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Local Spatial Autocorrelation
Characteristics of Landsat TM Imagery

of a Managed Forest Area

by M. Wulder • B. Boots

RESUME
En leledelection. les po)'sages en con/inu sonl
echa11lillonnes en jone/ion d'une grille de pixels d'egale
dimension el d'espacemenl reguliel: Une consequence de
eefle n}glllarisation de sIlIface est que les valell1"s de
pixels e.xhibem line autocorrelation spatiale positive.
Ainsi. on pelll cOl1siderer que I'e/endue el fa nature de
l'autocorrcHotion spa/iale consTituent line caraclerisliqlle
des donnees de uiledetection utilisable en tant que source
d'injormation. TOlile/ais. les mesures globales
d'all1ocorrelalion spa/iale existantes !ournissent pell de
connaissances quant it celie caracuiristiqlle etant donne
qu'elles resument en line seule mesure toutes les
interrelations spatiales. Par contrasle, 10 mesllre des
indicateurs local/X d'association spatiale (LISA. local
indicators o[ spatial indicatorj) pennet d'evallier pour
chaque pixel de l'image ella lois Ie degre de dependance
spatiale dl{ pixel par rapport aux pixels voisins el
l'amplitude des valellrs de variation dans Ie voisinage du
pixel. Dans cel1e etude. on applique une mesure LISA. la
mesure Getis (Gi *). a des images Landsat Tl\1 d'une
region forestiere amenagee. On note des relations entre.
d'une parI, l'autocorrtHation spatiale au plan local telle
que mesuree par (Gi *) et. d'aulre parI, dijferentes bandes
Landsal TN! el dijJerents types de couverl, De pIllS,
!'informalion sur 10 dependance spatiale est presentee
dans Ie contexte des polygones d'inventaire [orestier
indiquant 10 presence c!'heterogenhte ali d'homogeneite
spectrale a I'imerieur des polygones [orestiers. Celie
recherche exploraloire confirme que I'in[ormation sur 10
dependance spatiale telle que derivee de 10 mesure de
rGi *) constitue lme nouvelle source importanle
d'in[ormation spaliale pour I'evaluation des images
ntuneriques en milieu[orestier

SUMMARY
In remote sensing. continuous landscapes are sampled
into a grid ofequoll)" si=ed ol1d regularly spaced pixels.
One consequence of Ihis sUlface regulari=ation is that
pixel values exhibit positive spatial all1ocorrelarion.
Accordingly. the extent and natlire of sparial
all1ocorrelalion can be considered a characteristic o[
remotely-sensed data which may be exploited as an
in[ormation source. Howeve/: existing global measures
ofspatial autocorrelation provide little insight into tltis
characteristic since they summarize all spatial inter
relationships in a single measure, In contrast, local
indicators of spatial association (LISA) measures
assess for each pixel in the image both Ihe degree of
spalial dependence with neighbouring pixels and the
magnitude a/variate values in the neighbourhood ofthe
pixel. In this study, one sitch LISA statistic, the Gelis
statislic (Gi *), is applied to Landsal T!\1 imagel)1 of a
managed forest region Relationships are found
between local spatial autocorrelation as measured by
G;* al1d differel1t Lal1dsat TM image bal1ds al1d
differing cover types. Furthel: the spalial dependence
information is presented in the context of forest
invent01J1 polygons indicating the presence of spectral
heterogeneity or homogeneity within forest pol)gon
areas. This e.:'fplorat01T research confirms that spalial
dependence information. as computed by Gi *,

constitutes a valuable new source ofsparial information
for the assessment ofdigital imagel)' offorests.
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INTRODUCTION

I n general, spatial autocorrelation arises when the value of a
variable x recorded at a location on the Earth's surface is related

to values of the same variable at nearby locations. Thus, the
measurement of spatial autocorrelation involves the simultaneous
consideration of both locational and attribute information
(Goodchild, 1986). Positive spatial autocOiTelation is said to
occur when similar values of x are found in spatial juxtaposition
while negative spatial autocorrelation occurs when neighbouring
values ofx are dissimilar. The degree of spatial autocorrelation is
not independent of the scale at which the data are analyzed, with
negative spatial autocorrelation being more scnsitive to scale
changes (Chou, 1991). Since remote sensing instrumcnts
typically sample continuous landscapes into a grid of equally
sized and regularly spaced pixels (J upp el al., 1988; Fisher, 1997),
it is anticipated that there will be some degree of dependency
among pixel values sampled from a forested surface, most likely
in the form of positive spatial autocorrelation.

