TREES AND SHRUBS ON RESIDENTIAL LOTS

IN EDMONTON, 1973

BY
R.M. Waldron
AND
J.R. Dyck

INFORMATION REPORT NOR-X-143 NOVEMBER, 1975

Waldron, R.M. and J.R. Dyck. 1975. Trees and shrubs on residential lots in Edmonton, 1973. Environ. Can., Environ. Manage. Serv., North. For. Res. Cent. Inf. Rep. NOR-X-143.

ABSTRACT

In 1973 a tree and shrub survey was carried out in Edmonton as part of a background study on urban forestry. It was apparent, based on annual expenditures both in time and money, that homeowners place a high utilitarian value on their woody plants. A conservative estimate puts the replacement value of trees and shrubs on residential lots in Edmonton at about $\$ 63000000$.

Homeowners perceived a need for more research and information particularly as related to insect and disease problems, tree improvement, and cultural practices. As a contribution towards satisfying these needs the Northern Forest Research Centre is undertaking insect and disease research and a pesticide evaluation program. In addition a series of publications on pest problems has been initiated.

Additional information will have to be collected before the Northern Forest Research Centre can fully assess its role in solving urban forestry problems.

RESUME

En 1973, les auteurs effectuèrent un inventaire des arbres et des arbustes à Edmonton pour les fins de foresterie urbaine. Se fondant sur les dépenses annuelles de temps et d'argent faites par les résidents, il est évident que ceux-ci considèrent leurs plantes ligneuses comme très utiles. Selon une estimation faible, la valeur de remplacement des arbres et arbustes dans les lots résidentiels de cette ville s'élève à \$63 000000 .

Les propriétaires de lots déclarèrent que l'on doit intensifier les recherches et donner plus d'informations en ce qui concerne surtout les insectes nuisibles et les maladies, l'amélioration des arbres et les méthodes de culture. En vue de contribuer à satisfaire ces besoins, le Centre de recherches forestières du Nord est à mettre au point un programme de recherches sur les insectes et les maladies et d'évaluation des pesticides. En outre, il commence à publier sur les problèmes concernant les ennemis des arbres et des arbustes.

Le Centre de recherches forestières du Nord aura besoin d'informations supplémentaires avant qu'il puisse estimer entièrement le rôle qu'il doit jouer pour résoudre les problèmes de foresterie urbaine.
Page
INTRODUCTION 1
METHODS 1
RESULTS 5
Species 5
Source 14
Groupings 14
Location within Lots 16
Macrolocations 16
Microlocations 17
Damage or Problems Encountered 18
Cultural Recommendations 20
Hour and Dollar Inputs 21
Replacement Values 23
Source of Horticultural Information 24
Social Value of Trees and Shrubs 24
Need for Information and Research 26
DISCUSSION 27
ACKNOWLEDGEMENTS 30
REFERENCES 31
APPENDIX I Scientific and Common Names of Trees and Shrubs 32

A survey of trees and shrubs growing on residential lots in the greater Edmonton area was carried out in September 1973 as part of a background study on urban forestry (Jorgensen 1970). The principal objective of the background study was to determine what role, if any, the Northern Forest Research Centre might play in resolving, through research, urban forestry problems in the three prairie provinces. The purposes of the tree and shrub survey were:

1. To determine species and numbers
2. To determine source, groupings, and location within lots
3. To assess cultural problems being encountered by homeowners and recommend corrective treatment
4. To determine the amount of time and money being spent annually by homeowners on the establishment, maintenance, and protection of trees and shrubs
5. To assess the economic (including replacement cost) and social value of trees and shrubs to homeowners.

METHODS

The city of Edmonton, the town of St. Albert, and the hamlet of Sherwood Park were subdivided into 23 "neighborhoods" (Figure 1) on the basis of a zone map prepared by the Edmonton Real Estate Board (1974). Within each neighborhood the number of residential lots was determined using large-scale planning maps on which lots were easily identifiable. There were 83512 residential lots in Edmonton, 3254 in St. Albert and 6004 in Sherwood Park (Table 1).

A total of 287 residential lots (0.3% sample) was randomly selected on a proportional basis from the 23 neighborhoods. The sample

Figure 1. Neighborhoods and sample residential lots in Edmonton and St. Albert.

TABLE 1

Residential lot survey

Neighborhoods ${ }^{1}$	Number of residential lots	Number of lots selected	Number of responses to the questionnaire	Number of lots examined
Edmonton				
1	5377	15	5	10
2	9386	31	19	29
4	2211	6	2	4
5	5454	12	5	8
6	3239	7	3	5
7	3544	10	6	7
8	1844	5	0	2
9	2852	7	1	5
10	3099	11	6	10
11	2659	10	6	10
12	632	3	0	3
13	928	3	1	3
14	5407	22	17	22
15	2835	5	1	1
16	4625	11	6	5
17	5456	15	4	5
18	7382	22	10	12
19	4211	11	6	7
21	2952	12	6	8
22	6330	20	14	12
23	3089	9	6	6
St. Albert (24)	3254	12	7	8
Sherwood Park (25)	6004	28	10	26
TOTALS	92770	287	141	208
\%		0.3	49.1	72.5

size wats Limited to what a crew of lour persont: rxperlenced in tree and shrub identification and familiar with cultural and protection problems could survey in a 6-week period.

Ownership of the selected residential lots was determined using legal lot descriptions and municipal government tax rolls. Initial contact was made by means of an introductory letter from the Director, Northern Forest Research Centre. Included with the letter was a questionnaire requesting information on the number of hours and dollars spent on various aspects of tree and shrub establishment, maintenance and protection including the use of landscape architects. Residents were also asked to indicate their source of horticultural information, to evaluate the contribution of trees and shrubs to their lot, and indicate priority needs, as they saw them, for research or additional information.

