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ABSTRACT 

Sub-pixel scale fractions computed from spectral mixture analysis (SMA) provide 
improvements over vegetation indices for extracting forest biophysical information such as LAI, 
biomass and NPP for use in forest inventories and regional scale carbon budget models. The 
acquisition of endmember spectra of forest canopy, ground vegetation and shadow is a critical 
input to spectral mixture analysis. In this paper, we compare the use of three sets of endmembers: 
image endmembers extracted directly from airborne imagery, reference endmembers measured in 
the field using a portable spectroradiometer, and an integrated set which combined both image and 
reference endmembers. Each set of endmembers was used in spectral mixture analyses of multi­
scale airborne CASI imagery at 60cm, 1m and 2m resolutions acquired July 1998 over 
mountainous terrain in Kananaskis Provincial Park, Alberta. The scene fractions were validated 
using a sub-pixel multi-resolution classification strategy. To test their ability to predict 
biophysical variables, independent LAI measurements were first collected with LAI-2000 and 
TRAC instruments. Separate linear regressions were performed for each of the SMA fractions as 
well as for NDVI. The reference endmember set was the best predictor ofTRAC based 
measurements of LA I, with r = 0.69 and 0.67 for 1m and 2m imagery respectively. The 
integrated and reference endmember sets predicted effective LAI from the LAI-2000 with 
r = 0.62 and 0.72 for the 1m and 2m data. NDVI results were r = 0.33 and 0.34 for the TRAC 
and 0.45 and 0.44 for LAI-2000 measurements at 1m and 2m resolutions, respectively. These 
results suggest that the acquisition of reference endmembers is needed to achieve the best overall 
predictive ability using spectral mixture analysis, and that fractions from image endmembers also 
show significant improvements over NDVI without the need of reference spectra. 

1.0 INTRODUCTION 

Biomass, leaf area index (LAI) and net primary productivity (NPP) are important biophysical structural 
variables which are inputs to regional scale models of ecosystem processes (Running and Hunt, 1994; Bonan, 1993). 
Traditionally, vegetation index approaches such as the Normalized Difference Vegetation Index (NDVI) have been 
used to provide estimates of these parameters, however, new approaches such as spectral mixture analysis (SMA) 
have been shown to provide improvements (Hall et aI., 1995,1996; Peddle et aI., 1997, 1999; Peddle and Johnson, 
1999). SMA is used to determine the spatial abundance of sub-pixel scale scene components such as sunlit canopy, 
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sunlit background and shadow. These component fractions can be separated and used to predict biophysical 
variables more accurately than vegetation indices. Changes in the forest structure result in different levels of scene 
component fractions, which serve as the basis for the stronger predictive capability for forest structure using SMA 
fractions. Although SMA has resulted in improved prediction of LA I over flat boreal forests, only limited tests have 
been done in mountainous terrain (Peddle and Johnson, 1999). 

Building on the continued success using SMA in predicting biophysical variables, this paper focuses on a 
quantitative assessment of SMA endmember inputs (component reflectances), and their corresponding ability to 
make accurate estimations of sub-pixel scale fractions. The focus is on the validation of scene fractions produced 
using (1) reference endmembers measured in the field using a portable spectroradiometer (2) image endmembers 
extracted directly from multi-resolution airborne imagery and (3) an integrated image and reference endmember set. 
The results of the SMA analysis were then compared in terms of their ability to predict different sets of LAI 
measurements taken in the field using optical instruments (TRAC and LAI-2000)1. These results were compared to 
NDVI to determine the preferred approach at the different spatial scales of airborne imagery. 

2.0 STUDY AREA AND DATA COLLECTION 

2.1 STUDY AREA 

The study area is centered at 115°4'20"W, 51°1' 13"N on the eastern slopes of the Roc~ Mountains and 
straddles Barrier Lake in Kananaskis Provincial Park, Alberta, Canada. This region covers approximately 77km2 
and includes a full range of terrain aspects with slopes ranging from 3° to 30°. The site is within the Montane Forest 
Region M.5 that is dominated by stands oflodgepole pine (Pinus contorta Lamb.), white spruce (Picea g/auca 
[Moench] Voss), trembling aspen (Populus tremu/oides Michx.), balsam poplar (Populus balsamifera L.) on lower, 
more moist slopes, and some scattered mature Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) 
(Rowe 1972). This study focused on 15 test plots of size 10 x 10m for which a detailed inventory of forest 
measurements was collected including tree locations, species, crown shape, tree height, crown closure, and diameter 
at breast height (DBH). The location of each plot was determined using differential GPS measurements for use with 
the airborne imagery. These plots were lodgepole pine and Douglas-fir stands which ranged in LAI from 1 to 8.8. 

