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ABSTRACT

The ability to extract information at different spatial scales from remotely sensed imagery has been shown to
improve estimation of forest biophysical and structural characteristics compared to the use of vegetation
indices (VI). For example, at sub-pixel scales, spectral mixture analysis (SMA) provides information on the
fraction of canopy, shadow and background within a pixel. These fractions provide improved biophysical
estimates since they account explicitly for background and shadow effects. Spatial discriminators such as
texture measures have also improved estimation of LAI compared to image tone or VI values. That method
captures important information about the spatial arrangement and patterns of image data related to forest
structure. In this paper, we consider sub-pixel scale fractions (mixture analysis) and areas of pixels (texture
analysis) together with image tone values to create a working framework over a more full spatial scale
continuum. Information derived from these various scales are evaluated using regression analyses of individual
and different combinations of image variables for predicting leaf area index (LAI) from high spatial resolution
airborne multispectral video imagery of the Canadian Rockies. Shadow fraction alone was the best individual
predictor of LAI (r2 = 0.54) compared to NDVI (r 2 =0.01). Use of all SMA fractions and the original 3 image
bands (green, red, NIR) improved this to R2 = 0.61. Use of texture improved this further to R2 =0.70. The
texture results indicated that larger window sizes (15x15 here) and second-order measures from spatial , co-
occurrence matrices performed best, using several different individual measures. SMA fractions were the most
important, for which we found shadow fraction optimal, with canopy fraction providing additional new
information. Without SMA, the best overall result using image tone and texture and NDVI was R 2 = 0.38.
Overall, texture was less important than SMA, although it did enable further improvements which were
significant. The ability to extract information over a range of scales using mixture and texture analysis
provided substantial improvements over that obtained using image data and vegetation indices.

1.0 INTRODUCTION

Leaf area index (LAI) is defined as one half the total leaf area per unit ground surface area (Chen and Cihlar,
1996). It is an important biophysical structural parameter as it can be useful in studies of ecosystem functioning and
carbon exchange (Bonan, 1993). The normalized difference vegetation index (NDVI) has been a common method used
to estimate LAI from remote sensing imagery. However, a number of studies have concluded that NDVI alone does
not extract the full amount of biophysical information contained in remotely sensed image data, nor does it provide
the desired level of information required for input to ecosystem models (Spanner et al., 1990). A contributing factor
to this problem is that information pertaining to forest structure exists over a range of spatial scales, yet NDVI is
derived on an individual per-pixel basis (image tone) and therefore has no mechanism to capture that spatial
information. For example, individual red and near-infrared image tone values in high spatial resolution airborne
imagery contain little or no information about the pattern or density of forest crowns within a stand, yet this
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can be important in accurate estimation of LAI. Indeed, at higher spatial resolutions, some NDVI values may
actually decrease with increasing LAI (Wulder et al., 1998) due to the increased shadowing within forest stands which
progressively obscures more of the canopy area within some image pixels.

To help address these issues, image processing methods such as texture analysis (Haralick, 1979) have been
used in remote sensing to capture some of the spatial information that exists over neighbourhoods of adjacent pixels
and which may contain additional information related to forest land cover and structure. For example, satellite image
texture has been shown to increase forest land cover classification accuracy in flat or low relief areas as well as in
mountainous terrain (Peddle and Franklin, 1991). More recently, improvements in the estimation of forest LAI using
NDVI have been obtained using image texture of high resolution airborne imagery in studies by Wulder et al. (1996,
1998).

At the other end of the scale continuum, information at sub-pixel scales has been shown to provide
substantially improved estimates of forest biophysical information compared to NDVI. In a series of studies using
spectral mixture analysis (SMA), sub-pixel scale fractions such as sunlit canopy, background and shadow have
consistently provided better estimates of LAI, biomass, net primary productivity and other biophysical structural
variables compared to image tone or vegetation indices in a variety of boreal and mountain study sites with both
deciduous and coniferous forests using satellite and multi-scale high resolution airborne imagery (Hall et al., 1996;
Peddle, 1997; Peddle et al., 1999; Peddle and Johnson 1999). The central basis for these improvements has been that
NDVI does not account explicitly for the influence of forest canopy, ground vegetation, and shadows on spectral
reflectance (Spanner et al. 1990), whereas SMA provides this information directly.

