

Note No. 10

Northern Forest Research Centre

Edmonton, Alberta

FOREST FIRE INITIAL-ATTACK PLANNING WITH A PROGRAMMABLE HAND-HELD CALCULATOR

In recent years fire control costs have been rising at a dramatic rate. Major increases in fuel, aircraft, fire retardant, and labor costs have elevated both presuppression and suppression expenditures to unheard-of levels, particularly during the disastrous 1980 fire season.

In order to maximize returns on presuppression expenditures and ultimately to minimize both expenditures and forest resource losses associated with fire suppression activities, forest protection agencies are becoming increasingly concerned with the cost-effectiveness of their operations. Improved and intensified initial-attack capabilities are receiving close attention and have called for modern planning processes and techniques that will optimize the allocation and utilization of costly initial-attack resources. One such process involves the development, testing, and application of initial-attack simulation models.

Until recently, the development and operation of simulation models required the use of large, costly, and centralized computing facilities and a level of programming and operating knowledge not generally available to fire management agencies. Today, however, because of significant technological advancements in the development of microprocessors, greatly increased levels of computing capability have been compacted into inexpensive, easy-to-use, and readily available hand-held or desk-top calculators. For example, it is now possible to perform computations and simulation exercises with a pocket calculator (Albini and Chase 1980, Cohen and Burgan 1979) that 5 years ago would have required a complex computing system.

As an aid to improved presuppression and initial-attack planning, a simple fire containment model programmed for the Texas Instruments Model 59 (TI-59) hand-held calculator¹ has been developed at the Northern Forest Research Centre. The model was derived in part from a fire operations simulation study conducted in central Alberta (Quintilio and Anderson 1976). This model has been developed with the user in mind, and its complexity has been minimized accordingly. It is assumed that the user has at least a basic knowledge of the TI-59 or a comparable programmable calculator.

As with most simulation routines, several assumptions must be made. In this model the following assumptions apply: 1. fire shape is in the form of an ellipse (Van Wagner 1969); 2. the backfire rate of spread is maintained at a constant 1 metre per minute; 3. all the fire line constructed is held and requires no further or follow-up action; and 4. fire containment occurs when the fire line has been constructed along 40% of the perimeter of the fire at the head and adjacent flanks. The user may wish to continue to operate the model beyond this 40% containment criterion simply by repeating the appropriate steps even though the containment flag (1.00 on the calculator) is displayed.

Use of the fire containment model simply requires input of the variables outlined in the operating instructions in Appendix I. In this manner the user can determine the fire behavior circumstances (rate of spread), the resource allocation opportunities (fire-line construction), and the

The exclusion of certain manufactured products does not imply rejection nor does the mention of other products imply endorsement by the Canadian Forestry Service.

time factors (elapsed time between events or activities) to be considered. The only other user options are 1. initial fire size at discovery (e.g., 0.1 ha) and 2. head-to-flank spread ratio (e.g., 4:1) for the elliptical fire growth subroutine. Model output is presented in terms of whether (1.00) or not (0.00) a fire is contained based upon the input information, the size (area and perimeter) of the fire after any given period of action, and the ratio of fire line constructed to total perimeter.

It is intended that qualified fire control personnel within a given forest protection organization have access to and are able to operate the model, on the understanding that they are knowledgeable of the factors influencing fire behavior and control. These are the people who can best assess the presuppression and initial-attack circumstances unique to their area of responsibility. For example, this model may be used to assess the following: 1. resource requirements under high-demand circumstances; 2. fire-line construction capabilities under various fuel and fire conditions; 3. resource readiness and dispatch rules; and 4. resource allocation alternatives. Users will no doubt identify a number of other possible applications as they gain familiarity and experience with the model. As a precaution, however, it should be recognized that this model is not intended as a decision aid for use on active fires but should serve as a presuppression planning tool only.

The model can be readily programmed by the user in accordance with the listing provided in Appendix II. Documentation of the storage registers used is presented in Appendix III. In order to verify the program listing and to become familiar with the performance of the model, the user may wish to run the initial-attack example problem outlined in Appendix IV.