The second step was a visit to the selected residential lots to gather information relating to species, numbers, grouping, source, age, height, tree diameter at breast height (dbh), vigor, condition class, location, problems or damage to the trees and shrubs; and to recommend cultural treatments. When possible the owner's assistance in carrying out the appraisal was used. ${ }^{1}$

All data were subsequently transferred to computer cards and tabulated. Because of the small number of samples in many neighborhoods, results are provided on a city-wide basis rather than for the 23 neighborhoods as originally intended.

[^0]Species lists, their scientific and common names, and assignment to tree or shrub categories are based on the 1973 edition of the Alberta Horticultural Guide (Appendix I). A species replacement value was calculated for the tree and shrub species based on 1974 nursery stock prices listed in catalogues obtained from tree nurseries in the Edmonton area. A tree replacement value (based on species, $d b h$, and condition) was also calculated for trees $6.6 \mathrm{~cm}(2.6 \mathrm{in})$.dbh and larger and is based on a formula developed by the International Shade Tree Conference, Inc. (1970). A base value of $\$ 10$ per $6.5 \mathrm{~cm}^{2}$ (1 in. ${ }^{2}$) in cross section at $1.4 \mathrm{~m}(4.5 \mathrm{ft})$ above ground level was assigned. Modifying factors included tree species (ranging from 110% for Koster's blue spruce to 60% for hybrid poplars--Table 2) and condition class (ranging from perfect specimen at 100% to very poor specimen at 20%). A more refined technique has since been suggested by the Ontario Shade Tree Council (1974) which includes climatic suitability and land value as factors.

RESULTS

SPECIES

The survey indicated a total of 3708900 trees and shrubs on Edmonton, St. Albert, and Sherwood Park residential lots, 34% of which were trees and 66% shrubs:

Seventy five tree and 92 shrub species were identified (Tables
2 and 3). The ten most common genera ${ }^{2}$ were:

Trees

Spruces		388	400	Cotoneasters		870	600
Maples		114	660	Lilacs			600
Birches		113	700	Caraganas		328	200
Apples, crabapples		94	200	Roses		235	900
Willows		77	100	Junipers		120	600
Mountain ashes		72	700	Cherries		120	300
Poplars		72	200	Spireas		85	100
Cherries		70	900	Honeysuckles		51	700
Pines		64	600	Pines		43	800
E1ms		56	300	E1ders		39	300

[^1]TABLE 2

List of trees and 1974 nursery replacement values on residential lots in Edmonton, Sherwood Park, and St. Albert, 1973.

		Number ${ }^{2}$		Nursery replacement value - 1974^{3}	Tree class ${ }^{4}$
Species	Code ${ }^{1}$	Species	Genera	\$ per plant	

CONIFEROUS

Cedars (sp) ${ }^{5}$	80	7	600			5	2
white	81		400			5	2
columnar white	82	28	100			10	2
Ware's siberian	83	16	100		200	18	2
Douglas-fir	70		900		900	19	2
Fir, balsam	11	3	600	3	600	3	2
Juniper (sp)	20		400			20	2
Rocky mtn.	21	8	500	8	900	20	2
Pines (sp)	50	1	800			25	2
jack	51	4	900			25	3
lodgepole	53	33	000			25	3
mugo (tree form)	56	17	800			18	2
Austrian	57		900			9	2
red	59		400			10	2
eastern white	60	1	300			10	2
Scots	61	4	500	64	600	8	2
Spruces (sp)	30	5	400			20	2
Norway	31	2	200			40	2
Engelmann	33		400			40	2
white	34	235	000			20	2
western white	35	2	200			20	2
Colorado	37	45	500			25	2
Colorado blue	38	41	900			40	2
Koster's blue	39	10	700			40	1
blue	40	32	600			40	2
black	41	12	500	388	400	20	3

Total coniferous
518600

[^2]TABLE 2 (cont.)
DECIDUOUS

Apples, crabapples (sp)	254		800			5	3
siberian crabapple	251	1	800			8	3
rosybloom crabapples	253	3	600	94	200	8	2
Ash, green	223	48	600	48	600	6	3
Basswood, small-1eaved	352		400		400	8	2
Birch (sp)	170	8	000			9	3
paper	171	77	600			9	3
european white	172	9	800			9	3
cut-leaved weeping	173	18	300	113	700	8	2
Cherries, plums (sp)	290	9	400			5	3
amur	291		900			8	3
may day	292	24	100			5	2
pincherry	293	25	900			5	3
chokecherry	294	7	100			5	3
western chokecherry	295	1	300			5	3
Schubert chokecherry	296	2	200	70	900	5	3
Crabapples - see apples							
E1m (sp)	360	3	600			4	3
american	361	31	700			4	2
manchurian	362	21	000	56	300	4	3
Hawthorn (sp)	200		400		400	6	3
Larch (sp)	240	2	700			7	3
tamarack	242	3	100			7	3
siberian	244		900	6	700	7	3
Maple (sp)	150	4	000			4	4
Manitoba	151	105	300			4	4
silver	152	2	200			5	2
sugar	153	2	200			8	2
Norway	155		900	114	600	7	2
Mountain ash (sp)	330	19	600			5	3
american	331	19	200			5	3
european	332	5	400			5	3
russian	333		400			6	3
showy	334	27	200			6	3
Green's	335		900	72	700	5	3

TABLE 3
List of shrubs and 1974 nursery replacement values on residential lots in Edmonton, Sherwood Park, and St. Albert, 1973.