Recognising that both image texture analysis and spectral mixture analysis provide improvements over
NDVI, it was prudent for us to test the use of both methods together to determine if a synergistic forest image
processing method might emerge. The idea is to possibly exploit the information which can be extracted over a more
full range of spatial scales, that is, from scales which involve many pixels (texture computed from pixel windows)
to scales which involve areas smaller than an individual pixel (sub-pixel scale fractions from SMA). From an
information content perspective, we are essentially testing whether the information provided by texture analysis
is unique and separate from, or redundant with, the new information provided by SMA fractions.

We have also taken this concept one step further by integrating spatial texture analysis and sub-pixel scale
mixture analysis directly. This was done by first deriving SMA fraction images, and then performing a spatial image
texture analysis on those fraction images. The idea here is to evaluate the spatial patterns of sub-pixel scale mixtures
which may exist over a landscape (e.g. the spatial arrangement, variability and randomness of shadow fractions over a
given pixel window). In this paper, we test these image processing methodologies for predicting leaf area index (LAI)
using high spatial resolution airborne imagery of a montane forest environment in the Canadian Rockies.

2.0 STUDY AREA AND DATA COLLECTION

2.1 STUDY AREA AND AIRBORNE IMAGERY

The study area was centered at 51°1'13"N 115°4'20"W on the eastern slopes of the Rocky Mountains and
straddles Barrier Lake in Kananaskis Provincial Park, Alberta, Canada. This 77km 2 region includes a full range of
terrain aspects with slopes ranging from 3° to 30°. This montane region has forest species such as lodgepole pine,
white spruce and trembling aspen, with some scattered Douglas-fir and balsam poplar, as described in more detail in
Peddle and Johnson (1999) and Johnson et al. (1999).

The digital remote sensing data were obtained July 1996 from a multispectral video (MSV) camera system
comprised of three CCD monochrome video cameras with filters centered in the green (537.1 nm), red (617.2 nm),
and near-infrared (NIR, 718.9 nm), as described in Roberts (1995). In this research, a multi-resolution image data
set was acquired at different altitudes and pixel scales; this study was based on imagery acquired at 500 ft with a
spatial resolution of 30 cm, the highest resolution in the data set. Radiometric and geometric corrections were
performed as part of initial preprocessing by Gerylo et al. (1997).
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2.2 FIELD MEASUREMENT OF LAI

Field data were collected in 1996 and 1997 involving measurements of LAI, crown closure, tree diameter,
species and tree spacing. Fourteen plots were identified which contained homogeneous or near homogeneous forest
species over a square 10 x 10m area. All plots used in this paper contained aspen. LAI was estimated in the field
using a Decagon' AccuPAR hand-held ceptometer which measured canopy photosynthetically active radiation (PAR
400-700nm). PAR values were obtained below the forest canopy near ground level, while measurements obtained in
nearby clearings served as above canopy measurements of PAR. These measurements were input to equations that
derive LAI as a function of the amount of PAR, as described in Peddle and Johnson (1999). Measurements were
obtained at each corner and in the center of each plot, for a total of 5x14 = 70 LAI sites. These plots were located in
the airborne imagery with reference to GPS data acquired in the field and visual alignment of image data with
reference to plot information.

