs-test).

Comparisons of general model predictions and observed
values

The preceding section compares the results of a
single prediction model for all spacings
(parameters (c;,.., ¢,) have been pooled across
spacings). Comparisons are made with data not
used for model derivation. Time trends in
predicted mean and maximum stem volume
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Table 7. Comparisons of individual plot model predictions with “observed’ values of mean volume, maximum
volume, relative growth rate, and mean annual increment

Mean volume Maximum volume Relative growth rate  |Mean annual increment
Spacing PSP Years of (RGR) (MAD
(m) predictions |
A% SEP% A% SEP% A% SEP% A% SEP%
1.2 364 5 3 7 382 | 11 3 11 4 7
10 -1 8 26* 13 -4 17 -3 6
15 -1 5 28* 12 35 24 -2 5
Avg. per -0.5" - -15 - 1.6 1.3 04 03
year (1) (0.94) (0.91) (0.57) (0.98) (0.75)]  (0.86)
15 374 5 -5 5 1 7 -6 12 -8 ]
10 -8 6 -5 8 -2 22 -11 6
15 -8 7 -12 9 5 19 -9 8
20 -5 7 -8 9 19 26 -6 8
25 0 6 -4 9 65 27 -2 6
Avg. per - - - - 1.8 0.7 0.3 -
year (r) (0.82) | (0.89) (0.79)
1.8 371 ] - 5 -8 7 -3 14 -9% 5
10 -7 8 -13 9 4 12 -10 9
15 -6 6 -15 8 7 17 -8 7
20 -6 4 -11 9 -4 24 -5 5
25 -4 3 -9 10 54 24 -4 3
Avg. per - - -0.3 0.1 - 0.6 - -
year (r) (0.54) (0.83) (0.91)
21 368 5 -1 6 4 9 1 10 -6 6
10 -5 6 3 10 -3 15 -7 6
15 -8 6 -8 8 -5 19 -9 6
20 -8 5 -14 8 7 29 -8 5
25 -5 4 -16 7 58* 19 -5 4
Avg. per -0.3 - -1.0 - 0.8 0.6 - -
year (r) (0.83) (0.92) (046) | (0.72)
24 376 5 -3 6 -1 7 3 11 -7 6
10 -8 6 -4 6 -8 11 -10 6
15 -13* 6 -11 6 -4 11 -15 7
20 -12* 5 -14 6 19 20 -13* 6
25 -6 4 -13 5 80* 22 -6 4
Avg, per -0.5 - -0.8 - 17 0.6 - -
year (r) (0.74) (0.96) (0.60)| (0.89)
3.0 378 5 -9 6 -5 8 -11 14 -12% 7
10 -19* 7 -12 9 -6 12 -21* 8
15 -22* 7 -14 8 -1 14 -24* 9
20 -18* 5 -10 8 26 15 -20* 7
25 -11* 4 -4 9 76 26 -11* 5
Avg. per - - - - 2.6 - - -
year (r) (0.82)

A% = predicted /observed x 100
SEP% = standard error of predictions in per cent of mean at respective age
r = correlation coefficient between A% and years of prediction

!Based on all years of predictions.
Y evel of significance based on t-test (H: observed=predicted), "*’ denotes (P(t>t )<0.05



reflected satisfactorily the already established (see
Table 1) effects of initial spacing (see Evert 1971
for references). For example, increasing the initial
spacing from 1.5 m to 3.0 m doubled mean stem
volume at age 25 and tripled it at age 35. A less
pronounced effect was seen in the maximum stem
volume; it was approximately 50% larger at a 3.0
m spacing than at 1.5 m spacing. Observed results
were similar. Ranks of mean and maximum stem
volume by spacing were almost identical
(r - gpearman > 0-9) even after 25 years of
predEl)Ctions.

Comparisons of predictions for individual
plots with ‘observed’ data are visualized in
Figures 11to 15and quantified in Table 8. Itis clear
that predictions of the 4.3 m and 6.0 m spacings
are subject to considerable errors (bias). These
spacings are considered to fall outside the range
of practical importance and the results warrant no
further analysis.

