

FOREST RESEARCH BRANCH

THIS FILE COPY MUST BE RETURNED

TO: INFORMATION SECTION,
NORTHERN FOREST RESEARCH CENTRE,
5320-122 STREET,
EDMONTON, ALBERTA.
T6H 3S5

SPECIES INDEX FOR TECHNICAL NOTES

by

R. J. HATCHER

PREFACE

This index was prepared for the complete series of Technical Notes that were published from 1955 to 1962 by Forest Research Division of Northern Affairs and National Resources, and by Forest Research Branch, Department of Forestry. Each Note is listed under those species which were of major importance in the experiment or investigation. The listing of the Notes was a subjective procedure and some differences of opinion are inevitable as to the importance of a given species in a study.

In addition to individual species, the index includes four groups of Notes which do not properly fall under species headings.

d.

\$					
•					
1					
					٠
					*
To depart of the second of the					
descriptions control					
demonstration in the second se					
• •					
<i>i</i>					
					۲,
.· *				1	
er inger i die der der der der in 1940		•			the second second second

Abies balsamea (L.) Mill. BALSAN FIR

Technical Note Number	<u>Title</u>		Author	Year
6	Development of a balsam fir and white spruce forest in northwestern New Brunswick.	A.B.	Vincent	1955
11.	Yield of white spruce and balsam fir in an undisturbed stand, Duck Mountain, Manitoba.	R.T.	P i ke	1955
27	Site-types, growth and yield at the Lake Edward Experimental Area, Quebec.	R.G.	Ray	1956
4 0	Balsam fir and white spruce reproduction on the Green River watershed.	A.B.	Vincent	1956
74	Experimental cutting in a mixedwood stand in Saskatchewan, 1924.	R.M.	Waldron	1959
86	Conversion to periodic selection management in a fir, spruce and birch forest.	G.L.	Baskerville	1960
87	Development of balsam fir following a clearcut in Quebec.	R.J.	Hatcher	1960
94	Some aspects of the aspen-birch-spruce- fir type in Ontario.	D.W.	MacLean	1960
98	Response of young fir and spruce to release from shrub competition.	G.L.	Baskerville	1961
101	Development of immature balsam fir following crown release.	G.L.	Baske rvill e	1961
105	Partial cutting balsam fir stands on the Epaule River watershed.	R.J.	Hatcher	1961
109	Moisture content and inflammability in spruce, fir, and Scots pine Christmas trees.	C.E.	Van Wagner	1961
119	Development of balsam fir thickets in the Green River watershed following the spruce budworm outbreak of 1913-1919	A.B.	Vincent	1962

Picea abies (L.) Karst. NORWAY SPRUCE

Techni Note N		Auth	or	Year
4	An observation of weevil damage in Norway spruce.	М.J.	H ol st	1955
28	Planting of conifers in the spruce woods forest reserve, Manitoba 1904-1929.	J.S.	Jameson	1956
33	Greenhouse grafting of spruce and hard pine at the Petawawa Forest Experiment Station, Chalk River, Ontario.	J.A.	Holst Santon Yeatman	1956
48	Phenology of rootstocks and grafts in a timing experiment with autumn and winter grafting of Norway and white spruce.	M.J.	Holst	1956
64	The effects of manure on a white and Norway spruce plantation at GrandWere, Quebec.		MacArthur	195 7
Picea e	engelmannii Parry ENGELMANN SPRUCE			٠
76	Characteristics of subalpine spruce in Albe	erta. K.W.	Horton	1959
Picea g	glauca (Moench) Voss WHITE SPRUCE			
Picea (glauca (Moench) Voss var. albertiana (S. Bro	wn) Sarg. WEST	ERN WHITE	SPRUCE
2	Seeding and planting of spruce on cut-over lands of the subalpine region of Alberta.	A.W.	Blyth	1955
3	Factors influencing white spruce reproduction Manitoba and Saskatchewan.	ion J.S.	Rowe	1955
6	Development of a balsam fir and white sprud forest in northwestern New Brunswick.		Vincent	1955
10	Survival of white spruce reproduction result from various methods of forest soil scarification.	i-	Crossley	1955
11	Yield of white spruce and balsam fir in an undisturbed stand, Duck Mountain, Manitoba		P ik e	1955
18	Yield of even-aged fully stocked spruce-postands in northern Alberta.	L	MacLeod Bl y th	1955
21	The Petawawa plantations	W.M.	Stiell	1955