2.2 LAI MEASUREMENTS 

LAI is defmed here as half the total leaf area per unit ground surface area (Chen and Cihlar, 1996). Two 
optical instruments were used to estimate LAI in the test plots, the TRAC (Tracing Radiation and Architecture of 
Canopies)( Chen and Kwong, 1997), and the LAI-2000 Plant Canopy Analyzer (Welles and Norman 1991). The 
TRAC measures gap fractions as well as the gap size distribution (Chen and Cihlar, 1996) which enables the effects 
of non-random canopy architecture to be quantified for improved estimation of LA I. The LAI-2000 assumes a 
random leaf distribution and does not account for canopy architecture, and therefore provides an estimate of 
effective leaf area index (eLAI). This is not a true measure of LAI because foliage in plant communities are often 
not randomly distributed (Chen and Chilar, 1996). All optical LAI measurements were acquired in July and early 
August corresponding to the time of maximum photosynthetic capacity. Results from the spectral mixture analysis 
were compared in terms of the ability to predict the measurements of LA I and eLAI. 

2.3 IMAGE DATASET 

A multi-resolution CASI image data set was acquired at pixel sizes of 60cm, 1m and 2m by Itres Research 
of Calgary and with reference to Wulder et al. (1996). The data were acquired with a variety of spectral bands and 
provided as a geo-referenced image data set corrected to sensor radiance (Table 1). Ground based radiometric 
calibration spectra were collected during image acquisition at the southern parking lot near Barrier Lake, using an 
ASD FieldSpec FR (350 - 2500 nm) spectoradiometer (ASD, 1998). Calibration measurements were acquired over 
four 3 x 3 m calibration targets, as well as the asphalt parking lot. The calibration measurements were corrected to 
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reflectance using calibrated irradiance measurements from a Spectralon white reference. These ground reflectance 
values were related to the CASI data using a linear spectral response function for each image band. These targets 
were located in the CASI imagery and used as pseudo-invariant targets to perfonn a linear atmospheric correction. 

A high quality geometric correction was essential for proper overlay of the multi-resolution images used for 
validation of scene fractions produced from SMA. Careful examination of the geometric correction showed less than 
a single pixel variation between the 60 cm and 2 m resolutions (less than 2m absolute variation in alignment), which 
was acceptable for our multi-resolution analysis. 

Table 1. CASI Image Band Set Collected at 60cm, 1m and 2m Resolution 

Band Wavelength 
(nm) 

Number Start End 
1 450 500 
2 540 560 
3 610 640 
4 640 680 
5 690 715 
6 730 755 
7 790 810 
8 850 875 

3.0 METHODS 
3.1 SPECTRAL MIXTURE ANALYSIS 

Spectral Mixture Analysis is based on the fact that the reflectance value of a given pixel can be represented 
by a combination of reflectances of elemental radiometric components (Adams et aI., 1993). In this research, three 
main scene components (or endmembers) were identified as sunlit canopy, sunlit background and shadow. In an 
earlier study in Kananaskis, which assessed a different study area and image data set (Peddle and Johnson, 1999), 
only the sunlit canopy and shadow endmembers were used. However, for this study area and image data set, crown 
closure in all of the plots sampled was insufficient to obscure the forest floor, therefore, all three endmember 
components were used in the SMA trials. Individual spectral measurements of each of these endmember 
components are an important input to the spectral mixture analysis. These endmembers were identified with care as 
SMA can be sensitive to these spectral values. Three methods of detennining endmember spectra were tested: 
reference endmembers, image endmembers, and an integrated set of endmembers, as explained below. 