Species	Code ${ }^{1}$	Number ${ }^{2}$		Nursery replacement value - 1974^{3} \$ per plant
		Species	Genera	

CONIFEROUS

Cedar (sp) ${ }^{4}$	140	8	900			4
globe	141	6	700		600	4
Fir, (balsam (dwarf)	90		900		900	5
Ground hemlock	830	1	300	1	300	4
Juniper (sp)	100	48	200			12
compact	102	8	500			14
golden pfitzer	103	10	700			12
mountain	104	4	000			9
creeping	105	7	600			17
Dunvegan blue	108	5	400			10
savin	110	30	800			10
arcadia	111	1	800			17
tamarix-1eaved	113	3	600	120	600	14
Pine (dwarf sp)	130	36	600			8
compact mtn.	131	4	500			8
dwarf mtn.	132	2	700	43	800	8
Spruce (dwarf sp)	120		400		400	7

Total coniferous	182,600

DECIDUOUS

Alder (sp)	820	400	400	2
Almonds - see plums				
Barberry (sp)	800	8900	8900	1
Birch, swamp water	841	5400		
	840	900	6	300

[^3]TABLE 3 (cont.)
Buffaloberry (sp)
silver
Burning bush (sp)
dwarf-winged
Caragana (sp)

common
weeping
pygmy

Cherries - see plums

690		900	
691	2700	3600	4
		400	
500		400	800
503			4
	278	300	
410	20	100	
411	400		3
413	29400	328	200

Cherry prinsepia	590
Cinquefoil (sp)	580
scrubby	581
Cotoneaster (sp)	460
Currant, gooseberry (sp)	640
alpine	641
american black	642
buffalo	645

$\begin{array}{cl}\text { Dogwood (sp) } & 430 \\ \text { silver leaved } & 432\end{array}$
siberian 435
gold leaved 436
red osier 438
golden twig 439

E1der (sp) 680
american 681
golden european 682
red 683
golden plume 684
Gooseberry - see currant

Hawthorn (sp)	470	1800		6
chinese	473	400	200	8
Hazelnut	450	1800	1800	1
Honeysuckle (sp)	540	49	500	
dwarf european	550	1800		4
scarlet trumpet	551	400	51700	4

TABLE 3 (cont.)

Hydrangia (sp)	530		200			2
snow hill	531		400	2	600	2
Lilac (sp)	740	290	300			4
common	751	59	300	349	600	2
Maple (sp)	380	2	200			4
amur	381	4	500	6	700	4
Mock orange (sp)	560	17	800	17	800	2
Ninebark (sp)	570	2	700			4
common	571		400			4
golden	572	3	600			4
dwarf	573		400	7	100	4
Oleaster, russian olive	491	1	800			2
wolf willow	492	1	300	3	100	2
Plums, cherries, almonds (600	76	700			3
western sand cherry	602		900			3
cherry	603		400			3
Canada plum	606	1	800			8
Nanking cherry	607	28	500			3
russian almond	608	2	200			3
flowering plum	609	1	300			3
double flowering plum	610	5	400			4
prairie almond	611	2	200			3
chinese bush cherry	612		900	120	300	3
Roses (sp)	650	235	000			3
Kamtchatica	660		900	235	900	3
Saskatoon	390	4	000	4	000	2
Sea buckthorn	520	3	100	3	100	4
Siberian pea tree - see ca	ana					
Snowberry	810		900		900	1
Spirea (sp)	720	84	300			3
oriental	726		400			4
bridal wreath	733		400	85	100	3
Viburnums (sp)	770	5	400			3
nannyberry	773		900			4
dwarf european	775	1	300			4
snowball	776		400			4
highbush cranberry	779	19	200	27	200	3

TABLE 3 (cont.)

Willows (sp) coyote	670	4000		3
	672	400	4400	3
Total deciduous		2273300		
Total shrubs	2455900			

Seventy two percent of the trees and shrubs were purchased from commercial nurseries, 23% were obtained from friends or as wildings from the forest, and 5% were native or natural reproduction from seed or suckers (Table 4). Most coniferous and deciduous shrubs were from tree nurseries while one-half of the trees (principally white spruce, lodgepole pine, white birch, and pincherry) were commonly obtained as wildings from the forest.

TABLE 4

Source of trees and shrubs in Edmonton, 1973

Source	Frequency - \%Coniferous				All
	Trees	Shrubs	Trees	Shrubs	
Nursery stock	51	94	52	81	72
Friends, relatives	$20^{\text {a }}$	4	$16^{\text {c }}$	$15^{\text {f }}$	15
Wildings from the forest	$28^{\text {b }}$	2	$14^{\text {d }}$	1	8
Native	1	-	$9^{\text {e }}$	1	2
Seed	-	-	7	1	2
Suckering	-	-	2	1	1
Totals	100	100	100	100	100

a, b - principally white spruce, lodgepole pine
c - Manitoba maple, white birch
d - white birch, pincherry
ϵ - trembling aspen
f - cotoneaster, lilacs, roses, and cherries

GROUPINGS
The arrangement of trees and shrubs was classified into five distinct categories:

Specimen--single tree or shrub separated by grass from other plants

Clump-- single species with more than 1 stem (i.e. birch) separated from other plants by grass

Grouping-- two or more trees or shrubs planted as a group Hedge-- composed of a row of at least ten individual plants; plants are usually trimmed and do not attain their normal height

Windbreak-- similar to a hedge but plants are not trimmed Fifty-eight percent of the trees and 28% of the shrubs were set out in the yard as specimens (Table 5). Approximately 19% of both trees and shrubs were set out as part of a group. Fifty-one percent of the shrubs but only 10% of the trees were set out as hedges.

TABLE 5

Arrangement of trees and shrubs on residential lots in Edmonton, 1973.

	$\%$	$\%$	$\%$
Grouping	of trees	of shrubs	trees and shrubs
Specimen	58^{a}	28^{b}	38
Clump	5	1	3
Group	18	19	19
Hedge	10	51	37
Windbreak	9	1	3
Totals	100	100	100

a - principally spruces, birches, maples, and apples
b - roses, cotoneasters, lilacs, cherries

There are 347 miles of hedges in Edmonton and they are composed principally of cotoneaster (45\%), lilac (24\%), and caragana (20\%).