- 3 -

WHITE SPRUCE and WESTERN WHITE SPRUCE (Contid)

Technica Note Nur		<u>Au</u>	thor	Year
24	Mechanical scatification to induce whi spruce regeneration in old cut-over spatiands.	oruce	Crossley	1955
28	Planting of conifers in the Spruce Woo Forest Reserve, Manitoba, 1904-1929.		Jameson	1956
32	The possibility of continuous planting white spruce throughout the frost-free period.	9	Crossley	1956
33	Greenhouse grafting of spruce and hard pine at the Petawawa Forest Experiment Station, Chalk River, Ontario.	J.A.	Ho l st Santon Yea t man	1956
40	Balsam fir and white spruce reproduction the Green River watershed.		Vincent	1956
††	Survival of white spruce seedlings res from scarification in a partially cut mixedwood stand.	_	uaite	1956
148	Phenology of rootstocks and grafts in timing experiment with autumn and wint grafting of Norway and white spruce.	er	Holst	1956
58	Influence of the aspen overstory on wh spruce growth in Saskatchewan.		Cayford	1957
59	Frost hardiness of white spruce and repine seedlings in relation to soil moi		Fraser Farrar	1957
. 63	The effect of various seedbed treatmer on the germination and survival of whi spruce and lodgepole pine seedlings.	.t e	Ackerman	1957
64	The effects of manure on a white and Norway spruce plantation at Grand'Mère Quebec.		MacArthur	1957
6 5	Field spruce in Nova Scotia.	M.H.	Drinkwater	1957
70	Ground vegetation as an index of site quality in white spruce plantations		Gagnon MacArthur	1959
74	Experimental cutting in a mixedwood stand in Saskatchewan, 1924.	R.M.	Wa l d ro n	1959

WHITE SPRUCE and WESTERN WHITE SPRUCE (Cont'd)

Technical Note Number		Author	Year
75	Hazel foliage treatments to reduce suppression of white spruce reproduction.	R.M. Waldron	1959
76	Characteristics of subalpine spruce in Alberta.	K.W. Horton	1959
86	Conversion to periodic selection management in a fir, spruce and birch forest.	G.L.Baskerville	1960
87	Development of balsam fir following a clearcut in Quebec.	R.J. Hatcher	1960
94	Some aspects of the aspen-birch-spruce-fir type in Ontario.	D.W. MacLean	1960
98	Response of young fir and spruce to release from shrub competition.	G.L.Baskerville	1961
103	Origin and structure of some white spruce stands on the lower Peace River.	W.W. Jeffrey	1961
105	Partial cutting balsam fir stands on the Epaule River watershed.	R.J. Hatcher	1961
109	Moisture content and inflammability in spruce, fir, and $^{\rm S}{\rm cots}$ pine Christmas trees.	C.E. Van Wagner	1961
114	Growth of spruce seedlings under long photo-periods.	D.A. Fraser	1962
117	Continuous planting of white spruce throughout the frost-free period.	R.F. Ackerman	1962

Picea mariana (Mill.) BSP

BLACK SPRUCE

Technical Note No.	<u>Title</u>	Author	<u>Year</u>
6	Development of a balsam fir and white spruce forest in northwestern New Brunswick.	A.B. Vincent	1955
42	Reproduction and growth in cut-over black spruce swamps at the Petawawa Forest Experiment Station.	A.B. Berry J.L. Farrar	1956
49	Experimental seeding of black spruce on Cormack Burn, Newfoundland.	W.A. Dickson	1956
54	Black spruce reproduction on disturbed soil conditions.	A. Linteau	1957
86	Conversion to periodic selection manage- ment in a fir, spruce and birch forest.	G.L. Baskerville	1960
87	Development of balsam fir following a clearcut in Quebec.	R.J. Hatcher	1960
94	Some aspects of the aspen-birch-spruce-fir type in Ontario,	D.W. MacLean	1960
102	Glaze damage in forest stands in south- eastern Manitoba.	J.H. Cayford R.A. Haig	1961
1 05	Partial cutting balsam fir stands on the Epaule River watershed, Quebec.	R.J. Hatcher	1960
110	Black spruce in the foothills of Alberta.	K.W. Horton J.C. Lees	1961
114	Growth of spruce seedlings under long photo-periods.	D.A. Fraser	1962
Picea ru	bens Sarg. RED SPRUCE		
27	Site-types, growth and yield at the Lake Edward Forest Experimental Area, Quebec.	R.G. Ray	1956
33	Greenhouse grafting of spruce and hard pine at the Petawawa Forest Experiment Station, Chalk River, Ontario.	M.J. Holst J.A. Santon C.W. Yeatman	1956
114	Growth of spruce seedlings under long photo-periods.	D.A. Fraser	1962

Pinus banksiana Lamb.