A forthcoming publication will be devoted to specific applications of the model to presuppression and initial-attack planning. This report will provide expected levels of productivity for hand crews, air tankers, and helitankers and will also assist the user in assessing fire behavior situations that may be modeled from a range of expected fire spread rates based upon defined fuel and fire weather circumstances. Until input information of this sort is assembled or published, it is expected that the user will be the person most familiar with the specific fuel, fire, and resource productivity conditions that will serve as model input variables for a given region.

M.W. Potter R.G. Newstead D. Quintilio C.Y. Lee

November 1981

REFERENCES

- Albini, F.A. and C.H. Chase. 1980. Fire containment equations for pocket calculators. USDA For. Serv., Intermt. For. Range Exp. Stn. Ogden, Utah. Res. Note INT-268. 17 p.
- Cohen, J.D. and R.E. Burgan. 1979. Hand-held calculator for fire danger/fire behavior. Fire Manage. Notes 40(1):8-9.
- Quintilio, D. and A.W. Anderson. 1976. Simulation study of initial attack fire operations in the Whitecourt Forest, Alberta. Environ. Can., Can. For. Serv., North. For. Res. Cent. Edmonton, Alberta. Inf. Rep. NOR-X-166. 35 p.
- Van Wagner, C.E. 1969. A simple fire growth model. For. Chron. 45(2):103-104.

ACKNOWLEDGMENT

The authors wish to acknowledge the financial support of the Alberta Forest Service, which made possible the original development of this model.

CONVERSION FACTORS

Hectares (ha) \times 2.471 = acres Metres/minute (m/min) \times 2.982 = chains/hour Metres/minute (m/min) \times 3.2808 = feet/minute Metres (m) \times 0.04971 = chains Acres \times 0.4047 = hectares (ha) Chains/hour \times 0.3353 = metres/minute (m/min) Feet/minute \times 0.3048 = metres/minute (m/min) Chains \times 20.117 = metres (m)

Appendix 1. Operating instructions

Step	Procedure	Enter	Press	Display
1	Turn calculator on			Ignore
2	Clear memory		2nd CP	0.
3	Read program Side 1	1	Insert card Side 1	1.
4	Read program Side 2	2	Invert and insert card Side 2	2.
5	Initiate simulation		A	1. ·
6	Enter initial fire size (ha)	n^1	R/S	n
7	Enter head-to-flank ratio	n	R/S	n
8	Enter headfire spread rate (m/min)	n	R/S	n
9	Enter fire line constructed (m)	n	R/S	n
10	Enter elapsed time interval			
	for time period (min)	n	R/S	Flickering C
11	Fire containment flag display ed ²	n	R/S	0.00 if not contained 1.00 if contained
12	Display total burned area		R/S	n = area (ha)
13	Display perimeter of fire		R/S	n = perimeter(m)
14	Display ratio of fire line constructed to total fire perimeter		R/S	n = ratio
15	Return to Step 8 if sustained attack for a subsequent time period is desired ³		2nd LBL 2nd A'	0
	OR		ZIIU LDL ZIIU A	U
	To initiate a new fire simulation, return to Step 5.		CLR	0

¹ The label n refers to any user-defined number.

Appendix II. Programming the model

This model can be programmed or modified by the user with a basic knowledge of TI-59 programming requirements as described in the manufacturer's Personal Programming Manual. The user is referred to sections IV-10, IV-21, V-52, VI-4, and VII-2 for programming and editing instructions, program key locations and codes, program listing, and magnetic card writing. The model can be stored on two sides of a single magnetic card and should be labeled with

permanent fast-drying ink. We recommend that one or more magnetic cards be prepared for each calculator used because of the incompatibility among some TI-59 calculators. The user should also note that magnetic cards can be damaged by the walk-through security scanners used at some airports; therefore, it is recommended that programmed cards be transported with checked or carry-on luggage.

To enter program, press 2nd CP LRN, and key in the complete program listed below.

Loc.	Key	Comments	Loc.	Key	Comments	Loc.	Key	Comments
000 001 002 003 004	76 LBL 11 A 22 INV 58 FIX 47 CMS	Initiate simulation	005 006 007 008 009	01 1 42 STO 13 13 91 R/S 42 STO	Set U, constant backfire rate	010 011 012 013 014	14 14 91 R/S 42 STO 01 01 91 R/S	size, A ₀ Read head-to-flank ratio, R

Any given simulation exercise can be continued beyond the 40% (0.40) containment criterion even if the containment flag displayed in Step 11 is 1.00. To do this follow directions in Step 15 (note: Step 14 will display new percent containment).