Information gleaned through the remote sensing of forests is
dependent upon the spatial resolution of the data collected
(\IIarceau el al., 1994). When the objects of interest are
composed of a number of pixels the imagery is considered to be
H-resolution; conversely, when multiple objects compose one
pixel, the imagery is considered L-resolution (Woodcock and
Strahler, 1987). In the case of Landsat TM imagery of a forested
region, the data are L-resolution when the objects of concern are
trees, yet H-resolution when interested in broad areas of similar
forest conditions (areas often delineated as stands). When
considering imagery in terms of forest stands, neighbouring
Landsat TM pixels may be expected to display some degree of
spatial dependence. One view of this spatial autocorrelation is to
consider it as a source of nuisance and error which must be
accounted for when classical statistical analyses involving the
assumption of independence are applied to the data (Dobbel1in
and Biging, 1996). An alternative view is to consider the spatial
autocorrelation as an image characteristic representing aspects
of forest structure which may be exploited as an additional
information source (Wulder and Boots, 1998).

As presented in the statistics literature, spatial autocorrelation
is often measured using global statistics (Haining, 1990), which
provide a single measure summarizing all the spatially
referenced inter-relationships. However, such measures may
prove unreliable if the nature and extent of spatial
autocorrelation varies significantly over the study area. To
remedy these concerns, local indicators of spatial association
(LISA) have been developed (Ansel in, 1995). A summary of
the techniques commonly utilized for the assessment of
autocorrelation in remote sensing applications, including join
counts, semivariance, and texture, is presented in Wulder and
Boots (1998). Generally, the techniques normally applied in a
remote sensing context yield summary values which enable the
identification of distinctive regions of spatial dependency
within the image. In contrast, LISA measures focus upon
variations within the regions of spatial dependence. As such,
LISA measures are especially useful in detecting distinct local
clusters of values that may be hidden in a global index measure.

One set of LISA measures is the G statistics developed by
Getis and Ord (1992) and Ord and Getis (1995). In general,
these measures evaluate the extent and nature of concentration
in the values of a variable x in the region under investigation.
One such measure, the modified Getis statistic, denoted as G,*,
achieves this by expressing the sum of the variate values within
a specified distance of a particular observation; as a proportion
of the sum of the entire set of variate values. Getis (1994) has
previously demonstrated the diagnostic potential of this
statistic to identify significant spatial dependency in remotely
sensed imagery. Processing of an entire image scene allows for
the use of the statistic in a more exploratory manner. By
providing each pixel with a spatial dependency value, based
upon processing pixel neighbourhoods with a series of
windows, a new layer of information is derived.

The aim of this paper is to uncover the manner in which local
spatial autocorrelation characteristics indicate change over
forested landscapes. Since such images are inherently spatially
autocorrelated, \ve anticipate that examination of properties of
local spatial dependence can provide insights into
characteristics of image data not revealed by traditional image
analysis techniques. We apply Gi * to a Landsat TM scene
collected over a forested landscape. The various land cover
types present over the forested landscape will exhibit differing
spectral response in the imagery. The differing spectral
response related to the land cover and sensed by the Landsat
image spectral bands are investigated in this study. Our results
indicate a strong band and cover type dependence to levels of
local spatial autocorrelation as measured by G;*.

METHODOLOGY

Study Area, Field, GIS, and Image Data

The Fundy Model Forest is a 420,000 hectare working forest in
southeast New Brunswick, Canada. The model forest is located in
the Acadian forest region (Rowe, 1977) and is composed of a
variety of broad leaf deciduous and coniferous species and
includes a wide range of forest conditions with stand ages ranging
from regeneration to old growth. The Acadian forest region is
characterized by a wide variety of forest species. Coniferous tree
species are predominantly jack pine (Pinus banksiana), white
spruce (Picea glauca), balsam fir (Abies balsamea), and red
spruce (Picea rubens). The predominant deciduous species are
red maple (Acer rllbrlllll) and white birch (Belllia papyri(era),
with stands also including beech (Fagus grandifolia), striped
maple (AceI' pensylvanicum), trembling aspen (Populus
tremuloides), long tooth aspen (Populus grandideJ1lara), and
sugar maple (AceI' saccharum) (Farrar, 1995). The study area was
located near Sussex at 45.43.00' north and 65.31.00' west.