3.2 REFERENCE ENDMEMBERS 

Reference endmember spectra were collected using the ASD spectoradiometer (ASD, 1998). This 
instrument allowed for accurate and high spectral resolution measurements to be made in the field over a broad 
spectral range. The same instrument used to collect these spectra was also used for correcting the images to surface 
reflectance, thus providing a consistent calibration throughout the experiment. A set of spectral measurements was 
collected for each of the dominant forest canopy and groundcover species, following the procedures outlined in 
Peddle (1998). Each measurement was made by removing a sample to a clear area (e.g. a parking lot) to avoid 
unwanted reflected energy from adjacent vegetation. The samples were then arranged into optically thick stacks and 
all measurements were taken in a nadir orientation. Radiance measurements were perfonned under conditions of 
total and diffuse (sun-occulted) irradiance. These measurements were then corrected to reflectance using 
simultaneous spectra from a Spectralon white reference. For the shadow endmember, a measure of apparent 
reflectance was used to represent the shadowed target and was calculated by taking the ratio of a shadowed target 
measurement and an illuminated white reference measurement (Peddle, 1998). 
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Reference endmember spectra used· in the SMA were selected from this set of measurements (Table 2). 
The canopy reference endmember was the reflectance obtained for lodgepole pine or Douglas-fir, depending on the 
composition of the plot. The reflectances from the main species present on the forest floor in these plots included 
pine grass (Calamagrostis rubescens Buckl.), step moss (Shepherdia canadensis (L.) Nutt.) and buffalo berry 
(Hylocomium splendens (Hedw.) B.S.G.). These reflectances were averaged and used as a single endmember to 
characterize the background. This does not account for the complexity of the forest floor as other species (e.g. 
juniper) were not measured, nor was the spatial abundance of each background component considered. The shadow 
endmember was chosen as the darkest apparent reflectance measure of the forest floor species (pine grass). 

Table 2. Endmembers Used in the Reference Endmember Trial 

Reference Endmember Description 
Sunlit Canopy 

Sunlit Background 

Shadow 

3.3 IMAGE ENDMEMBERS 

Reflectance measurement of 
lodgepole pine or Douglas-fIr 
Average reflectance measurement of 
dominant background species 
Apparent reflectance measurement of 
pine grass 

Image endmembers selected from all 8 bands of the 60cm image data were interpreted to represent pure 
samples of the scene components under investigation (Table 3). Image endmembers were selected based on spectral 
plots using the n-dimensional visualization capability available in the ENVI image analysis system (ENVI, 1998). 
The sunlit canopy endmember was selected based on the brightest canopy pixel value for either lodgepole pine or 
Douglas-fIr in each band. The sunlit background endmember was selected from an adjacent clearing which had 
similar vegetation composition, and again the brightest image values were used. Three types of canopy shadowing 
were evident in the imagery, (I) infinitely dark, (2) transitional and (3) diffuse shadow, as outlined in Seed et aI., 
(1997) and Peddle and Johnson (1998). The darkest image endmember was selected as the purest case of shadow. 
Preliminary sets of SMA results were produced and their Root Mean Square (RMS) error evaluated against what 
were deemed to be pure pixels in the image prior to the fmal image endmember selection. 

Table 3. Endmembers Used in the Image Endmember Trial 

Image Endmember 
Sunlit Canopy 
Sunlit Background 

Shadow 

3.4 INTEGRA TED ENDMEMBER SET 

Description 
Brightest canopy pixel from each band 
Brightest background pixel selected from 
adjacent clearing for each band 
Darkest image value from shadow pixels 

The integrated endmember set was created to take advantage of both the image and reference endmembers 
(Table 4). This integrated endmember set used the reference measure of sunlit canopy (Douglas-fIr or lodgepole 
pine), to represent a more pure sample than could be identified in a 60cm image pixel. Image endmembers were 
selected for the sunlit background and shadow endmembers. The sunlit background image endmember more 
accurately represented the complex mixtures of background vegetation compared to combinations of individual 
reference endmember spectra. Both the image shadow and reference shadow endmembers were very similar to 
each other in Bands 1 through 5, however, the image endmember values were chosen since they were darker in 
Bands 6 - 8. 
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Table 4. Endmembers Used in the Integrated Endmember Trial 

Integrated Endmember 
Sunlit Canopy 

Sunlit Background 
Shadow 

Description 
Reference measure of either lodgepole 
pine or Douglas-fIr 
Image background endmember 
Image shadow endmember 

4.0 SCENE FRACTION V ALIDA TION 

The validation of sub-pixel scale fractions is important when using the SMA approach in more complex 
environments such as mountainous terrain. If the sub-pixel fractions of scene components are to be used in 
predicting biophysical variables, it is important to fIrst quantify their accuracy. The result of each SMA trial was a 
set of three fractions corresponding to sunlit canopy, sunlit background, and shadow, as well as an estimate ofRMS 
error for each pixel. A quantitative validation of sub-pixel scale fractions at 1m and 2m resolutions was performed 
using a maximum likelihood (ML) classifIcation of sunlit canopy, sunlit background and shadow at the 60cm 
resolution, and comparing that with the fractions obtained at coarser resolution 1m and 2m imagery. For example, a 
lOx 10m test plot contains approximately 25 pixels at 2m resolution for which a set of scene fractions were 
produced and aggregated. These scene fractions were compared to the ML classifIcation of the nearly 280 pixels at 
60cm resolution that comprise that same plot area. This provided a way of validating the fractions produced using 
the three sets of endmembers. Potential error can be introduced into this analysis due to mixtures of materials that 
occur within a 60cm pixel as well as from errors in classifIcation, however, this method provided a meaningful way 
of evaluating the SMA fractions prior to biophysical analysis, as in our previous work (Peddle and Johnson, 1999). 