JACK PINE

Technical Note No.	<u>Title</u>	Author	Year
1	Strip-cutting in a mixed pine stand.	(J.W. Fraser	1955
21	The Petawawa plantations.	(J.L. Farrar W.M. Stiell	1955
22	Fire hazard resulting from jack pine slash.	D.E. Williams	1955
23	The effect of various slash disposal methods on the regeneration of cut- over jack pine stands.	H.J. Johnson	1955
28	Planting of conifers in the Spruce Woods Forest Reserve, Manitoba, 1904-1929.	J.S. Jameson	1956
.66	Scarifying for jack pine regeneration in Manitoba.	J.H. Cayford	1958
71	The effect of sunlight on the germination and early growth of jack pine and red pine		1959
72	Controlled burning experiments on jack pine sites.	Z. Chrosciewicz	1959
78	Germination and survival of jack pine and red pine after scarification in southeastern Manitoba.	J.H. Cayford	1959
7 9	Seeding jack pine on the Sandilands Forest Reserve, Manitoba, 1925 to 1955.	J.H. Cayford	1959
93	Factors affecting survival and growth of red pine plantations in southeastern Manitoba.	R.A. Haig J.H. Cayford	1960
96 ·	Soil and minor vegetation of pine forests in southeast Manitoba.	J.C. Ritchie	1961
97	Observations on factors influencing jack pine reproduction in Saskatchewan.	J.S. Jameson	1961
S 100	Economic spot seeding and planting methods for pines on sand plains.	K.W. Horton R.J. McCormack	1961
102	Glaze damage in forest stands in southeastern Manitoba.	J.H. Cayford R.A. Haig	1961
106	Broadcast seeding jack pine at weekly intervals in Manitoba.	J.H. Cayford	1961
107	Results of a 1927 jack pine thinning in Saskatchewan.	J.H. Cayford	1961

Pinus contorta Dougl. var. latifolia Engelm. LODGEPOLE PINE

Technica Note Num		Author	Year
9	Volume tables for lodgepole pine in Alberta.	A.W. Blyth	1955
16	Early development in a subalpine lodger pine stand of fire origin.	oole K.W. Horton	1955
19	Lodgepole pine studies at the Strachan Experimental Block in Alberta.	D.I. Crossley	1955
25	The production and dispersal of lodgepo	D.I. Crossley	1955
28	Planting of conifers in the Spruce Wood Forest Reserve, Manitoba 1904-1929.	s J.S. Jameson	1956
30	Assessment of site productivity in dens lodgepole pine stands.	e L.A. Smithers	1956
34	Mechanical scarification and strip cutt to induce lodgepole pine regeneration.	D.I. Crossley	1956
35	Fruiting habits of lodgepole pine.	D.I. Crossley	1956
39	The chemical control of density in your stagnating stands of lodgepole pine.	D.I. Crossley	1956
41	Effect of crown cover and slash density on the release of seed from slash-borne lodgepole pine cones.		1956
45	The ε cology of lodgepole pine in Albert and its role in forest succession.	a K.W. Horton	1956
52	Thinning in lodgepole pine stands in Alberta.	L.A. Smithers	1957
61	The effect of partial cutting in even- aged lodgepole pine stands.	A.W. Blyth	1957
63	The effect of various seedbed treatment on the germination and survival of whit spruce and lodgepole pine seedlings.		1957
67	Rooting habits of lodgepole pine.	K.W. Horton	1958
120	Density predictions in lodgepole pine stands by diameter growth analysis.	.R.F. Ackerman	1962
123	Regeneration following strip clear cutting, scarification and slash disposin a lodgepole pine stand.	al R.F. Ackerman	1962

Pinus resinosa Ait.