		Number of plants
Species	Miles	(nearest 'ooo)
White spruce	16	86000
Willow, manchurian elm	16	84000
Cotoneaster, 1ilac, caragana	315	1664000
Totals	347	1834000

LOCATION WITHIN LOTS

The location of trees and shrubs on residential lots was described in terms of their relationship to the house-- front, back, and side yards and boulevard--and within the first three macrolocations in terms of their microlocation with respect to lot or fence lines (border), buildings (foundation), and grassed areas.

Macrolocation

More than one-third (35\%) of the trees and shrubs were located in the front yard and almost half (49\%) in the back (Table 6). Side yards, which tended to be narrow except on corner lots, accounted for 15%, while boulevards contained 1% of the trees and shrubs. There was no strong species identification with these macrolocations. However, cedars, pines, junipers, cotoneaster, and caraganas appeared to be more common in front yards while lilacs, roses, cherries, and honeysuckles were more common in back yards. Side yards were dominated by cotoneaster, caragana,
and lilacs. Boulevard trees were largely white elm and green ash and had been planted by the city.

TABLE 6
Location of trees and shrubs on residential lots in Edmonton, 1973

	$\%$	$\%$	$\%$
Macrolocation	trees	shrubs	trees and shrubs
Front yard	31	37	35
Back yard	57	45	49
Side yard	8	18	15
Boulevard	4	<1	100
Totals	100	100	1

Microlocation

Fifty-nine percent of the trees and shrubs were located beside fences or along lot lines. Fourteen percent were planted adjacent to foundations of houses or garages, 26% were in the grassed areas, and 1% were on boulevards (Table 7).

In the grassed area (microlocation) in the front yard (macrolocation) spruce species predominated (29\%), followed by birches (16\%), mountain ashes (7\%), pines (7\%), apples (4\%), and poplars (4\%).

One of the purposes of collecting this information was to determine if homeowners were planting their trees and shrubs in microlocations recommended by experts. Results (see Table 9-"relocate plants") suggest that poor location of plants is not a serious problem.

TABLE 7

Location of trees and shrubs on residential lots in Edmonton, 1973

Microlocation	$\begin{gathered} \% \\ \text { trees } \end{gathered}$	$\begin{gathered} \% \\ \text { shrubs } \end{gathered}$	trees and shrubs
Borders	48a	$65^{\text {b }}$	59
Foundation	7	$17^{\text {c }}$	14
Grassed area	$41^{\text {d }}$	18^{e}	26
Boulevard	4	<1	1
Totals	100	100	100
a principally spruces, willows, maples, birches lilacs, caraganas, roses, cotoneasters d roses, junipers, spireas, cherries e spruces cedars			

DAMAGE OR PROBLEMS ENCOUNTERED

At the time of the survey almost half (46\%) of the trees and shrubs were found to be in excellent condition (Table 8). Insects, principally the birch leaf miner and pear slug, were the most common (37\%) problem encountered. Birches, Manitoba maple, mountain ashes, may day trees, cotoneasters, lilacs, roses, and caraganas were the species affected. Other significant problems encountered were dead branch tips ("flagging") on junipers, columnar white, and Ware's siberian cedars due primarily to inadequate watering; suppression or overcrowding of blue and white spruce as reflected by reduced growth, broken tops and sparse foliage; and chemical damage (herbicide) to Manitoba maple.

If the survey had been carried out earlier in the year dieback (dead branches) which occurred following an unusually warm winter in 1972-73 would have been prevalent on a number of shrub species including the dogwoods, elders, ninebarks, and burning bush. Winter browning of conifers and lilac leaf miner were also very common problems in 1973.

TABLE 8
Damage or other problems of trees and shrubs in Edmonton, 1973

Types of damage or problems encountered					A11	Basis: number of observations
Insect	$10^{\text {a }}$	<1	$30^{\text {e }}$	49^{8}	37	3115
Disease	1	-	3	<1	1	85
Climatic ${ }^{1}$	3	4	5	2	3	248
Flagging ${ }^{2}$	5^{c}	$19^{\text {d }}$	<1	-	-	138
Chemical ${ }^{3}$	-	1	$7^{\text {f }}$	<1	2	134
Suppression, overcrowding	$8^{\text {b }}$	1	2	2	3	215
Suckering	<1	-	4	4	3	282
Mechanical	3	2	2	<1	1	81
Other	4	5	-	3	4	173
Nil	66	68	47	40	46	3847
Totals	100	100	100	100	100	8318

[^4]Because damage to trees and shrubs varies within seasons and between years the results of this survey cannot be considered a complete overview of problems which might be encountered from time to time.

CULTURAL RECOMMENDATIONS

At the time of examination notes were made on cultural treatments which should be carried out to control damage or to improve the aesthetic quality of the trees or shrubs (Table 9).

TABLE 9

Cultural recommendations to correct damage or other problems of trees and shrubs in Edmonton, 1973

Cultural recommendations	Frequency - \%				A11	Basis: number of observations
	$\begin{aligned} & \text { Coni } \\ & \text { Trees } \end{aligned}$	rous Shrubs	$\begin{gathered} \text { Dec } \\ \text { Trees } \end{gathered}$	Shrubs		
Insect control	$10^{\text {a }}$	<1	23^{e}	41^{8}	31	2565
Disease control	1	-	2	<1	<1	58
Prune or trim	$14^{\text {b }}$	$21^{\text {d }}$	$15^{\text {f }}$	14^{h}	14	1176
Weed	7	3	5	7	6	512
Edging ${ }^{1}$	$3{ }^{\text {c }}$	3	2	3	3	235
Remove suckers	<1	-	3	3	2	197
Fill in hedge	-	-	1	3	2	163
Relocate plant	3	1	1	1	1	95
Other	6	3	3	-	4	235
Nil	56	69	45	28	37	3082
Totals	100	100	100	100	100	8318

[^5]Insect control was the most common (31\%) recommendation and pruning or trimming the second (14\%). Pruning of spruces, cedars, and junipers was recommended in order to remove branches affected by flagging. Adequate watering should prevent future occurrence of this particular problem. Birches, apples, and basswoods appeared in special need of pruning, while hedges made up of cotoneaster, lilacs, and caraganas were in need of trimming. Weeding (6\%), edging adjacent lawn (3\%), and removal of suckers (2\%) in order to reduce competition for moisture were also recommended.