Predictions of mean stem volume were, on the
average, 9% below ‘observed’ values. An early
overestimation of initial relative growth rates
(RGR) is the most likely explanation for this
general model behaviour. The poorest fit was in
the 1.2 m spacing and the best fit in the 1.8 m spac-
ing. Relative deviations of predictions from ob-
served values generally reached a maximum after
15 years of predictions beyond which they either
stabilized or decreased. Onanannual basis, the in-
creaseinrelative deviations wasless than 1.2% per
annum. However, when accumulated over time
they could exceed 25%. The relative standard
error of predictions (SEP%) either increased with
the period of prediction or reached a maximum
after 10-15 years of predictions. With an average
prediction error of approximately 20% none of the
deviations were significant at the 5% risk level.

Maximum stem volume predictions were, as
a rule, slightly poorer than those of mean stem
volume. A tendency of the predictions to drift
away from observed values with the length of the
prediction period was evident in two plots (365
and 373). Only the 10- and 15-year predictions in
the 1.2 m spacing were significantly different from
observed values. An annual 1% widening of the
gap between observed and predicted maximum
values accounted for most of the discrepancies.
Note that the prediction of maxima involves only
an individual tree. On this basis the model fit is
considered satisfactory.
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The predicted minimum stem volumes paral-
leled observed valuesin all but one plot (366). This
result was expected, as mortality was controlled
by life tables and not simulated. The discrepancy
in plot 366 was caused by the autocorrelation trap-
ping a very small tree into a no-growth mode
(there was no mortality in this plot). A simulation
of the mortality process would most certainly
have eliminated this tree.

Relative growth rates (RGR) declined with
age in all plots, but more rapidly in the closely
spaced plots than in the widely spaced plots
(Figure 13). With relative growth rate as the
‘engine’ in the growth model a good fit to the ob-
servations is essential for overall model perfor-
mance. Although the number of negative
deviations equalled the number of positive devia-
tions the latter were, on average, 0.03 too high in
the six plots representing the 1.2 m - 3.0 m spac-
ings. The overestimation was serious in the first
few years of prediction in plots 365, 373, and 372.
Given the compounding effects that even small er-
rors in relative growth rate can have on future
volume growth and, in turn, future estimates of
RGR, itis obvious that an average relative predic-
tion error of 15% (excluding two extreme large
relative errors) can lead to the volume bias
described above. Our ability to predict theaverage
RGR was only moderately successful, as would be
expected from the model derivation results (see
Table 4 and Figures 6 and 7).

Mean annual increment (MAI) peaked be-
tween ages 33 and 35 in the 1.5 m - 2.4 m spacings.
An earlier maximum around ages 25 to 27 is indi-
cated in the data from the 1.2 m spacing. Harvest
at these ages would secure a maximum sus:
tainable total stem volume production of 12-14 m
per hectare per year. The two most widely spaced
plots (369 and 385) had reached a MAI of only 7
and 3, respectively, by thelast measurement atage
35, with no sign of decline. Predictions of MAI fol-
lowed in principle the patterns described for RGR
and mean stem volume. Fairly accurate predic-
tions (deviations less than 20%) were obtained for
the 1.5 m - 2.4 m spacings where discrepancies be-
tween predictions and observed values either in-
creased by approximately 0.5% per year (two
plots) or remained more or less constant over time
(two plots). Predictions for the 1.2 m spacing were
off by 17% - 25% with an average bias of 1.2% per
year. In the 3.0 m spacing the prediction problem
was found to be in the medium term forecasting
(10 to 20 years). Standard errors of prediction
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(SEP%) averaged about 20%, with a tendency to
increase in two plots (365, 366) with length of
prediction period. None of the MAI departures
were significant at the 5% risk level.

Standard deviations (o) of observed and
predicted plot stem volumes first increased ex-
ponentially until an age of approximately 25
years, and then increased at a diminishing rate.
There was a good agreement between predicted
and observed standard deviations, with one ex-
ception. Plot 365 with the 1.2 m spacing was the
only example of poor predictions. Predictions for
this plot fell increasingly below observed values
with time (significant deviations after 10 years of
prediction).