The Landsat TM image, which was acquired August 7, 1992,
was geometrically corrected utilizing the PCI EASI/PACE
(version 6.0.1) utility of GCP Works. Base maps (I :50,000) and
GPS information \vere used as the ground control, resulting in a
RMS accuracy of 0.125 pixels utilizing 25 ground control points
and a first-order nearest neighbour resampling technique.
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There are two versions of the Getis statistic, G j and G;*. In the
fonner, the value of.\" at i is excluded from the local sum, while
in the latter it is included. G;* seems more appropriate for
remote sensing applications as it allows for the computation of
the statistic with a window of user-defined dimensions and so
it is this statistic which we describe below.

Formally, the statistic G,*(d) for some distance d is defined
(Getis and Ord, 1992) as

where {wid)} is a spatial weights matrix. Here we consider
symmetric binary weights, with ones assigned to all locations
within distance d of observation i, including i itself (i.e.,
HI;i = I), and zero otherwise. In the remote sensing context, a
window can be defined around an observation i by specifYing
an appropriate value of d.

Ord and Getis (1995) provide steps to derive a standardized
version of Gi * which are summarized in the context of
application to remote sensing digital images by Wulder and
Boots (1998). Here the fundamental stages of the computation
of G;* values are presented, beginning with the calculation of
the global mean and variance of x for the image as follows:

To provide a spatial context ror the image colour composite,
image classification, and G;* values presented, we imported the
current New Brunswick GIS forest inventory database. The
polygon boundaries provided a context for the distribution of
image classification and G;* values. The forest inventory
information was derived from the interpretation of air photos
(Gillis and Leckie, 1993). The forest inventory information
generalized the landscape into approximately 144 different
classes including vegetated and non-vegetated classes. The
vegetated forest management units are based upon species
assemblages (such as tolerant hardwoods, intolerant
hardwoods, conifers, and mixed woods) and structural
conditions present (such as development stage, crown closure,
site index, and silvicultural treatments) (Anonymous, 1983).

Multispectral Digital Image Classification

A maximum likelihood classifier was selected for the
multispectral digital image classification (Jensen, 1996). The
goal of the classification was to accurately assign pixels to a
limited number of classes. The classes defined for
discrimination are: conifer, deciduous, mixed forest, non
vegetation, shrub (sparse vegetation), water, and null. An
overall producer's accuracy of 97.23%, with an average
accuracy of 93.27%, was achieved for the multispectral image
classification (Congalton, 1991). The classification \vas
supervised based upon high resolution casi data, field collected
ground cover survey data, and forest development survey maps.

x~ ixj/n and S
j=1

"
LXj
jd---,.
11- X-

(1)

(2)

Global Spatial Autocorrelation
as Measured with Moran's I

where n is the number of pixels in the entire Image. The
standardized version of G;* is given by

where W;* = L}Vij(d). The values of G;* given by Equation 3
are in standard normal form (z-score). Griffith et al. (1996)
suggest that if a minimum of eight values are used for the
computation of G/, the resultant distribution of G;* values is
normal. In consideration of remotely-sensed imagery, the G;*
values measure the extent to which a pixel is surrounded by a
cluster of high or low values of a particular variable, such as
image digital number (01\) values. High G;* values denote a
cluster of high ON values; low G;* values denote a cluster of
low ON values. In addition, computing G i* within a series of
increasing windows and noting the distance at which the largest
absolute G;* value occurs allows for an assessment of the size
of the region of association around an individual pixel. A small
window size (distance) indicates that spatial dependency is
maximized within a very localized region while a large distance
value indicates more spatially extensive spatial dependence. A
weakness of the G;* statistic, which it shares with other LISA
measures (Tiefelsdorf and Boots, 1997), is that it cannot be used
to identify clustering of medium values since mid-range values
of G;* (i.e., values around zero) can result from either this
situation or an absence of clustering of similar variate values.