HOUR AND DOLLAR INPUTS

Based on the survey it is estimated that individual residential lot owners in Edmonton, St. Albert, and Sherwood Park spent 1591900 hours on their trees and shrubs in 1973, an average of 17.2 hours per household (Table 10). The largest amounts of time were for watering, pruning, insect control, and planting. Maintenance of existing trees and shrubs accounted for 81% of the time, protection for 10%, and establishment for 8%. Assuming the 1973 minimum provincial pay rate of $\$ 2$ per hour the dollar value of this input is equivalent to $\$ 3183800$.

Purchases of equipment and materials by residential lot owners totalled \$1 479 100, an average of $\$ 16$ per household (Table 11). The largest expenditures were made for nursery stock, pruning and trimming equipment, fertilizers, and insecticides. Establishment of new trees and shrubs accounted for 42% of the money spent, protection of established trees and shrubs for 28%, and maintenance for 26%.

Total input into trees and shrubs in Edmonton in 1973 amounted to $\$ 4662$ 900, an average of $\$ 50$ per household (Table 12). Maintenance

TABLE 10

Hour inputs into trees and shrubs in Edmonton, 1973

Activity	Group	Number Activity	Hours Group	\% Group
Planting	Establishment	128200	128200	8
Pruning, trimming	Maintenance	420500		
Fertilizing		73700		
Thinning		93600		
Removal		65000		
Watering		633600	1286400	81
Insect control	Protection	131800		
Disease control		31600	163400	10
Other	Other	13900	13900	1
Totals		1591900	1591900	100

TABLE 11

Dollar inputs into trees and shrubs in Edmonton, 1973

Purchases	Group	Do11 Purchases	$(\$)$ Group	$\begin{gathered} \% \\ \text { Group } \end{gathered}$
Nursery stock	Establishment	441200		
Planting equipment		60500		
Soil mulches		108500		
Equipment rental (1/2)		15000	625200	42
Equipment rental (1/2)	Maintenance	15000		
Pruning equipment		204200		
Fertilizers		168800	388000	26
Spraying equipment	Protection	118400		
Insecticides		156800		
Fungicides		14000		
Fencing		118500	407700	28
Bird Feeders	Other	58200	58200	4
Totals		1479100	1479100	100

accounted for 63% of the total input, establishment for 19%, and protection for 16%.

TABLE 12
Total inputs (hours and \$) into trees and shrubs in Edmonton, 1973

Grouping	$\$$ (hours)	\$ (purchases)	Total $\$$	$\$$
Establishment	256400	625200	881600	19
Maintenance	2572800	388000	2960800	63
Protection	326800	407700	734500	16
Other	27800	58200	86000	2
Total	3183800	1479100	4662900	100

As expected, the dollar input values varied by neighborhoods. In Sherwood Park and St. Albert, newer residential areas in Edmonton, most of the time and money was spent on establishment of trees and shrubs, while in older areas maintenance was of greater importance.

Between 1968 and 1973, three of the lot owners who responded to the questionnaire contracted tree and shrub maintenance and six purchased their nursery stock through contract with either a professional landscaper or local tree nursery. The value of this contracted work in the city is estimated at $\$ 40000$ annually. This figure, which appears to be somewhat low, is in addition to the $\$ 4.7$ million shown in Table 12.

REPLACEMENT VALUES

The species replacement value of all trees and shrubs was determined using 1974 nursery stock costs obtained from local suppliers and amounted to $\$ 26452$ 700. This amount takes into account
species only and no allowance is made for size, condition, or cost of replanting.

Using the International Shade Tree Conference formula developed for evaluating tree replacement value based on species, size (6.6 cm (2.6 in.) dbh and larger), and condition the value arrived at was $\$ 44391800$. To this amount can be added the current value of nursery stock for trees $6.5 \mathrm{~cm}(2.5 \mathrm{in})$.dbh and less and all shrub species for a total replacement value of \$63 231700.

SOURCE OF HORTICULTURAL INFORMATION
The survey revealed that the most common sources of horticultural information for urban dwellers are friends (22\%), books (15\%), and newspaper columns (12\%) (Table 13).

SOCIAL VALUE OF TREES AND SHRUBS
Residential homeowners were asked to indicate the contribution or value of trees and shrubs to their lot by ranking the following criteria: increased property value, improved visual amenity, improved physical amenity, provision of habitat for birds and wild animals, and other. The highest rating possible was 1 and the lowest 5.

Results indicate that most people plant trees and shrubs to improve the visual appearance of their lot (Table 14). Improved physical amenities ranked second, increased property value third, and habitat for birds and animals fourth.

TABLE 13

Sources of horticultural information in Edmonton,	1973
Source	$\%$ Response
1. Friends	21.5
2. Gardening books	15.3
3. Newspaper columns	11.9
4. Labels on products	9.3
5. Tree nurseries	8.2
6. Retail stores	6.8
7. T.V., radio	6.2
8. Alberta Dept. Agriculture	3.7
9. Handouts	3.7
10.	Edmonton Parks Dept.
11. University of Alberta	2.8
12. Landscape companies	2.5
13. Alberta Forest Service	2.5
14. Canadian Forestry Service	1.4
15. Horticultural societies	0.8
16. Canada Dept. Agriculture	0.8
17. Other	0.6
Total	2.0

TABLE 14
Social value of trees and shrubs in Edmonton, 1973

						Average rating	Basis: number of responses
Improved visual amenity ${ }^{1}$	82	24	13	8	1	1.6	128
Improved physical amenity ${ }^{2}$	22	54	35	12	4	2.4	127
Increased property value	22	33	32	35	8	2.8	130
Habitat (birds, animals)	8	12	35	53	10	3.4	118
Other	3	5	5	5	15	3.7	33

${ }^{1}$ Color, flowers and fruit, visual privacy, softening or hiding of stucco, cement, rigid building lines, and utility poles.
${ }^{2}$ Shade, reduced traffic noise, wind and snowbreaks, modified air temperatures, purified air.