Skewness in the frequency distribution of
stem volume sizes was positive and statistically
significant in the 1.2 m-spaced plot at all ages, and
it was significantly negative in the 2.4 m-spaced
plot from age 23 and beyond. Skewness (both
predicted and observed) remained more or less
constant over time. Only in plot 377 did we ob-
serve a sudden change from a skewness slightly
above zero to a negative value of approx. -0.5. No
significant differences emerged between ob-
served and predicted values in any plot.

Kurtosis in the frequency distribution of stem
volume sizes was at all ages and in all plots sig-
nificantly less than 3 which is the expected value
of a normal distribution (Snedecor and Cochran
1971). This means that the distributions are
platykurtic, or more flat-topped, than the normal
distribution. In general, predicted kurtosis
reflected observed values well. In plots 365 and
366, however, some of the predicted values did
differ significantly from the observations. Kur-
tosis remained close to zero in all plots regardless
of age.

Frequency distributions of predicted and ob-
served stem volumes by size classes (class width
= 0.018 m”) at the last and second last measure-
ments are displayed in Figure 15. Apart from the
failure to predict acceptable values for the 4.3 m
and 6.0 m spacings, and a statistically significant
(1% risk level) departure from the observed dis-
tribution in plot 366 at age 30, the remaining
predictions were consistent with the hypothesis of
no difference between the observed and predicted
frequency distribution (test: Kolmogoroff-Smir-
nov, P(obs.=pred.)>0.20). A Runs test revealed
that five of the 12 distributions shown had a sig-
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nificant surplus of one-sided errors through seg-
ments of the distributions (i.e. too few alternating
positive and negative deviations). The five cases
were: plot 365 (age 25), plot 372 (age 30), plot 373
(age 35), plot 375 (age 30), and plot 366 (age 30).
Note that in no case did the predicted distribution
differ significantly from the observed at both ages
shown.

Predictions of stem number in a single size
class were not precise. Standard errors of over
100% were common at the extremes. Errors of 10
to 30% were common at the central part of the dis-
tributions. A multivariate test of the equality of the
two types of distributions (predicted and ob-
served) supported the contention of no significant
differences. Predicted distributions were, as ex-
pected, more regular than the observed, some-
times ‘jagged’, distributions.

Discussion and conclusions

Stand growth and yield models based on realistic
hypotheses about tree responses to environment
(Aikman and Watkinson 1980, Hardwick 1987,
Perry 1985, Tait 1988) are better suited to predict
outcomes of alternative management options
than empirical models. We utilized the fact that
tree size itself is the best predictor of growth be-
cause a tree’s competitive history is integrated in
its current size (Ford 1975, Mitchell-Olds 1987,
Perry 1985). This approach virtually eliminates
any direct influence of age on the growth process
and reduces its role to a chronological reference
point. With new tissues repeatedly laid down over
or replacing older tissues, it is hard to fathom the
unique effect of age per se unless some physiologi-
cal aging process occurs (Duff and Nolan 1953 and
1958, Hardwick 1987, Hari and Kellomaki 1981).

Our model also reflects the transition from
one-sided competition towards a two-sided
process as stand density increases (see Brand and
Magnussen 1988). Prior to canopy closure trees
compete for light and they acquire resources in
proportion to some aspect of their size. After
crown closure, when leaf area index and stand as-
similation have rcached a maximum, smaller in-
dividuals get proportionally less light, moisture,
and nutrients. This reinforces the size inequality
among population members (Ford 1975, Gates
1980). Models based on these principles of dis-
tribution-modifying functions, constrained
within limits of total yield and individual size,
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Figure 15 (cont.)
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Figure 15 (cont.)
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Figure 15 (cont.)
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Table 8. Comparisons of general model predictions with observed values of mean volume, maximum volume, rela-
tive growth rate, and mean annual increment