3.0 METHODS

3.1 MIXTURE ANALYSIS

Spectral mixture analysis image endmembers were selected from all 3 bands of the high-resolution 500 ft
MSV imagery (Peddle and Johnson, 1999). It was not possible to use field reference endmembers from a
spectroradiometer because the image data could not be converted to surface reflectance since radiometric calibration
ground spectra co-incident with image acquisition were not available. As in the earlier study, a two-endmember
model was used (sunlit canopy and shadow) as the high canopy density obscured the forest floor (background
endmember) in these plots (Peddle and Johnson, 1999). The mixture analysis of the 14 image scenes and 70 LM
sites was performed using ENVI (1998) software. The output produced from the analysis was a set of shadow fraction
images and canopy fraction images, where each pixel values corresponded to the magnitude of shadow and canopy
derived from the SMA for each pixel, respectively.

3.2 TEXTURE ANALYSIS

First-order and second-order texture analyses were completed using ENVI (1998) software applied to the 14
airborne images containing the forest test plots. Texture was also computed from shadow and canopy fraction
images, and of NDVI images to provide a full spatial analysis of all image tone and sub-pixel scale features. First-
order texture measures were calculated directly from pixel values within a specified window. In this study, values for
mean, range, variance, entropy and skewness were computed. Second-order texture measures involved a two-step
process in which spatial co-occurrence matrices were computed to capture the spatial arrangement of digital pixel
values, from which various texture measures were then derived. Here, texture measures of homogeneity, contrast,
dissimilarity, entropy, second moment, correlation, mean and variance were calculated from the co-occurrence
matrices, using a quantisation level of 255 and a distance increment of 1. All texture analyses were run separately
using window sizes of 3x3, 5x5, 9x9, and 15x15 to evaluate the textural information which may exist over different
spatial scales. Since each forest plot was of dimension 10x1 Om, we used a maximum window size of 15x15
equivalent to a 4.5x4.5m area for these 30cm pixels, so that the maximum window dimension was less than half the
overall plot size. Texture values were computed for each pixel in a given plot. Texture measures derived from pixel
windows near the edge of plots included some pixels outside the plot. This did not affect the analysis since the plots
were positioned at or near individual scene centers, resulting in ample image data being available outside the plots
which contained the same forest species and stand characteristics as in the plot. Further, four of the five LAI
measurements per plot were obtained at the plot corners, near the image plot boundary.

3.3 LAI PREDICTION

The data set of image bands (red, green, MR), mixture fraction images (shadow, canopy fraction) and texture
images (first and second order variables) were assembled and the pixel values at the locations of the 70 LAI sites
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within the plots were extracted from each image. NDVI ([NIR-red]+[NlR+red]) was also computed for each pixel and
added to this data set. Regression analysis was used to assess the ability of image tone, texture, mixture analysis
variables, and NDVI values as independent variables for predicting the dependent variable LAI. For the texture
variables, different window sizes, texture measures, and input image bands were tested, including evaluation of
texture derived from mixture fraction images and NDVI. Individual independent variables were evaluated for predicting
LAI with reference to the magnitude of the coefficient of determination (r 2) for simple linear regression. Various
combinations of independent variables were tested in a series of multiple regression analyses. The ability to predict
LAI was assessed using the coefficient of multiple determination for multiple regression (R 2). Since the number of
independent variables differed over the various data set combinations tested, adjusted R2 values were reported instead
of R2 values alone, the latter of which can be artificially inflated by the mere presence of extra independent variables
in the model. This adjustment, based on the number of degrees of freedom, reduces the magnitude of R2
appropriately, thus making it statistically valid to compare R2 values obtained from different numbers of independent
variables. All R2 results reported here are adjusted R2 values. All regressions used a confidence level of 95%. The
quality of fit was limited in this study to adjusted R2 values: other measures such as statistical significance of the
regression coefficients, root mean square error, and plots of standardized residuals will be incorporated into a future
report of this work.