NEED FOR INFORMATION AND RESEARCH
The residential owners who responded to the questionnaire perceived a need for additional research on trees and shrubs:

$$
\begin{array}{lc}
\text { Need for Research } & \text { \% Response } \\
\text { Yes } & 57 \\
\text { No } & 16 \\
\text { Undecided } & 23 \\
\text { Question not answered } & 4 \\
\text { Total } & 100
\end{array}
$$

Results indicated a need for more research on insect and disease controls (21\%), more publications and handouts (22\%), and additional research on tree improvement (17\%) and cultural practices (16\%) (Table 15).

TABLE 15

Research and information needs in Edmonton, 1973

of 15 hours and $\$ 20$ annually ${ }^{2}$. Interestingly enough these inputs covered approximately the same number of trees and shrubs on individual lots:
Edmonton Winnipeg

No. of trees
14
10
No. of shrubs 5
9
No. of feet of hedge (1 foot apart)
21
22
Total no. of plants per lot
40
41
The importance of trees and shrubs on residential lots was further reflected in the Edmonton survey by the calculation of replacement values. Total replacement value for all trees and shrubs on residential lots in Edmonton is estimated at $\$ 63000000$.

However, the survey revealed no problems which would require a significant research input by the Northern Forest Research Centre. Interestingly, the homeowners themselves perceived research needs but the data indicated that the only significant problems encountered were pest control and cultural treatment such as pruning and trimming. In the first instance control techniques for most pests have already been developed. For those insects and diseases for which control techniques are nonexistent or unsatisfactory the Canadian Forestry Service, other federal and provincial agencies, and the chemical industry itself have ongoing testing and evaluating programs. In the second instance there appears to be sufficient information available to resolve most cultural problems (e.g. Knowles 1967 and 1973, Oliver 1957a, b).

[^6]Research problems can easily be perceived by those who might have a vested interest in them. For example, the opinion has been expressed that new and more hardy trees and shrubs should be developed because of the present lack of suitable species. In fact, over 300 species of woody shrubs are currently recommended by the Alberta Department of Agriculture for out planting in Edmonton.

It is doubtful whether the results of any research relating to wildlife habitat or the effects of trees and shrubs on real estate values would have much ongoing impact. The survey suggested that well landscaped lots and high-priced homes go hand-in-hand and vice-versa. Payne (1973) has reported that trees contribute $7-15 \%$ of suburban property values. It is doubtful that any further elaboration on this topic would be meaningful at this time.

Additional background on the effect of trees and shrubs on the visual and physical environment will be required before any research program is undertaken. Highway noise in residential areas is presently a problem in the city of Edmonton.

It appears to the authors that the real need of most homeowners at the present time is information. The survey revealed that garden books (i.e. comprehensive publication on horticulture) and newspaper columns are the prime media for getting new and old information to the homeowner. It was equally clear that most of the agencies whom the public might associate with the establishment and care of trees and shrubs are rarely approached by homeowners (12\%) with problems.

As one of its contributions towards satisfying this information need the Northern Forest Research Centre has initiated a series of leaflets on the control of tree and shrub pests. This is a continuing series that will be expanded as specific needs are identified. In addition it is proposed that two "garden-type books" entitled Selection, establishment and care of urban trees and shrubs and Insects and diseases of urban trees and shrubs be prepared and sold to the general public.

It is recommended that, pending a full evaluation of urban forestry problems, the Northern Forest Research Centre restrict its contribution to research on insect and disease control methods and the preparation and distribution of suitable publications, and that staff continue to work closely with those individuals and agencies that have day-to-day contact with the public sector.

Particular emphasis must be placed on the need for making our research findings and publications readily available to newspaper, TV and radio horticulturalists in the three prairie provinces.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the excellent cooperation of the individual homeowners and the assistance of Frank Dendwick, Ron Gorman, Cam Rentz, and Grant Stevenson who carried out the tree and shrub surveys. We also wish to thank W. Chow for the preparation and computer tabulation of the data.

REFERENCRS

Alberta Department of Agriculture. 1973. Alberta horticultural guide. Edmonton Real Estate Board. 1974. Statistics '73. Multiple Listing Service, Co-operative Listing Bureau Limited.

International Shade Tree Conference, Inc. 1970. Shade tree evaluation. I.S.T.C. Inc. Urbana, Illinois.

Jorgensen, E. 1970. Urban forestry in Canada. Univ. Toronto, Fac. For., Shade Tree Res. Lab.

Knowles, R.H. 1967. Woody ornamentals for the prairie provinces. Univ. Alberta, Dep. Ext. Bull. No. 58.
1973. The pruning manual. Can. Dep. Agric. Publ. 1505. Oliver, R.W. 1957a. Trees for ornamental planting. Can. Dep. Agric. Pub1. 995.

1957b. Culture of ornamental trees for Canadian gardens. Can. Dep. Agric. Pub1. 994.

Ontario Shade Tree Council. 1974. Evaluating trees in our environment in the province of Ontario.

Payne, B.R. 1973. Twenty-nine tree home improvement plan. Nat. Hist. 82(9):74-75.