Global measures of spatial autocorrelation provide little
information regarding the nature of the spatial dependency
found. A high positive spatial autocorrelation is expected due to
the regularized nature of remotely-sensed imagery. This
assumption is tested with the global spatial autocorrelation
measure Moran's f. Computation of Moran's f is achieved by
division of the spatial covariation by the total variation. For
pixel data, Moran's J values are in the range from
approximately -I to 1, with positive signage representing
positive spatial autocorrelation, negative signage representing
negative spatial autocorrelation, and values approaching zero
indicating a lack of spatial autocorrelation (Haining, 1990).

Computation of G/

In contrast to global measures such as Moran's f, LISA
measures evaluate the extent and nature ofconcentration in the
values of a variable x in a local region within the study area.
The Getis statistics (Getis, 1994) achieve this by expressing the
sum of the weighted variate values within a specitied distance
of a particular observation i as a proportion of the sum of the
variate values for the entire study area. This value can be
compared with the statistic's expected value under an
hypothesis of no local spatial autocorrelation to indicate if the
degree of clustering of x values in the vicinity of i is greater or
less than chance would dictale.

•
• L.w,/dlXj-Wi X

G i (if) = j. •

slW i (n-W i )/(n-I)]'"
(3)
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RESULTS AND DISCUSSION

The image was assessed for both global and local spatial
autocorrelation. The local spatial autocorrelation, as measured
with the standardized version of G;* (Equation 3), was assessed
both between Landsat TM bands and by cover type within each
band. Consideration of the spectral sensitivities of each of the
Landsat TM bands provides for a greater understanding of the
spatial dependency characteristics found in this study. Table 1
provides the wavelength ranges and expected characteristics of
spectral response. The wavelengths of electromagnetic energy
being sensed provide different infonnatioll relating to the
ground cover present; accordingly, it is necessary to be aware of
what electromagnetic infonnation is being sensed in each band.

A scale dependence of local spatial autocolTelation is also
illustrated with the objects identified largely a function of the
image spatial resolution. The relationship between objects
idcntified and spatial resolution is illustrated by tree(s) level

clustering at "'" 1m spatial resolution (Wulder, I998a), stand level
clustering at 30 m spatial resolution (present study), and landscape
level clustering at 25 km spatial resolution (Derksen el al., 1998).

In Table 2 we present the Moran's I values for Landsat TM I to
5, and 7. Landsat TM 6, which senses in the thennal IR, was not
included due to a coarser spatial resolution and negligible spectral
variability between pixels in this study area. All Landsat TM
bands are found to have high positive Moran's I values reflecting
a strong presence of positive spatial autocolTelation. As the high
positive autocorrelation was expected for the imagery, a means
for exploiting this spatial infonnation is indicated_

To enable the assessment of the relationship between each
Landsat band and each of the dominant cover types with local
spatial autocon-elationlevels, a random sample ofGi * values was
extracted. Detennination of a sample size based upon a desired
margin of elTOr was undertaken to generate the random sample.
The random sample of Gi* values was based upon a sample size
needed to achieve a sampling precision of 0.005 with 99%

Table I.
Landsat T:vI wavelengths and band characteristics

(summarized from Ave,")' and Berlin, 1992, p. 140 to 142).

TM band Wavelength Spectral SI)atial Characteristics
Range (/1m) Location Resolution (m)

I 0.45 - 0.52 Blue-green 30 water penetration, differentiates between vegetated and non-
vegetated

2 0.52 - 0.60 Green 30 visible vegetation features

3 0.63 - 0.69 Red 30 discerning between vegetation and soil

4 0.76-0.90 Near IR 30 discrimination ofdiffering vegetation and varieties and
conditions

5 1.55 - 1.75 MidlR 30 measures changes in leaf-tissue water content which may be
related to differences between plant species or vigour

6 10.40- 12.50 ThermaI IR 120 sensitive to surface temperature; useful for heat mapping
applications

7 2.08 - 2.35 Mid IR 30 sensitive to moisture content variation in both vegetation and
soils

Table 2.
Summary of Moran's I and Getis statistic values by

Landsat TM band for the 300 pixel sample of the processed image!)'.