Mean volume Maximum volume Relative growth rate |Mean annual increment
Spacing PSP Years of (RGR) (MAD
(m) predictions
&% SEP% A% SEP% A% SEP% A% SEP%
1.2 365 5 -14 13 =22 12 -11 20 -17 15
10 -24 17 342 | 14 0 37 25 21
15 -25 19 -36* 16 40 37 -25 25
Avg. per -1.2° 1.3 -1.6 1.1 3 2.5 -1.2 2.3
year (r) 0.92) (0.96) 0.82)| (0.91) 087)| (.094)
15 373 5 10 11 11 12 7 19 5 10
10 12 17 1 15 -2 18 9 16
15 5 16 -10 13 -29% 26 3 16
20 -6 14 -17 12 -37* 32 -6 15 |
25 -12 12 -23 11 -15 21 -11 14
Avg. per 0.9 - -15 - 2.1 - 06 | -
year (r) (0.79) (-0.98) (0.78) (0.64)
1.8 372 5 4 14 6 15 1 17 -1 13 |
10 3 21 10 22 -13 32 0 21 |
15 3 21 7 22 -17 27 -3 22 |
20 -7 18 -2 16 -15 51 -7 19 ‘
25 -8 16 -5 13 10 41 -7 18 |
Avg. per -0.7 - -0.7 - - 1.3 -0.3 0.2
year (r) (0.97) (0.87) (081 | (0.70)
2.1 375 5 -9 12 -5 12 -11 26 -11 13
10 -14 18 -13 17 -4 22 -16 21 |
15 -16 20 -20 18 -2 35 -17 24
20 -15 20 -18 18 4 43 -15 23
25 -12 18 -11 17 56 38 -12 21 |
Avg. per -05 0.3 -0.7 - 2.8 0.9 - - |
year (r) (0.77) 067) | (0.77) (0.83)] (0.82)
2.4 377 5 -6 10 -7 9 -7 16 -10 11
10 -14 15 -13 12 0 15 -17 17
15 -14 18 -8 14 3 26 -16 21
20 -10 19 -3 14 23 24 -1 21
15 -3 20 5 14 93* 23 -4 20
Avg. per - 0.5 0.2 0.2 2.3 0.5 - -
year (1) (0.94) (0.35) (0.87) 0.76)| (0.73)
3.0 366 5 -7 10 -3 11 -13 24 -13 13
10 -19 17 -15 16 -12 16 -21 20
15 -22 18 -20 17 11 15 -24 23
20 -13 22 -15 20 43 23 -16 26
25 0 27 -4 23 137¢ 26 -2 27
Avg. per - 0.8 -0.5 0.6 4.4 - - 0.7
year (r) (0.98) (0.50) (0.98) (0.84) (0.95)

A% = predicted /observed x 100-100
SEP% = standard error of predictions in per cent of mean at respective age
r = correlation coefficient between A% and year of prediction

!Based on all years of predictions.
%L evel of significance based on t-test (H: observed=predicted), "’ denotes (P(t>t,)<0.05



have been successful in predicting the dynamics
of size distributions (Aikman and Watkinson
1980, Benjamin 1988, Ford and Diggle 1981, Gates
1980, Hann and Ritchie 1988, Hara 1984).

A common feature in these modelsisa growth
modifier (like our vigour index ‘d’) which serves
as the link between a potential maximum and ob-
served growth. Through fairly simple relation-
ships to size and stand density, modifiers have
proven easier to model than growth itself.
Another advantage of the modifiers is the ease of
integrating, in a consistent manner, the mortality
process in the growth model. Open grown trees
are a natural benchmark of potential growth
(Assmann 1970, Evert 1971, Ford 1975, Hann and
Ritchie 1988, Horne et al. 1986, Perry 1985, Smith
and Scott 1984). A size-determined upper limit to
growthrate isalso implicitly acknowledged in the
frequently cited linear relationship between the
logarithm of stand density and the logarithm of
the average tree size (Hardwick 1987, Sterba 1975,
Weller 1987, Yoda et al. 1957, Zeide 1987). Asden-
sity approaches the occupancy of a single tree, tree
size approaches asymptotically towards a con-
stant upper limit. However, our failure to realisti-
cally predict growth and yield for the4.3 and 6 m
spacings indicates the need to consider the case
where competition is not a driving force in stand
development.

Although process-driven growth models fur-
nish no new biological insight per se they do
provide a means for testing the underlying
hypothesized population dynamics (Benjamin
1988, Brand and Magnussen 1988, Gates 1980,
Mitchell-Olds 1987). Note, however, that the same
data may fit several models equally well (Clutter
et al. 1983, Smith and Hann 1986, Sievinen et al.
1988, Tait 1988).