APPENDIX I

SCIENTIFIC AND COMMON NAMES OF TREES AND SHRUBS ${ }^{1}$

Code	Scientific Name	Common name
Trees - coniferous		
11	Abies balsamea	- Balsam fir
20	Juniperus sp.	- Juniper species
21	Juniperus scopulorum	- Rocky mtn. juniper
30	Picea sp.	- Spruce species
31	Picea abies	- Norway spruce
33	Picea engelmannii	- Engelmann spruce
34	Picea glauca	- White spruce
35	Picea glauca albertiana	- Western white spruce
37	Picea pungens	- Colorado spruce
38	Picea pungens glauca	- Colorado blue spruce
39	Picea pungens kosteriana	- Koster's blue spruce
40	Picea (species unknown)	- Blue spruce
41	Picea mariana	- Black spruce
50	Pinus sp.	- Pine species
51	Pinus banksiana	- Jack pine
53	Pinus contorta latifolia	- Lodgepole pine
56	Pinus mugo rostrata (tree form)	- Mugo pine
57	Pinus nigra	- Austrian pine
59	Pinus resinosa	- Red pine

[^7]| 60 | Pinus strobus | - Eastern white pine |
| :---: | :---: | :---: |
| 61 | Pinus sylvestris | - Scots pine |
| 70 | Pseudotsuga menziesii | - Douglas-fir |
| 80 | Thuja sp. | - Cedar species |
| 81 | Thuja occidentalis | - White cedar |
| 82 | Thuja occidentalis pyramidalis | - Columnar white cedar |
| 83 | Thuja occidentalis wareana | - Ware's siberian white cedar |
| Shrubs - coniferous | | |
| 90 | Abies balsamea nana | - Dwarf balsam fir |
| 100 | Juniperus sp. | - Juniper species (dwarf) |
| 102 | Juniperus chinensis pfitzeriana compacta | - Compact pfitzer juniper |
| 103 | Juniperus chinensis pfitzeriana (gold form) | - Golden pfitzer juniper |
| 104 | Juniperus communis saxatilis | - Mountain juniper |
| 105 | Juniperus horizontalis | - Creeping juniper |
| 108 | Juniperus horizontalis 'Dunvegan Blue' | - Dunvegan blue juniper |
| 110 | Juniperus sabina | - Savin juniper |
| 111 | Juniperus sabina arcadia | - Arcadia juniper |
| 113 | Juniperus sabina tamariscifolia | - Tamarix-leaved juniper |
| 120 | Picea sp. | - Spruce species (dwarf) |
| 130 | Pinus sp. | - Pine species (dwarf) |
| 131 | Pinus mugo compacta | - Compact mountain pine |
| 132 | Pinus mugo pumilio | - Dwarf mountain pine |

140	Thuja sp.	- White cedar species (dwarf)
141	Thuja occidentalis globosa	- Globe white cedar
Trees - deciduous		
150	Acer sp.	- Maple species
151	Acer negundo	- Manitoba maple
152	Acer saccharinum	- Silver maple
153	Acer saccharum	- Sugar maple
155	Acer platanoides	- Norway maple
170	Betula sp.	- Birch species
171	Betula papyrifera	- Paper birch
172	Betula pendula	- European white birch
173	Betula pendual gracilis	- Cut-leaved weeping birch
190	Caragana arborescens 'Sutherland'	- Sutherland siberian pea tree
200	Crataegus sp.	- Hawthorn species
210	Elaegnus angustifolia	- Russian olive
223	Fraxinus pennsylvanica subintegerrima	- Green ash
240	Larix sp.	- Larch species
242	Larix laricina	- Tamarack
244	Larix sibirica	- Siberian larch
250	Malus sp.	- Flowering crab apples species
251	Malus baccata	- Siberian flowering crab
253	Rosybloom F.C. Hybrids	- Almey, Royalty etc.
254	Malus sp.	- Apple species

270	Populus sp.	- Poplar species
275	Populus balsamifera	- Balsam poplar
276	Populus tremuloides	- Quaking aspen
278	Populus 'Griffin'	- Griffin poplar
279	Populus 'Northwest'	- Northwest poplar
290	Prunus sp.	- Plum, cherry species
291	Prunus maackii	- Amur chokecherry
292	Prunus padus commutata	- May day tree
293	Prunus pensylvanica	- Pincherry
294	Prunus virginiana	- Chokecherry
295	Prunus virginiana melanocarpa	- Western chokecherry
296	Prunus virginiana 'Schubert'	- Schubert chokecherry
310	Quercus sp.	- Oak species
312	Quercus macrocarpa	- Bur oak
320	Salix sp.	- Willow species
323	Salix alba sericea	- Siberian white willow
324	Salix alba vitellina	- Golden willow
325	Salix pentandra	- Laurel leaved willow
330	Sorbus sp.	- Mountain ash species
331	Sorbus americana	- American mtn. ash
332	Sorbus aucuparia	- European mtn. ash
333	Sorbus aucuparia rossica	- Russian mtn. ash
334	Sorbus decora	- Showy mtn. ash
335	Sorbus scopulina	- Green's mtn. ash

340	Syringa amurensis japonica	- Japanese tree 1ilac
352	Tilia cordata	- Small leaved basswood
360	U1mus sp.	- Elm species
361	U1mus americana	- American elm
362	U1mus pumila	- Manchurian elm
Shrubs - deciduous		
380	Acer sp.	- Maple species
381	Acer ginnala	- Amur maple
390	Amelanchier alnifolia	- Saskatoon
410	Caragana sp.	- Siberian pea tree species
411	Caragana arborescens	- Common s.p.t.
413	Caragana arborescens pendula	- Weeping s.p.t.
416	Caragana pygmaea	- Pygmy s.p.t.
430	Cornus sp.	- Dogwood species
432	Cornus alba argenteo-marginata	- Silver leaved dogwood
435	Cornus alba sibirica	- Siberian coral dogwood
436	Cornus alba spaethii	- Gold leaved dogwood
438	Cornus stolonifera	- Red osier dogwood
439	Cornus stolonifera flaviramea	- Golden twig dogwood
450	Corylus sp.	- Hazelnut species
460	Cotoneaster sp.	- Cotoneaster species
470	Crataegus sp.	- Hawthorn species
473	Crataegus pinnatifida	- Chinese hawthorn
491	Eleagnus angustifolia	- Russian olive