TMI TM2 TM3 TM4 TM5 TM7

Moran's I 0.75 0.81 0.82 0.84 0.88 0.86

Getis statistic summary values

median -0.082 ·0.112 -0.220 0.027 -0.100 I -0.196

mean 0.057 0.044 0.034 -0.006 0.022 0.030

111 in -0.577 -0.932 -0.721 -2.526 -1.471 -1.180

l11ax 2.158 2.605 3.363 0.955 2.121 3.340

range 2.735 3.537 4.084 3.481 3.592 4.520

51. dev 0.470 0.635 0.664 0.469 0.694 0.729..
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Figure I.
Box plots of Get is statistic (G;*) for:tll Landsat ...:\'. bands and co\'Cr ~·pes .

confidence for the G;* values. The largest sample size needed for
the six bands was 179. Accordingly, a sample size of 300 was
extracted to ensure translation of the original spatial correlation
to the random sample (Moore and :vIceabe, 1993, p. 438).

Table 2 also contains the summary statistics for the G;*
values for each Landsat TM band. The distribution of
standardized G;* values for each band is slightly skewed, as
demonstrated by the difference between the median and the
mean. The absolute maximum values of G;* found in each
Landsat TM band relate an extreme level of local spatial
autocorrelation. A wavelength dependence to the level of local
spatial autocorrelation is also demonstrated in Table 2. The
spectral band dependence to autocorrelation is based upon the
dominant reflectance characteristics of the scene within the
wavelength range represented by that band.

The band and species dependence to the distribution of G;*
values is presented graphically with box plots in Figure 1.
Trends are shown with the highest positive G;* values for the
most highly reflective surface cover types in the classification
and the 100\'est G;* values for the surface cover types with the
least reflectance. Differences in level of local spatial
autocorrelation are apparent both within class as the Landsat
band is changed and between classes processed with the same
Landsat band. The deciduous class demonstrates changes in
local spatial autocorrelation tendencies with change in
wavelength properties. The Landsat TM band 3 demonstrates a
tendency toward clustering of low values. In the IR band of
TM 4, higher standardized values are demonstrated due to
clustering of higher DNs, especially in the deciduous class. The
clustering of high DNs is especially prevalent in the non
vegetation and shrub cover classes, with the exception of shrub
in TM 4. The mixed class is a combination of conifer and
deciduous species resulting in less extreme clustering than that
found in the conifer or deciduous classes. The inclusion of
coniferous species in the mixed class results in lower
reflectance and a greater degree of heterogeneity due to the
complex stand structure, resulting in clusters of low DNs. The
effect on local spatial autocorrelation due to lower reflectance
and stand structure is fUlther demonstrated for the conifer class.

As summary values do not sufficiently represent the spatial
sensitivity of the G;* values, in Figures 2 and 3 \ve graphically
present a subset of the original Landsat TM image data, the
image classification, and G;* values computed on Landsat TM
band 4. (Notation regions have been placed on Figures 2 and 3
to allow for comparison of the variation of information at
consistent locations.) As noted in the Figure 2 legend, clusters
of image digital number values and the strength of the
association between neighbouring pixels are illustrated by the
magnitude of the G;* results. To demonstrate the
complementarity of the spatial and spectral information
sources, the G;* values are presented in comparison to an image
sample and a multispectral image classification. The spatial
structure of the Landsat TM band 4 G;* values resemble the
image classification which utilized three input bands to a
maximum likelihood classifier (MLC). However, unlike the
MLC, the calculation of G;* values within a window creates ..
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Maximum likelihood classlncatlon of sample

Deciduous Mixed • Shrub

Oetls statistic Image of TM c hannal 4Landsat TM Image data sample

Band Colour gun
TM3 red
TM4 green
TM5 blue

• Conifer • Non-vegetation LowDN
clusters
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clusters clusters

Figure 2.
Landsal TM image sample. multispectral image classification, and Gi* spatial dcpendclIC)' values compllted for .he image sample. G;* valucs Ilresen.ed
are the larges. value eomlHlled over .he series of four distances. Notation regions, "A" and "8", provide for assessment of the same locations on 'he series
of representations of the Fundy Model Forest study area.