The user is cautioned that repetitive iterations over extended time intervals can result in output distortions, because the model assumes that the fire retains its original shape through time.

Loc.	Key	Comments	Loc.	Key	Comments	Loc.	Key	Comments
015								
010	42 STO	Read headfire	069	42 STO		123	04 4	perimeter?
016	12 12	spread rate, V _k	070	16 16		124	54)	•
017	91 R/S	. к	071	43 RCL		125	32 X≷T	
018	42 STO	Read fire line	072	14 14		126	43 RCL	
019	18 18	constructed, L _k	073	42 STO		127	19 19	
020	91 R/S	Δ	074	17 17		128	22 INV	
021	42 STO	Read elapsed time	075	000	Set no containment	129	77 GE	
022	02 02		076	42 STO	flag	130	99 PRT	If so, set contain-
023	53 (077	04 04		131	01 1	ment flag
024	43 RCL		078	76 LBL	Set headfire and	132	42 STO	
025	14 14		079	15 E	backfire incremental	133	04 04	
026	65×		080	43 RCL	distances	134	76 LBL	
027	011		081	02 02		135	99 PRT	
028	00 0		082	49 PRD		136	58 FIX	
029	00 0	Calculate theoretical	083	12 12		137	02 02	
030	00 0	distance from origin	084	49 PRD		138	43 RCL	Display containment
031	00 0	to rear of fire	085	13 13		139	04 04	flag
032	65 X	at detection, Y	086	76 LBL	Commence free burn	140	91 R/S	J
033	02 2	, 0	087	17 B'		141	53 (
034	65 X		088	43 RCL		142	43 RCL	
035	43 RCL		089	12 12		143	1717	
036	01 01		090	44 SUM	Calculate length	144	55 ÷	
037	55÷		091	09 09	of headfire, X _k	145	011	
038	89 π		092	43 RCL	ouu,k	146	00 0	Display burned
039	55÷		093	13 13		147	00 0	area (ha)
040	43 RCL		094	44 SUM	Calculate length of	148	00 0	
041	12 12		095	10 10	backfire, Y _k	149	00 0	
042	55÷		096	71 SBR	Calculate flank length,	150	54)	
043	53 (097	$34\sqrt{X}$	$\mathbf{z}_{\mathbf{k}}$	151	91 R/S	Display fire
044	43 RCL		098	71 SBR	K	152	43 RCL	perimeter (m)
045	12 12		099	13 C	Calculate P _k	153	16 16	
046	85 +		100	71 SBR	K	154	91 R/S	
047	011		101	14 D	Calculate A _L	155	53 (
048	54)		102	71 SBR	K	156	43 RCL	
049	54)		103	18 C'	Calculate actual	157	19 19	
050	$34\sqrt{X}$		104	71 SBR	perimeter, C _k	158	55÷	
051	42 STO		105	19 D'	Calculate actual area,	159	43 RCL	Display ratio of
052	10 10		106	43 RCL	$\mathbf{s_k}$	160	16 16	fire line constructe
053	53 (107	07 07	K	161	54)	to fire perimeter
054	24 CE	Calculate theoretical	108	42 STO		162	91 R/S	End Main Program
055	65 X	distance from origin	109	14 14		163	76 LBL	Subroutine to
056	43 RCL	to head of fire at	110	43 RCL		164	$34\sqrt{X}$	calculate length of
057	12 12	detection, X ₀	111	08 08		165	53 (flank fire,
058	54)	400001011, 12 ₀	112	42 STO		166	43 RCL	$Z_k = X_k/R$
059	42 STO		113	15 15		167	09 09	-kk'
060	09 09		114	43 RCL		168	55 ÷	
061	71 SBR	Calculate initial	115	18 18		169	43 RCL	
062	$34\sqrt{X}$	flank length, Z	116	44 SUM	Total fire line	170	01 01	
063	71 SBR	ann rongon, 20	117	19 19	constructed, F _k	171	54)	
064	13 C	Calculate initial	118	53 (k	172	42 STO	
065	43 RCL	perimeter, P	119	43 RCL	Fire containment test:	173	11 11	
550	08 08	permeter, 10	120	16 16	Is total fire line	173	92 RTN	(Press INV SBR)
066	VU VO		140	10 10	TO FORM THE HILL	114	22 ILTIN	(11c92 114 A QDU)
066 067	42 STO		121	65 X	constructed greater	175	76 LBL	Subroutine to