4.0 RESULTS AND DISCUSSION

4.1 IMAGE TONE FOR PREDICTING LM

4.1.1 Regression Results from Individual Image Tone Variables

Each of the six image tone variables were first tested for their ability to predict LAI (Table 1). Of the three
image bands, NIR provided the highest r2 of 0.15. The best overall result was obtained from the mixture analysis
shadow fraction (r2 = 0.54), while the NDVI result was quite low (r2 = 0.01). These are almost identical to results
obtained in boreal forest aspen stands in BOREAS (Peddle, 1997), while in conifer stands we typically see r2 = 0.30
to 0.45 with NDVI compared to r 2 = 0.70 to 0.80 from shadow fraction with LAI (Peddle, 1997; Peddle et al., 1999).
The canopy fraction (r2 = 0.12) was substantially lower than shadow fraction, yet, as we shall see later, this proved
to nonetheless contain new information not provided by shadow fraction or other variables. The significantly higher
shadow fraction result (r2 = +0.39) serves as a basis for further improvements in subsequent tests. Compared to
NDVI, the ability to quantify sub-pixel scale fractions appears to be critical for predicting LAI.

Table 1: Prediction of LAI using individual image tone variables alone. Regression
coefficients of determination (r2) shown for each of the 3 image bands, NDVI,
and spectral mixture analysis fraction of shadow (SMA S) and canopy (SMA C).

Image
Band

r2 with
LAI

Image	 r2 with
Variable	 LM

Green

Red

NIR

0.11

0.12

0.15

NDVI	 0.01

SMA S	 0.54

SMA C	 0.12

4.1.2 Multiple Regression Results from Combinations of Image Tone Variables

We first tested various combinations of image tone variables that did not include any mixture fraction
variables (Table 2). The highest result was obtained using all 3 bands with NDVI (R2 =0.17). When shadow fraction
(SMA S) was included, all results were R 2 =0.54 or greater. The use of image bands and NDVI with SMA S
provided little or no improvement (maximum R2 =0.55). This is essentially the same as SMA S alone (Table 1).
However, canopy fraction (SMA C) with SMA S provided an improvement (R 2 =0.60), but again when image bands
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and NDVI were used with both fractions, the improvements were very small (R2 =0.61). The image bands and NDVI
appear to contribute no additional or new information not already provided by mixture fractions. In contrast to this,
the shadow and canopy fractions each contribute different and useful information for the prediction of LAI. This is
quite significant, since we have never tested different mixture fractions together in this way. It would appear that to
obtain optimal results from mixture fraction tone values, the use of several fractions may be recommended.

Table 2: Prediction of LAI using combinations of image tone variables. Coefficient of multiple
determination for multiple regression (adjusted R) values shown for the 3 image bands
[Green(G), Red(R),NIR], NDVI, and fractions of shadow (SMA S) and canopy (SMA C).

Image
Variables

R2 with
LAI

Image
Variables

R2 with
LAI

NIR, NDVI 0.16 SMA S, NIR, NDVI 0.54

G, R, NIR, NDVI 0.17 SMA S, G, R, NIR 0.55

SMA S, MR 0.54 SMA S, G, R, NIR, NDVI 0.55

SMA S, NDVI 0.54 SMA S, SMA C, G, R, NIR 0.61

SMA S, SMA C 0.60 SMA S, SMA C, G, R, NW, NDVI 0.61

4.2 IMAGE TONE AND TEXTURE FOR PREDICTING LAI

4.2.1 Overview of Results from All Texture Analyses

In these experiments, we tested 5 first-order and 8 second-order texture measures over 4 different window
sizes for computing texture from 6 different image tone variables. Further, we tested a large variety of different
combinations of variables in a series of multiple regression analyses. This produced a very large set of results which
were impractical to present or discuss here. Instead, we have extracted the major themes from these results, which are
discussed first in more general terms in this section, and followed by more in-depth interpretations with reference to
summary tables in subsequent sections.