5.0 VALIDATION RESULTS 

We fIrst examined the RMS error produced for each endmember set as an initial test of the endmembers 
ability to represent the scene components. The RMS error was low in all trials with a maximum of only 0.02%, 
which suggested that the endmembers used in each case were representative of the spectral values in the scene. 

Overall, there was good agreement between the fractions produced at the 1m and 2m resolutions with the 
ML classifIcation at the 60cm resolution. The magnitude of error was evaluated for each of the three endmembers 
sunlit canopy, sunlit background, and shadow with respect to the ML classifIcation (Table 5). The reference 
endmember case showed the closest agreement between SMA fractions and ML classifIcation results. The 
difference ranged between 3 and 6 % for each scene component with the maximum variation observed with shadow. 
The image and integrated endmember cases showed a greater difference between the ML classifIcation and SMA 
fractions. The image shadow endmember showed the greatest difference from the ML classifIcation results with 
differences varying from 3 to 11% (mean = 6 %). The image sunlit canopy and background fractions ranged 
between 4 to 6% difference (mean = 4%). Image scale seemed to have little effect on the differences between the 
ML classifIcation and SMA fractions as the results were within 2% for the reference, image and integrated 
endmember cases from the 1m and 2m CASI data. This result suggested that SMA trials were in fact producing 
representative scene fractions, which were suitable for LAI prediction. A previous study by Peddle and Johnson 
(1998) showed errors with the SMA model when differences in canopy composition within a plot were not 
accounted for (i.e. pine outliers in a spruce stand). These errors were accounted for in this study through image 
stratifIcation, SMA trials and prior knowledge of the study sites based on fIeldwork. This ensured the proper 
endmembers were used to characterize the canopy prior to unmixing. In larger area studies, this would be overcome 
using a per-pixel image stratifIcation prior to deriving fractions, as in Peddle et al. (1997). 
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Table 5. Differences between the SMA Fractions at 1m and 2m Resolutions and 
Maximum Likelihood Classification at 60cm Resolution. 

Reference endmember set 
Image endmember set 
Integrated endmember set 

Canopy fraction 
3% to 6% 
4% to 6% 
4% to 6% 

Shadow fraction 
3% to 6% 

3% to 11% 
3% to 11% 

6.0 LAI ANAL YSIS AND DISCUSSION 

Background fraction 
3%to 6% 
4% to 6% 
4% to 6% 

Linear regression analyses to predict LAI were performed using shadow fraction, sunlit canopy fraction, 
sunlit background fraction and NDVI. The ability to predict LAI was based on the magnitude of the regression 
coefficient of determination (i). A separate regression analysis was performed for each of the reference 
endmember, image endmember and integrated endmember sets for predicting each set offield-based LAI 
measurements from the LAI-2000 (Table 6) and TRAC instruments (Table 7). 

Initial observations of these results show that SMA fractions consistently provided better results than NDVI 
for both the TRAC and LAI-2000 measurements. The reference and integrated endmember sets provided the best 
overall results. The best results were i of 0.69 and 0.67 for the TRAC measurements and i of 0.62 and 0.72 for the 
LAI-2000 measurements at 1m and 2m resolutions respectively. NDVI yielded a i of 0.33 and 0.34 for the TRAC, 
with 0.45 and 0.44 obtained for LAI-2000 measurements at 1m and 2m resolutions. The improvements provided by 
SMA over NDVI are shown as differences in the far-right columns of Tables 6 and 7. 

Table 6. Magnitude of the Regression Coefficient of Determination (i) using SMA Fractions and NDVI to Predict 
TRAC LAI for Three Endmember Sets at 1m and 2m Image Pixel Resolutions. . 

Best Result for Each Set Shown in Bold. 