Density effects on stem volume growth are
well documented (see Evert 1971 for references)
and density management guidelines have been
developed for many species (Assmann 1970,
Langsaeter 1941, Long 1985, Reineke 1933, Smith
and Brand 1987). Our model prepares a suitable
framework for simulation of various options of in-
itial spacing. By modelling individual tree growth
asadistance independent function of tree sizeand
stand density it circumvents the intricate
problems of recovering the size distribution from
mean tree and whole stand attributes (Bailey 1980,
Hyink and Moser 1979, Martin and Ek 1984). Fur-
ther, competition effects formulated without spa-
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tial information lowers the data requirements for
predictions. Spatial independence is based on the
assumption that an average diffusion process can
adequately describe the competition process
(Ford and Diggle 1981, Hara 1984). Spatial
analysis of tree size distributions in even-aged
plantations have confirmed that the overall nega-
tive correlation between the size of neighbouring
trees tends to cover considerable microsite varia-
tion (Ford 1975, Ghent and Franson 1986, Lorimer
1983, Reed and Burkhart 1985). This type of local-
ized deviation from the average has been recog-
nized in our model through the inclusion of
stochastic error terms.

Testing our model on sites different from the
experimental location would, of course, inflate
prediction errors. Site differences may indeed be
the single most significant factor for growth and
yield. Further tests of the model on various red
pine sites are clearly needed to assess the need for
site specific adjustments of maximum growth
rates, and of the relationship between RDI and the
competition coefficients (2 and b). Model applica-
tions would be severely impeded by a need to
recalculate the model for each new site. The costs
of doing so are prohibitive. If the need is only for
an adjustment of RGRmax then the prospects of a
wider application appear promising.

Our ability to generate fairly accurate predic-
tions of size-distribution parameters (g, v;, ¥,) in-
dicates a realistic modelling of temporal stand
dynamics. The number of size classes displayed in
our results far exceeds practical requirements. A
reduction to, say, three or four size classes would
indicate a much improved fit between observed
and predicted distributions.

Relative growth rate is sensitive to competi-
tion and, as such, is an obvious candidate for
modelling (Aikman and Watkinson 1980, Ben-
jamin 1988, Ford 1981, Ford and Diggle 1981, Hara
1984, Perry 1985). Its major disadvantage rests
with the serious compounding effects arising
from even minor bias in growth rates. Given the
considerable prediction error of a tree’s relative
growth rate, lasting effects on growth predictions
must be anticipated in models relying on RGR.
Only the moderating influence of the density
index contained predictions within acceptable
limits from the observed values.

Errors in forest growth models arises from
many sources and their structure can be very com-



plex due to spatial and temporal covariances
(Gregoire 1987). Few models provide sufficient in-
formation to allow realistic inferences about
prediction errors. Most report merely on how well
the model fit the data that was used for its deriva-
tion. As we have shown, prediction errors arising
from stand differences within a given site may be
two to three times as high as the errors associated
with predictions for a single stand (see also
Reynolds et al. 1988). Among-plot variation in
growth and yield performance and in sensitivity
to competition (see the large among plot variation
in predicted a- and b-values for a given RDI-value)
are the main sources of error when results from
several plots are pooled to form a single model.
Simulation creates an attractive alternative to an
analytical approach to error estimation (Ripley
1987). Prediction errors of red pine stem volume
growth and yield were often considerable, as ex-
pected, but they compared favourably with
reported results from other models (Clutter et al.
1983, Ek 1974, Gregoire 1987, Hann and Ritchie
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1988, Mitchell 1975, Smith 1983, Smith and Hann
1986, Smith and Scott 1984, Tait 1988).

Some improvementof predictionerrorsinour
model may have been achieved through a simul-
taneous fitting of related equations (Khuri and
Cornell 1987, Reed and Green 1985) instead of
using disjointed ordinary least squares (OLS)
solutions. Also, an optimized weighting of data
with respect to their influence on prediction poses
an alternative to our use of simple OLS and arith-
metic means. Nevertheless, inferences about er-
rors must await the final judgment of the model
users (Reynolds and Chung 1986). Only if the
model leads to wrong management decisions, or
if yield differs substantially from expectations, do
we have an appropriate scale for judging the
seriousness of poor predictions. Statistical in-
ferences based on normal theory alone are of little
practical use.
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