We found that texture provided some new and useful information to improve the prediction of LAI. In
general, window size had the greatest overall influence on texture performance. For all texture measures, we
consistently found a steady increase in predictive ability as window size was increased. Accordingly, we list results
from the minimum (3><3) and maximum (19(15) window sizes only, to illustrate the range of results obtained. In
terms of different first-order texture measures, entropy and skewness yielded substantially lower results or were
unrelated to LAI, therefore, we show results from mean, range, and variance only since these were the most useful
within that group. Second-order texture measures generally performed better than first-order measures, suggesting that
forest structural information was captured more effectively using the two-step method in which spatial patterns am
first extracted using co-occurrence matrices. For these results, we listed only the three best measures (homogeneity,
contrast, dissimilarity) based on an overall assessment, although we note that other measures also performed almost
as well as those reported here. To provide some direct insight into first-order and second-order measures, we include
both types of measures in the initial set of texture results reported.

4.2.2 Regression Results from Individual Texture Variables

To provide a thorough and unbiased test of texture, we analysed each of the selected texture measures derived
from each image tone variable. Separate linear regressions were performed using each texture variable alone for
predicting LAI, to assess the independent information content provided by texture (Table 3). Texture window size
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was quite important, with consistent improvements found with larger windows over the four window sizes tested.
The average improvement from a window size of 3 to 15 was an increase in r 2 =+0.08. Second-order texture variables
showed a greater average improvement with increased window size (r2 =+0.11) compared to first-order texture (r2
=+0.05). The best first-order texture measure at each window size was range (average r2 =0.13), while among second-
order variables, dissimilarity was the best at all window sizes (average r2 =0.16). Texture dissimilarity computed over
a 15X 15 window size produced the best overall texture results.

Table 3: Prediction of LAI using individual image texture (Tx) variables alone. Regression
coefficients of determination (r2) values shown for first-order texture variables range,
mean, variance (VAR), and second-order texture variables homogeneity (HMG),
contrast (CON), and dissimilarity (DIS) derived from green, red, near-infrared (NIR),
spectral mixture analysis shadow fraction (SMA S), canopy fraction (SMA C), and
NDVI, using 3x3 and 15x15 window sizes.

Texture
Measure

Green Tx
3	 15

Red Tx
3	 15

NIR Tx
3	 15

SMA S Tx
3	 15

SMA C Tx
3	 15

NDVI Tx
3	 15

Range .11 .14 .10 .14 .14 .25 .12 .17 .11 .10 .10 .09
Mean .09 .17 .10 .16 .13 .25 .02 .02 .14 .28 .00 .00
VAR .09 .14 .07 .14 .09 .18 .09 .16 .09 .09 .09 .15

HMG .05 .14 .04 .13 .06 .19 .12 .21 .00 .22 .00 .20
CON .10 .07 .09 .16 .12 .27 .10 .20 .00 .21 .00 .17
DIS .13 .07 .11 .16 .16 .29 .13 .24 .13 .25 .11 .19

In terms of absolute performance, perhaps the most significant result was obtained by texture analysis of
the image bands. Image band texture variables alone were better predictors of LAI compared to image tone variables
for each of the 3 bands. This is quite significant, since it suggests that texture may actually be more important than
tone for these bands. The largest improvement was found with the NIR band, which increased from an r 2 =0.15 (tone)
to 0.29 (texture dissimilarity), the highest of any of the texture results. NDVI texture dissimilarity increased the r2
from 0.01 (tone) to 0.19 (texture). A similar, though less dramatic, improvement was found with texture derived
from the canopy fraction image, for which the r 2 increased from 0.12 (tone) to 0.25 (texture dissimilarity), with the
first-order mean variable having an r 2 =0.28, the second- highest individual texture result. Shadow fraction image
texture also provided a good result (dissimilarity r 2 =0.24 ), although this was much lower than the original fraction
tone value (0.54). The differences between canopy and shadow fraction in terms of tone and texture predictive
abilities for LAI further illustrates the differences in information contained in these two mixture fractions. Overall,
texture appears to be more necessary for image bands and NDVI, than with mixture fractions.