492	Eleagnus commutata
500	Euonymus sp.
503	Euonymus alata compacta
520	Hippophae rhamnoides
530	Hydrangea sp.
531	Hydrangea arborescens grandiflora
540	Lonicera sp.
550	Lonicera xylosteum nanum
551	Lonicera 'Scarlet Trumpet'
560	Philadelphus sp.
570	Physocarpus sp.
571	Physocarpus opulifolius
572	Physocarpus opulifolius luteus
573	Physocarpus opulifolius nanus
580	Potentilla sp.
581	Potentilla fruticosa
590	Prinsepia sinesis
600	Prunus sp.
602	Prunus besseyi (low form)
603	Prunus cistena
606	Prunus nigra
607	Prunus tomentosa
608	Prunus tenella

- Wolf willow
- Burning bush
- Dwarf winged burning bush
- Sea buckthorn
- Hydrangea species
- Snow hill hydrangea
- Honeysuckle species
- Dwarf european fly honeysuckle
- Scarlet trumpet honeysuckle
- Mock orange species
- Nine bark species
- Common ninebark
- Golden ninebark
- Dwarf ninebark
- Cinquefoil species
- Shrubby cinquefoil
- Cherry prinsepia
- Plum, cherry and almond species
- Western sand cherry
- Purple leaved sand cherry
- Canada plum
- Nanking cherry
- Russian almond

609	Prunus triloba simplex	- Flowering plum
610	Prunus triloba multiplex	- Double flowering plum
611	Prunus 'Prairie almond'	- Prairie almond
612	Prunus japonica	- Chinese bush cherry
640	Ribes sp.	- Currant, gooseberry species
641	Ribes alpinum	- Alpine currant
642	Ribes americanum	- American black currant
645	Ribes odoratum	- Buffalo currant
650	Rosa sp.	- Rose species
660	Rosa rugosa kamtchatica	- Kamtchatica rose
670	Salix sp.	- Willow species
672	Salix exigua	- Coyote willow
680	Sambucus sp.	- Elder species
681	Sambucus canadensis	- American elder
682	Sambucus nigra aurea	- Golden european elder
683	Sambucus racemosa	- Red elder
684	Sambucus racemosa plumosa aurea	- Golden plume elder
690	Shepherdia sp.	- Buffaloberry species
691	Shepherdia orgentea	- Silver buffaloberry
720	Spirea sp.	- Spirea species
726	Spirea media sericea	- Oriental spirea
733	Spirea vanhouttei	- Bridal wreath spirea
740	Syringa sp.	- Lilac species
751	Syringa vulgaris	- Common 1ilac

\(\left.\begin{array}{lll}770 Viburnum sp. \& - Viburnum species

773 Viburnum lentago \& - Nannyberry

775 Viburnum opulus nanum \& - Dwarf european highbush

cranberry\end{array}\right]\)| - Snowball highbush |
| :---: |
| 776 Viburnum opulus roseum |
| 779 Viburnum trilobum |
| Additional shrub species |
| 800 Berberis sp. |
| 810 Symphoricarpos albus |
| 820 Alnus sp. |
| 830 Taxus canadensis |
| 840 Betula occidentalis |
| 841 Betula glandulifera |

[^0]: 1 Copies of the introductory letter, homeowner questionnaire and lot tally sheet are available upon request from the authors.

[^1]: ${ }^{2}$ Genera - a classification of trees or shrubs with common distinguishing characteristics, i.e. spruce $=$ white spruce + blue spruce + Engelmann spruce + etc.

[^2]: ${ }^{1}$ See Appendix 1 for scientific name.
 ${ }^{2}$ Nearest 100 plants.
 ${ }^{3}$ Nursery costs only.
 ${ }^{4}$ Used in the calculation of the International Shade Tree Conference
 tree replacement value (1-110\%, $2-100 \%, 3-80 \%$ and $4-60 \%$).
 ${ }^{5}$ Sp $=$ species; species not identified.

[^3]: ${ }^{1}$ See Appendix 1 for scientific name.
 ${ }^{2}$ Nearest 100 plants.
 ${ }^{3}$ Nursery costs only.
 ${ }^{4} \mathrm{Sp}=$ species; species not identified.

[^4]: 1 Principally winter browning and frost damage.
 2 Dead branch tips resulting from inadequate watering.
 3 Principally herbicides, some insecticides.
 a - White spruce
 b - Blue and white spruce
 c - Columnar white and Ware's siberian cedar
 d - Junipers
 e - Birches, Manitoba maple, mountain ashes, may day tree
 f - Manitoba maple
 g - Cotoneaster, lilac, rose and caragana

[^5]: 1 Removing lawn from around perimeter of plant to reduce competition for nutrients and moisture.
 a - White spruce
 b - Spruces, cedars
 c - Spruces
 d - Junipers
 e - Birches, mountain ashes, may day, elms
 f - Birches, apples, basswood
 g \& h - Cotoneasters, lilacs, caraganas, rose

[^6]: ${ }^{2}$ Karaim, B.W. and A.G. Teskey. 1970. Estimated dollar inputs into agricultural zone forestry, Manitoba and Saskatchewan 1968-69. Can. Dep. Fish. For., Can. For. Serv. Intern. Rep. MS-112. 17 pp.

[^7]: ${ }^{1}$ Alberta Department of Agriculture. 1973. Alberta horticultural guide. pp. 40-46. Species $40,41,155,800,810,820,830,840$ and 841 are additions to the list of recommended trees and shrubs.