Image Endmember Set Canopy Shadow Background NDVI TRAC LAI 
Spatial Fraction Fraction Fraction Measurement 
Scale diffSMA-NDVI 
1m Reference 0.45 0.58 0.69 0.36 
1m Image 0.49 0.61 0.46 0.33 0.28 
1m Integrated 0.64 0.68 0.42 0.35 
2m Reference 0.22 0.39 0.65 0.31 
2m Image 0.11 0.30 0.55 0.34 0.21 
2m Integrated 0.67 0.50 0.27 0.33 

Table 7. Magnitude of the Regression Coefficient of Determination (i) using SMA Fractions and NDVI to Predict 
LAI-2000 eLAI for Three Endmember Sets at 1m and 2m Image Pixel Resolutions. 

Best Result for Each Set Shown in Bold. 

Image Endmember Set Canopy Shadow Background NDVI LAI-2000 eLAI 
Spatial Fraction Fraction Fraction Measurement 
Scale diff SMA-NDVI 
1m Reference 0.21 0.33 0.62 0.22 
1m Image 0.23 0.34 0.52 0.45 0.06 
1m Integrated 0.55 0.43 0.20 0.10 

2m Reference 0.05 0.18 0.62 0.18 
2m Image 0.15 0.13 0.53 0.44 0.08 
2m Integrated 0.72 0.28 0.08 0.28 
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Overall SMA pr~vided an average increase over NDVI of t:.'; = 0.33 for the TRAC LAI and an average 
increase of t:.'; = 0.16 for the LAI-2000. For each image spatial resolution there were some differences, however, 
there was no noticeable trend with changing resolution. 

A multivariate regression analysis was performed using the best SMA fraction with NDVI to 
examine the possibility of using these two methods together. Although the NDVI results were significantly lower 
than the mixture fractions, we were interested to determine ifNDVI provided any additional information to that 
already held in the SMA fractions, owing to the ease in computing NDVI and integrating it into our SMA analysis 
(Table 8). 

Table 8. Improvements Provided by Multivariate Analysis to TRAC LAI and LAI-2000 eLAI Prediction 

Image Endmember TRACLAI Improvement LAI-2000 Improvement 
Spatial Scale Set R2 SMA and over SMA eLAI R2SMA over SMA 

NDVI Fraction Alone andNDVI Fraction Alone 
1m Reference 0.74 0.05 0.62 0.02 
1m Image 0.72 0.11 0.54 0.02 
1m Integrated 0.73 0.05 0.56 0.01 

2m Reference 0.72 0.07 0.62 0.00 
2m Image 0.67 0.12 0.54 om 
2m Integrated 0.67 0.00 0.73 om 

In both cases, however, the multivariate analysis showed limited improvements in the prediction of LA I or 
eLAI. The inclusion ofNDVI in the regression analysis showed improvements in R2 values of between 0 and 0.12 
in the prediction ofTRAC LAI, with an average improvement of < 0.02 in prediction eLAI. The only notable 
improvement was with the image endmember set, for which an improvement of 0.11 and 0.12 was found when 
NDVI was used with image SMA fractions to predict LAI measured with the TRAC at the 1m and 2m scales, 
respectively. 

7.0 CONCLUSIONS AND FUTURE RESEARCH 

In terms of endmember spectra inputs to SMA, the reference endmember set from the field 
spectroradiometer was the best predictor ofTRAC based LAI with'; values from 0.69 to 0.67 for the 1 and 2m data 
respectively. The integrated and reference endmember sets were the best predictors ofLAI-2000 measures of eLAI 
with .; values from 0.62 to 0.72 for the 1 and 2m data. Using the SMA fraction from the image endmember set in 
combination with NDVI improved the prediction ofTRAC LAI to a level similar to the reference endmember set 
when used alone. For the prediction of eLAI, the inclusion ofNDVI provided only minimal improvements. It is 
therefore concluded that use of the reference and integrated endmember sets provided the best estimates of LA I and 
eLAI when used alone. The inclusion ofNDVI with the SMA image endmember fractions can provide estimates of 
LAI that are comparable with the estimates provided by the reference endmember set. This would be an option if 
the collection of reference spectral data were not possible, however, the inclusion of NDVI did not provide any 
improvement to the prediction of eLAI using image endmembers. 

Current attention and future work will address several issues. These include performing a more 
comprehensive atmospheric correction, incorporating optical reflectance models to account for the influence of 
terrain, and to provide a regional scale stratification capability with sub-pixel scale fraction output, as in Peddle et al. 
(1997). These will be important for our regional scale analysis of this mountainous environment using Landsat TM 
imagery acquired during the summer of 1998. In that work we plan to test field and CASI-based image endmembers 
and compare regional scale results with the significant improvements found here using spectral mixture analysis 
methods. 
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