fuzzy boundaries between objects reflecting the subtle changes
which occur in spectral values between image objects. Notation
region A of Figure 2 is placed to indicate a harvested area.
Harvested areas are often spectrally diverse in the near infrared
(TM 4), with low reflectance post cutting and higher
reflectance as regeneration takes place. The complexity of the
TM 4 digital numbers is captured with the G;* values with the
shrub area of the cut block exhibiting a clustering of high ON
and the non-vegetated area of the cut showing a clustering of
low values. The notation region B of Figure 2 is presented to
indicate the clustering of relatively low TM 4 DNs indicating a
coniferous area. Viewing of a coniferous area (notation
region B) through the transition of images, from composite to
classification to spatial dependence image, indicates the
sensitivity of the G;* values to the spatial extent of image
objects. The cluster of low DNs illustrated in notation region B
conform well to the polygon boundary. In other cases, the
region of spatial dependence do not conform well to the
polygon boundaries but extend to represent a larger region of
association; notation region C of Figure 3 illustrates this case.
The area classified as deciduous in the centre of the image
sample is found within a mixed forest area. As noted, the
calculation of G;* values within a window creates fuzzy
boundaries between objects reflecting the subtle changes which

occur in spectral values between image objects. Viewing of
notation region C on the G;* image of Figure 3 illustrates the
strong spatial dependency for the homogenous cover-type that
diminishes in strength as heterogeneity increases. Figures 2
and 3 also demonstrate how the G;* values are of variable or
object-resolution; the extent and intensity of the G;* values is a
function of the spatial distribution of the spectral values related
to that object. The deciduous area (notation area C) with less
distinct boundaries and subtle transition to neighbouring stands
results in fuzzy boundaries to the G;* values. Notation region D
of Figure 3 indicates a clustering of low digital numbers in
relation to coniferous forest cover and the underlying drainage
pattern. Patterns of spatial dependency are found for species of
a classified image which indicate the potential for G;* as an
ancillary data source or in the generation of fuzzy boundaries.

The spatial dependency objects, as illustrated by the G,*
values, relate the information content present at the Landsat
TM level of spatial resolution. The detail demonstrated in the
forest stand polygon data is based upon air photo interpretation
allowing for vegetation discrimination to indicate detailed
characteristics such as leading and secondary species, crown
closure class, and density (Gillis and Leckie, 1993). The
agreement between the ground cover classes and spatial
dependence values as different l yet complementary to, the
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Figure 3.
Landsal TM image sample, muHispectral image classification, and G;* SIJatial dependenC)' ,'alnes computed for the image sample. G;* "alne presented
are the largest "alue compnted over the series offour distances. Illustrated is the transition of spatial dependency ,'alnes from a homogeneous deciduous
sland to a mixed Sland composilion (:\'olation C). Drainage and coniferous areas are noted with clusters of lower D:\' ,'alues (Notation D).

4.5 ~

Figur'e ....
!\'lcdian distance in which Gclis statistic is foulld 10 be al llI11xiltllllll .

(Figure 4). Accordingly, low distance values indicate marked
clustering of similar values, while high values represent a lesser
clustering of similar values. A contrast of cover types
demonstrates the theolY; conifer stands with complex structure
and variability in local reOectance require a number of iterations
and a greater number of neighbours to be assessed to demonstrate
a clustering of similar values; whereas, the shrub class is
relatively unifonn in reflectance, resulting in fewer pixels
requiring assessment to demonstrate local spatial autocolTelation.
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forest polygon data suppons the findings of Franklin el al.
(1997). Polygon information is normally intended for forest
management activities, while the information present at the
Landsat TM spatial resolution is often not of sufficient detail
for management purposes. The extent of the spatial dependence
objects generated indicate the utility of non-polygon based
approaches when using remotely-sensed data for forest
planning purposes, as demonstrated by Holmgren and
Thuresson (1997). The spatial dependence data illustrates the
presence of unique spectral objects within the forest polygon
boundaries. This is expected based upon the delineation of
forest polygon boundaries representing species assemblages,
and has been previously investigated through the fusion of GIS
and remotely-sensed data in the estimation of LAI (Wulder,
1998b). Knowledge of the distribution of spectrally unique
objects, independent of forest stand polygons, facilitates
generation of remotely-sensed values to act as model inputs.
Visualization of the G;* results illustrates that the results convey
meaningful spatial information, demonstrating the potential of
the Getis statistic in a forestry remote sensing context.