RED PINE

Technical Note No.	Title	Author	Year
1	Strip-cutting in a mixed pine plantation.	J.W. Fraser J.L. Farrar	1955
15	Effect of watering, shading, seed bed medium, and depth of sowing on red pine germination.	J.W. Fraser J.L. Farrar	1955
21	The Petawawa plantations.	W.M. Stiell	1955
29	Scion storage and grafting protection in the spring grafting of red pine.	M.J. Holst	1956
33	Greenhouse grafting of spruce and hard pine at the Petawawa Forest Experiment Station, Chalk River, Ontario.	M.J. Holst J.A. Santon C.W. Yeatman	1956
51	Occurrence and effects of summer frost in a conifer plantation.	R. Pomerleau R.G. Ray	1957
59	Frost hardiness of white spruce and red pine seedlings in relation to soil moisture.	J.W. Fraser J.L. Farrar	1957
71	The effect of sunlight on the germination and early growth of jack pine and red pine.	J.W. Fraser	1959
78	Germination and survival of jack pine and red pine after scarification in southeastern Manitoba.	J.H. Cayford	, 1959
80	Seeding and planting red and white pine.	W.M. Stiell	1959
81	Intermediate cuttings in red and white pine plantations.	W.M. Stiell	1959
88	Ecology of white and red pine in the Great Lakes - St.Lawrence Forest Region.	K.W. Horton W.G.E. Brown	1960
90	Taper curves and volume tables for plantation red pine.	W.M. Stiell	1960
93	Factors affecting survival and growth of red pine plantations in southeastern Manitoba.	R.A. Haig J.H. Cayford	1960
96	Soil and minor vegetation of pine forests in southeast Manitoba.	J.C. Ritchie	1961
100	Economical spot seeding and planting methods for pines on sand plains.	K.W. Horton R.J. McCormack	1961
108	Rooting habits of white pine plantation.	W.G.E. Brown D.S. Lacate	, 1961
122	Crown structure in plantation red pine.	W.M. Stiell	1962.

Pinus strobus L. EASTERN WHITE PINE

Technica Note Num		Author	Year
1	Strip-cutting in a mixed pine stand.	J.W. Fraser J.L. Farrar	1955
5	Thinning in a white pine stand.	B.C. Wile	1955
21	The Petawawa plantations.	W.M. Stiell	1955
37	The use of chemicals to release white pine reproduction.	E.S. Atkins	1956
51	Occurrence and effects of summer frost in a conifer plantation.	R. Pomerleau R.G. Ray	1957
60	Light measurement in a study of white pine reproduction.	E.S. Atkins	1957
80	Seeding and planting red and white pine.	W.M. Stiell	1959
81	Intermediate cutting in red and white pine plantations.	W.M. Stiell	1959
82	Some effects of light on growth of white pine seedlings.	K.T. Logan	1959
88	Ecology of white and red pine in the Great Lakes - St. Lawrence Forest Region.	K.W. Horton W.G.E. Brown	1960
100	Economical spot seeding and planting methods for pines on sand plains.	K.W. Horton R.J. McCormack	1961
108	Rooting habits of white and red pine	W.G.E. Brown D.S. Lacate	1961
118	Regenerating white pine with seed trees and ground scarification.	K.W. Horton	1962
121	Growth of white pine seedlings beneath an aspen stand.	K.T. Logan	1962

Pinus sylvestris L.

SCOTS PINE

Technical Note No.	Title	Author	Year
21	The Petawawa plantations.	W.M. Stiell	1955
28	Planting of conifers in the Spruce Woods Forest Reserve, Manitoba, 1904-1929.	J.S. Jameson	1956
100	Economical spot seeding and planting methods for pines on sand plains.	K.W. Horton R.J. McCormack	1961
109	Moisture content and inflammability in spruce, fir, and Scots pine Christmas trees.	C.E. Van Wagner	1961
Thuja occid	entalis L. EASTERN WHITE CEDAR		
102	Glaze damage in forest stands in south- eastern Manitoba.	J.H. Cayford R.A. Haig	1961
Acer rubrum	L. RED MAPLE		
43	An ecological approach to tolerant hardwood silviculture.	J.M. Jarvis	1956
57	The tolerant hardwood forests of northern Nova Scotia.	M.H. Drinkwater	_, 1957
Acer saccha	rum Marsh. SUGAR MA PLE		
27	Site-types, growth and yield at the Lake Edward Forest Experimental Area, Quebec.	R.G. Ray	1956
43	An ecological approach to hardwood silviculture.	J.M. Jarvis	1956
53	Cutting and seedbed preparation to regenerate yellow birch, Haliburton County, Ontario.	J.M. Jarvis	1957
57	The tolerant hardwood forests of northern Nova Scotia.	M.H. Drinkwater	1957
. 89	Crown release of young sugar maple.	M.H. Drinkwater	1960
99	Effectiveness of three chemicals for killing defective sugar maple and associated species.	D.C.F. Fayle	1961

Acer spicatum Lam.