4.2.3 Multiple Regression Results from Combinations of Tone and Texture Variables

Based on results from the previous section, we used the texture dissimilarity measure from a 15 X 15 window
applied to all image tone variables, and tested a variety of tone and texture variable combinations (Table 4). Space
does not permit a full treatment of all these results; instead, we summarise the major trends. The best result obtained
from an exhaustive test of different combinations of image bands and NDVI tone and texture (i.e. no mixture
fractions) was R2 =0.38, using all available variables. This was an improvement over image bands and NDVI tone
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alone (R2 =0.17, Table 2) and image and NDVI texture alone (R 2 = 0.36), suggesting that both image tone and, in
particular, image texture are important. However, the level of predictive ability (R 2=0.38) using tone and texture
from all image bands and NDVI (8 variables) is still unacceptably low, and still significantly less than shadow
fraction alone (r2=0.54, Table 1).

We then investigated improvements to the mixture fraction results using various combinations of tone and
texture. Individual mixture fraction tone and texture resulted in an increase in R 2 with canopy fraction from 0.25
(texture) to 0.30 (tone and texture), while for shadow fraction an increase from 0.54 (tone) to 0.60 (tone and texture)
was found. When texture was applied to both fractions and used with the original fraction tone images, the predictive
ability increased further to R2 =0.66. This was quite significant, as it showed the importance of both fractions as well
as texture. Different combinations of image band and NDVI texture did not improve the SMA results, and in some
cases these additional variables resulted in a slight decrease in R 2 values. Using all available variables, that is, the 8
image and NDVI tone and texture variables (which had an R 2 =0.38) together with the 4 SMA tone and texture
fraction images (R2 =0.66), produced an overall R2 =0.70, which was the best result obtained in the study.

Table 4: Prediction of LAI using combinations of image tone and texture variables.
Coefficient of multiple determination for multiple regression (adjusted R 2) values
shown using Green, Red, NIR, NDVI, and spectral mixture analysis fractions of
shadow (SMA S) and canopy (SMA C). Texture (Tx) computed as second-order
dissimilarity over a 15x15 window.

Image
Variables

R2 with
LAI

Image
Variables

R2 with
LAI

Green Tx, Red Tx,
NIR Tx, NDVI Tx .36 SMA C, SMA C Tx .30

Green, Green Tx, Red, SMA S, SMA S Tx .60
Red Tx, NIR, MR Tx,
NDVI Tx, NDVI Tx .38 SMA S,SMA S Tx,SMA C,SMA C Tx .66

Green Tx, Red Tx,
MR Tx, NDVI Tx,
SMA S Tx, SMA C Tx .37

Green, Green Tx, Red, Red Tx,
NW, NW Tx, NDVI Tx, NDVI Tx,
SMA S,SMA S Tx,SMA C,SMA C Tx .70

5.0 CONCLUSIONS

The ability to extract information over different scales from remotely sensed imagery has been shown to be
critical for estimating biophysical variables such as LAI. Sub-pixel scale shadow fraction was found to be the best
individual predictor of LAI (r2=0.54) compared to image tone (r2=0.15) or NDVI (r2=0.01). This was further improved
with the addition of canopy fraction and texture variables over large image windows (R 2 =0.66). A combination of
mixture fractions, image and NDVI tone and texture produced the best result of R2 =0.70, which is significant for
montane deciduous stands. Larger window sizes and second-order measures provided the best texture information,
particularly with the original image bands. It may be useful to test larger window sizes than was practical here, or to
use image semi-variance and texture to optimise window size selection (Wulder et al., 1998). In this mountainous
environment, we would also expect further improvements using topographic corrections. Given these results, further
improvements with other forest species (e.g. spruce and pine) may be possible, for which we already have obtained
good predictive capabilities for LAI and other biophysical variables using shadow fraction alone (e.g. r2=0.74-0.85:
Peddle, 1997; Peddle et al., 1999). From these results, it is clear that mixture fraction variables are more important
than texture measures, however, the latter also contributes additional and useful information pertaining to forest
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structure and is therefore worthy of consideration. This suggests that the ability to extract information at scales
which are both larger and smaller than the pixel spatial resolution is important for maximising the predictive
capability of forest biophysical variables using airborne remote sensing imagery.
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