The distance values represent the size of the window in which
computation of the G;* statistic is maximized, where the level of
spatial autocorrelation for that window size is greatest for the
series of windows in which the G;* statistic is computed ..
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The exploratory nature of G;* has been demonstrated in the
previous figures and tables, yet G;* may also be utilized in a
diagnostic manner. Since the G;* values are z-score
standardized, the significance of spatial autocorrelation on a
pixel basis may be assessed. Table 3 denotes if there are G;*
values found which are significant within a pm1icular cover
type or band. Values are considered significant at a 95% level
if greater than absolute z-score of 1.96. Pixel locations
exhibiting extreme spatial dependence (image spectral
hotspots) may be identified through the analysis of significance
of G;* values. As an absolute threshold, the significance may be
altered depending on the level of spatial dependence that IS

desired for the representation of image spectral hotspots.

Table 3.
Significant G;* values for each band and class as a
demonstration of the diagnostic properties of G/.

(+ denotes greater than 1.96, - denotes less than
-1.96,· denotes insignificance).

Mixed Conifer Deciduous Shrub Non-veg.

TMI · · · . +
TM2 + · , · . +
TM3 + · · + +
TM4 · · · - -
TM5 · · · + .
TM7 · · · + +

CONCLUSION

A Landsat TM band and species dependence to the level of
local spatial autocorrelation as measured by the G;* statistic is
demonstrated in this study. Gj* computation is an efficient
approach to the assessment. generation, and utilization of
spatial dependence information present based upon
neighbouring pixel inter-relationships. LISA statistics,
specifically the Getis statistic, provide values based on the
spatial structure of digital images. The ability to assess the
strength of inter-pixel relationships, as well as the magnitude of
the autocorrelated data, may prove valuable when the values
computed from semivariance, as a positive valued function,
prove inadequate for a pm1icular objective.

The computation of Moran's J illustrated the presence of
positive spatial autocorrelation in all image bands. This spatial
autocorrelation may be considered as a source of error or it may
be looked upon as an additional information source. In the case
of the present study, the spatial autocorrelation is considered as
a possible additional information source (such as in aiding
image classification or in locating unique areas) and is
investigated as such. Local spatial autocorrelation
characteristics, in the form of the Getis statistic. were generated
to explore the spatial autocorrelation characteristics present in
the imagery in relation to a digital image classification and also
in the context of forest inventory polygons. Differences in level
of local spatial autocorrelation are demonstrated, through

summmy statistics, to be evident both within class as the
Landsat band is changed and between classes processed with the
same Landsat band. To show the spatial sensitivity of G/
values, a graphical comparison of an image colour composite,
image classification, and values superimposed with forest stand
polygon boundaries is presented. The comparison illustrated the
relationship between the spatial structure of the Landsat TM
band 4 G;* values to resemble the image classitication which
utilized three input bands to a maximum likelihood classifier
(MLC). Due to the computation of the G/ values \vithin a
window, fuzzy boundaries between objects emerge reflecting
the subtle changes which occur in spectral values between
image objects. The comparison also demonstrates how the G j*
values are of variable or object-resolution. The extent of the
spatial dependence objects generated indicate the utility of
raster-based approaches when using remotely-sensed data for
forest planning purposes (Holmgren and Thuresson, 1997) or
for the generation of model inputs (Franklin ef af., 1997).
Visualization of the G j* results illustrates that the results convey
meaningful spatial information, demonstrating the potential of
the Getis statistic in a forestry remote sensing context.

The distance values represent the size of the window in which
computation of the G;* statistic is maximized, where the level
of spatial autocorrelation for that window size is greatest for
the series of windows in which the G;* statistic is computed.
The distance values were found to vary by cover type
indicating differences in the heterogeneity of digital numbers
and the spatial extent of the objects within the cover type.

Future research initiatives are planned to assess issues such as
the utility of LISA statistics in the assessment of locations of
image heterogeneity for algorithm development and scaling,
multi-temporal comparison of G j* values (Derksen el aI.,
1998), image segmentation (Wulder, I998a), creation of fuzzy
boundaries, assessment of G;* as ancillary data in a maximum
likelihood classification. and use of G;* to assist in class
signature development.
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