MOUNTAIN MAPLE

Technical Note Numb		Author	Year
6	Development of a balsam fir and white spruce forest in northwestern New Brunswick.	A.B. Vincent	1955
40	Balsam fir and white spruce reproduction on the Green River watershed.	A.B. Vincent	1956
89	Crown release of young sugar maple.	M.H. Drinkwater	1960
98	Response of young fir and spruce to release from shrub competition.	G.L. Baskerville	1961
Betula al	leghaniensis Britt. YELLOW BIRCH	,	
27	Site-types, growth and yield at the Lake Edward Experimental Area, Quebec.	R.G. Ray	1956
43	An ecological approach to tolerant hardwood silviculture.	J.M. Jarvis	1956
53	Cutting and seedbed preparation to regenerate yellow birch, Haliburton County, Ontario.	J.M. Jarvis	1957
57	The tolerant hardwood forests of northern Nova Scotia.	M.H. Drinkwater	1957
69	Nine years of observations on the condition of 241 yellow birch.	D.A. Fraser	1959

Betula papyrifera Marsh.

WHITE BIRCH

Technical Note Number	<u>Title</u>	Author	Year
70	Balsam fir and white spruce reproduction on the Green River watershed.	A.B. Vincent	1956
74	Experimental cutting in a mixedwood stand in Saskatchewan, 1924.	R.M. Waldron	1959
86	Conversion to periodic selection management in a fir, spruce and birch forest.	G.L. Baskervill	e 1 9 6 0
87	Development of balsam fir following a clearcut in Quebec.	R.J. Hatcher	1960
94	Some aspects of the aspen-birch- spruce-fir type in Ontario.	D.W. MacLean	1960
105	Partial cutting balsam fir stands on the Epaule River watershed, Quebec.	R.J. Hatcher	1961
Fagus grand	ifolia Ehrh. BEECH		
27	Site-types, growth and yield at the Lake Edward Experimental Area, Quebec.	R.G. Ray	1956
43	An ecological approach to tolerant hardwood silviculture.	J.M. Jarvis	1956
53	Cutting and seedbed preparation to regenerate yellow birch, Haliburton County, Ontario.	J.M. Jarvis	1957
57	The tolerant hardwood forests of northern Nova Scotia.	M.H.Drinkwater	1957
89	Crown release of young sugar maple.	M.H.Drinkwater	1960
Populus bal	samifera L. BALSAM POPLAR		
24	Mechanical scarification to induce white spruce regeneration in old cut-over spruce stands.	D.I. Crossley	1955
7կ	Experimental cutting in a mixedwood stand in Saskatchewan.	R.M. Waldron	1959
103	Origin and structure of some white spruce stands on the Lower Peace River.	W.W. Jeffrey	1961

Populus grandidentata Michx. LARGETOOTH ASPEN

Techni Note N		Author	Voon
NO UC IV	<u>Title</u>	AUGIOI	Year
37	The use of chemicals to release white pine reproduction,	E.S. Atkins	1956
Populu	s tremuloides Michx, TREMBLING ASPEN		
18	Yield of even-aged fully stocked spruce- poplar stands in northern Alberta.	W.K. MacLecd A.W. Blyth	1955
24	Mechanical scarification to induce white spruce regeneration in old cut-over spruce stands.	D.I. Crossley	1955
37	The use of chemicals to release white pine reproduction.	E.S. Atkins	1956
կկ	Survival of white spruce seedlings resulting from scarification in a partially cut mixed-wood stand.	J. Quaite	1956
5 8	Influence of the aspen overstory on white spruce growth in Saskatchewan.	J.H. Cayford	1957
74	Experimental cutting in a mixedwood stand in Saskatchewan.	R.M. Waldron	1959
94	Some aspects of the aspen-birch-spruce- fir type in Ontario.	D.W. MacLean	1960
102	Glaze damage in forest stands in southeastern Manitoba.	J.H. Cayford R.A. Haig	1961
121	Growth of white pine seedlings beneath an aspen stand.	K.T. Logan	1962
Tilia a	BASSWOOD		
43	An ecological approach to tolerant hardwood silviculture.	J.M. Jarvis	1956