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Loc.	Key	Comments	Loc.	Key	Comments	Loc.	Key	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	177	53 (theoretical burned area	231	53 (285	54)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	178	89 π		232	53 (286	54)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	179	65×		233	89π		287	44 SUM	Store C _k
181 43 RCL 235 53 289 92 RTN (Press INV SRR) 182 090 236 53 385 237 43 RCL $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	180	53 (234	65 X		288	16 16	Α.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	181			235	53 (289	92 RTN	(Press INV SBR)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-		290	76 LBL	·
10 10						$P_{1} = \pi(X_{1} + Y_{1} + Z_{1})$			
10 10					09 09	$\frac{\mathbf{K}}{2}$			4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$A_{1} = \pi(X_{1} + Y_{1})Z_{1}$		85 +	$\vee (1 \perp M^2)$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			K <u>K K</u> K	240	43 RCL	$\wedge \left(1 + \frac{M}{4}\right)$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	_			-			$+(1-\frac{\mathbf{r}_{\mathbf{k}\cdot1}}{\mathbf{k}\cdot1})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				242					$\mathbf{c_{k-1}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				243					$\times (A_1 - A_{1-1})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				244					, K K-1,
192									
193									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
195									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(Press INV SBR)						
197									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	09 09		256	$33 X^2$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	203			257	55 ÷		311		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204			258	04 4			•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205	10 10	M (intermediate value)	259	54)				Store S ₁
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206	54)	$= (X_{l_r} + Y_{l_r} - Z_{l_r})$	260					K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207	55 ÷	2				315	92 RTN	(Press INV SBR)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208	02 2	$\div (X_k + Y_k + Z_k)$	262	08 08		316		Initiate sustained
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209	75 -	$\frac{\mathbf{K}}{2}$				317	16 A'	action by resetting
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	43 RCL		264	76 LBL	Subroutine to	318	01 1	variables
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 11		265	18 C'	calculate actual fire	319	42 STO	Initialize backfire
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	54)		266	53 (perimeter,	320	13 13	rate, U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213	55 ÷		267	53 ($C_k = C_{k-1}$	321	25 CLR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53 (268	01 1	Λ Λ-1 ⊥(1 – Γ \	322	91 R/S	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				269	75 -	$\frac{\mathbf{r}}{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{k} \cdot 1}$	323	42 STO	Read new headfire
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				270	53 (c_{k-1}	324	12 12	spread rate, V _k
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				271	43 RCL	$\times (P_k - P_{k-1})$	325	91 R/S	A
220 10 10 274 43 RCL 328 91 R/S 221 54) 275 16 16 329 42 STO Read new elapsed 222 55 ÷ 276 54) 330 02 02 time 223 02 2 277 54) 331 61 GTO Branch back to 224 85 + 278 65 X 332 15 E continue simulation 225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL				272	19 19	K K-	326	42 STO	Read new fire line
221 54) 275 16 16 329 42 STO Read new elapsed 222 55 ÷ 276 54) 330 02 02 time 223 02 2 277 54) 331 61 GTO Branch back to 224 85 + 278 65 X 332 15 E continue simulation 225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL				273	55 ÷		327	18 18	constructed, L _k
222 55 ÷ 276 54) 330 02 02 time 223 02 2 277 54) 331 61 GTO Branch back to 224 85 + 278 65 X 332 15 E continue simulation 225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL				274	43 RCL		328	91 R/S	
223 02 2 277 54) 331 61 GTO Branch back to 224 85 + 278 65 X 332 15 E continue simulation 225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL		•			16 16		329	42 STO	Read new elapsed
224 85 + 278 65 × 332 15 E continue simulation 225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL									
225 43 RCL 279 53 (226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL									
226 11 11 280 43 RCL 227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL							332	15 E	continue simulation
227 54) 281 08 08 228 54) 282 75 - 229 42 STO 283 43 RCL									
228 54) 282 75 - 229 42 STO 283 43 RCL									
229 42 STO 283 43 RCL		•							
		•							
230 06 06 284 15 15									
	230	06 06		284	15 15				

Appendix III. Documentation of variables by storage register location

Upon completing a simulation exercise, the input and output data are contained in the following storage registers and

can be recalled simply by pressing RCL followed by the appropriate two-digit register number.

Register number	Contents
00	Not used
01	R, head-to-flank ratio; user input
02	Elapsed time interval for the time period (min)
03	Not used
04	Fire containment flag: 0.00 if fire is not contained
	1.00 if fire is contained
05	Not used
06	M - Intermediate value in perimeter calculation
07	A _k - Theoretical area at end of current time interval
08	
09	X ₁ - Theoretical distance from head to origin of fire
10	Y ₁ - Theoretical distance from rear to origin of fire
11	Z _L - Theoretical distance from flank to origin of fire
12	 P_k - Theoretical perimeter at end of current time interval X_k - Theoretical distance from head to origin of fire Y_k - Theoretical distance from rear to origin of fire Z_k - Theoretical distance from flank to origin of fire V_k - Rate of spread (m/min); user input variable
13	U - Backfire spread rate set constant to 1 m/min
14	A _{k-1} - Initial area burned; accrued theoretical area burned at end of previous time interval (ha)
15	P _{k-1} - Initial perimeter of fire; accrued theoretical perimeter of fire at end of previous time interval (m)
16	C_k - Actual perimeter (m); note that $C_0 = P_0$ and $C_1 = P_1$ in sustained simulation
17	S _k - Actual area of fire at end of current time interval (ha)
18	$\mathbf{L_k}^{\mathbf{r}}$ - Fire line constructed during current time interval (m)
19	F _k - Total fire line constructed at end of current time interval (m)

Appendix IV. Initial-attack problem

In order to verify the program listing and to become familiar with the performance of the model, the user may wish to run the initial-attack problem outlined

below. Figure 1 is a pictorial representation of the problem and solution.

Fire situation:

Distance from initial-attack base = 60 km

Fire size at time of reporting = 0.3 ha

Fuel type = lowland black spruce

Fire severity = extreme (suggesting potential head-to-flank ratio of 4:1)

Potential forward rate of spread = 8 m/min

Resource availability and productivity:

One group of three B-26 air tankers

Elapsed time from reporting to initial attack including getaway = 20 min

Net effective retardant fire line constructed per two-door string drop = 105 m

Time interval between second and third retardant drops (events) = 3 min

Step	Input/output from operating instructions (see Appendix 1)
1-5	Follow steps as instructed in Appendix 1
6	Input initial fire size = 0.3 ha
7	Input head-to-flank ratio = 4
8	Input headfire spread rate = 8 m/min
9	Input fire line constructed = 105 m
10	Input elapsed time = 20 min
11	Output fire containment flag = 0.00
12	Output burned area = 2.60 ha
13	Output fire perimeter = 641.63 m
14	Output ratio of fire line constructed to total perimeter = 0.16
15	Press 2nd LBL 2nd A' and return to Step 8
15-8	Input headfire spread rate = 8 m/min
15-9	Input fire line constructed = 105 m
15-10	Input elapsed time = 3 min
15-11	Output fire containment flag = 0.00
15-12	Output burned area = 3.13 ha
15-13	Output fire perimeter = 694.76 m
15-14	Output ratio of fire line constructed to total perimeter = 0.30
16	Press 2nd LBL 2nd A' and return to Step 8
16-8	Input headfire spread rate = 8 m/min
16-9	Input fire line constructed = 105 m
16-10	Input elapsed time = 3 min
16-11	Output fire containment flag = 1.00
16-12	Output burned area = 3.72 ha
16-13	Output fire perimeter = 739.09 m
16-14	Output ratio of fire line constructed to total perimeter = 0.43

Figure 1. The initial-attack problem and solution.

For further information contact: Northern Forest Research Centre 5320 - 122 Street Edmonton, Alberta T6H 3S5

Environment Canada

Canadian Forestry Service

Environnement Canada