AIR PHOTOS AND AIR PHOTO INTERPRETATION

Technical		Author	Year
17	Average height weighted by volume in air photo interpretation.	F.D. MacAndrews	1955
46	Air photo overlays.	W.U. Hardy	1956
95	Recognition of tree species on air photographs by crown characteristics.	L. Sayn-Wittgenstei	in 1960
S 104	Phenological aids to species identification on air photographs.	L. Sayn-Wittgenstei	in 1961
EVALUATION, DESCRIPTION AND DEVELOPMENT OF EQUIPMENT, INSTRUMENTS AND SURVEY AND SAMPLING METHODS.			
8	A forest survey method	H.E. Seely	1955
12	Slip-on tankers for forest fire suppression.	J.S. Mactavish	1955
13	An intergrating light meter for ecological research.	K.T. Logan	1955
14	A method of determining approximate merchantable volumes.	G.H.D. Bedell A.B. Berry	1955
60	Light measurement in a study of white pine reproduction.	E.S. Atkins	1957
62	A light portable tower to facilitate measurement of vertical gradients in thee studies.	D.A. Fraser	1957
77	An evaluation of the relascope L	R.H. Kendall Sayn-Wittgenstein	1959
85	Characteristics of back-pack pumps used in forest fire suppression.	J.S. Mactavish	1960
91	A new forestry hose folder.	J.C. MacLeod	1960
· 92	Selective versus systematic sampling for height-diameter curves.	J. Krewaz	1960
111	Some investigations of forest sampling methods.	H.E. Seely	1961

EVALUATION, DESCRÍPTION AND DEVELOPMENT OF EQUIPMENT, INSTRUMENTS AND SURVEY AND SAMPLING METHODS (Cont'd)

Technical Note Numb		Author	Year
\$ 112	An evaluation of Paterson's CVP index in eastern Canada.	G.J. Lemieux	1961
113	A simple instrument shelter for use in forest ecology studies.	J.W. Fraser	1961
116	Forest fire danger meter.	P.M. Paul	1962
REPORTS O	N LARGE FORESTED AREAS		
20	Northern clay belt growth and yield survey.	D.W. MacLean G.H.D. Bedell	1 955
26	Forestry problems of the Bonavista Peninsula, Newfoundland.	W.C. Wilton H.S. Lewis	1956
50	Forest resources of the Avalon Peninsula, Newfoundland.	W.C. Wilton	1956
83	Forest types of the Grand Lake and Northwestern Lake Melville areas of Labrador.	W.C. Wilton	1959
84	Forty-five years growth on the Goulais River watershed.	J.M. Jarvis	1960
MISCELLANEOUS SUBJECTS			
7	A summary of the management plan for the Green River area, New Brunswick.	D.E. Nickerson A.B. Vincent	1955
31	Plantations of the Acadia Forest Experiment Station.	J.W. McLeod	1956
36	The effect of certain vegetation eradicators on the inflammability of various materials.	E.J. Ward	1956
38	Susceptibility of certain trees of eastern Ontario to basal bark sprays.	E.S. Atkins	1956
47	The translocation of minerals in trees.	D.A. Fraser	1956
55	Annual and seasonal march of soil moisture under a hardwood stand.	D.A. Fraser	1957

MISCELLANEOUS SUBJECTS (Cont'd)

Technical Note No.	Title	Author	Year
5 6	Annual and seasonal march of soil temperature on several sites under a hardwood stand.	D.A. Fraser	19 57
68	Chemical herbicides and their uses in the silviculture of forests of eastern Canada.	R.F. Sutton	195 8
73	Fire season severity rating.	D.E. Williams	19 5 9
99	Effectiveness of three chemicals for killing defective sugar maple and associated species.	D.C.F. Fayle	1961
115	Seed selection and tree breeding in Canada.	M. Holst	1962

Published under the authority of

The Honourable John R. Nicholson, P.C., O.B.E., M.P.

Minister of Forestry

Ottawa 1963