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Abstract

The Naia program is concerned with the design and implementation of an ecologically-
oriented spatial and knowledge-based framework to support forest and land resource manage-
ment. As part of this program a decision support system was designed and implemented with
the capability of representing the knowledge used by a forest ecologist to infer a forest
ecosystem from a variety of data sources. The system has been designed as a knowledge and
information framework (i.e. shell) which operates in conjunction with a GIS and a rela-
tional database. The shell consists of a knowledge base, a predictive mapping tool, and a
consolidation tool. The predictive mapping tool implements a combination of deterministic
and probabilistic inference mechanisms which predict ecosystems from topography, forest, and
soil maps. The consolidation tool has the capability of consolidating ecosystem maps based on
a variety of decision criteria. The tools have been tested in three different areas of west-
central Alberta. Preliminary test results indicate that with the use of ecological knowledge of
the area reasonably accurate ecosystem predictions can be made from regular map data. An
ecologically-oriented predictive mapping technology provides forestry organizations with a set of
tools and an effective means upon which to base management planning. Once in place, this
technology will lead to improved resource decisions with significant opportunities to save costs.
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harvest planner should be capable of determining how
much of a particular tree species can be harvested annually
in a certain area without depleting the inventory over a
longer period. If there is vegetation in the area that is vital
for sustaining the local wildlife, then a harvest plan must
be generated that guarantees adequate quantities of the
sustaining vegetation.

Increasingly, forest management is being replaced by
ecosystem management in order to accommodate multiple
and often conflicting demands. Ecosystem classifications
tend to be hierarchical. At the uppermost level they
discriminate ecoregions or biogeoclimatic zones. These
units identify vegetation and soil development patterns
resulting from a similar macroclimate [13]. Ecoregions are
mapped at scales from 1 : 250,000 to one to several
million.

At the bottom of the hierarchy are site specific land
units belonging to the same soil series [3] with the poten-
tial of supporting vegetation belonging to the same plant
association. Depending on the school of site classification,
these units are referred to as ecosystem types of the bio-
geoclimatic school of site classification [8] as applied in
British Columbia, and as eco-elements by the Canada
Committee on Ecological Land Classification [5].

In the present study, the unit of greatest resolution
identified is the ecosystem association which is an abstract
taxonomic unit above the ecosystem type, within an
ecoregion. Ecosystem associations are defined as land
areas with the potential of supporting similar plant
communities with similar successional development,
belonging to the same plant association. More than one
soil family may be represented. The ecosystem association
corresponds to the ecosite of the Canadian Committee on
Ecological Land Classification [5] and is the fundamental
site unit described in [1]. The ecosystem associations
provide information on tree dominants, understory covers,
soil properties, physiographic features, productivity and a
number of forest management interpretations. Knowledge
acquired from sample plots in the Corns and Annas
database [1] was encoded into the Naia system as de-
scribed in this paper.

As mentioned before, most forest inventories do not
include detailed forest ecosystem information. Forest
companies will therefore soon face two important issues:

how to obtain such information in a cost efficient way

how in the short term to use such information in order
to improve management decisions.

Hughes Aircraft of Canada Limited, Spatial Data
Systems	 the Alberta Research Council have
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taught us that this is not necessarily the case. A key result
of the Naia study has been that in many cases ecosystems
can indeed be predicted from regular map data with a
reasonable degree of accuracy. In some cases it is even
possible to exactly predict the ecosystem. Once such
predictions have been made for a particular geographic
area the information created can be spatially consolidated
by means of a variety of decision criteria. For example,
harvest planners may want to create an ecosystem map
that aggregates the ecosystem types by their optimal
season of harvest, or silviculturists may wish to map
polygons with high vegetation competition hazard.

In order to design the Naia DSS new theoretical
ground had to be broken. The forest ecologist's knowledge
of ecosystems and their occurrence is in part deterministic
(also referred to as symbolic) and in part probabilistic in
nature. A great deal of work has been done in the field of
Artificial Intelligence on symbolic and probabilistic
constraint satisfaction [4,7,9,10,11]. However, the
question of how to combine these two forms of constraint
satisfaction has not been studied in depth. Probabilistic
constraint satisfaction can be subdivided into attribute
uncertainty and spatial uncertainty management. Spatial
uncertainty addresses the question of the existence and
location of spatial map features - point line polygons.
Attribute uncertainty addresses the interpretation of such
features / polygons. This paper deals with the determinis-
tic and attribute side of uncertainty management only.
Spatial uncertainty and its computation is addressed in the
companion paper by Crain et al. [2].

The Naia DSS has been designed as a shell. A descrip-
tion of the ecoregions, ecosystem associations and ecosys-
tems of a particular geographic area can be characterized
within the shell together with a number of attributes and a
range of possible values. The attribute values constrain the
ecoregions and ecosystem associations possible in both a
symbolic and probabilistic manner. In the next section we
describe the shell's components. Section 3 discusses the
implementation of the system, whereas section 4 illustrates
the preliminary results of experimental tests. In section 5
we discuss some potential applications for the shell.

The Naia decision support shell

The shell consists of 3 components: a knowledge base, a
classification tool, and a consolidation tool.

The knowledge base

The knowledge base contains object-centered descriptions
of three types of objects: polygons, attributes, and ecosystems.
The shell has been designed to oper-'- in conjur,tir,-
with a GIS and relational database: r	 u,..
shell abstracts a set of polx.,,qrs 	 a nap or
the result of a map overlay	 values
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process with a domain specialist. As was already discussed
in the introduction ecosystems have a hierarchical organi-
zation and are embedded in a specialization hierarchy.
Such a hierarchy represents the object at different levels of
refinement. Fig. 1 shows the appearance of such a hierar-
chy for ecosystems. Ecosystems are essentially described at
three levels of refinement, an ecoregion level, an ecosystem
association level, and an ecosystem level. The level of
specialization used is determined by the amount of detail
required for the planned management activity and by the
availability of data. Such considerations determine the
appropriate scale for mapping a site classification. The
purpose of the DSS is to provide a meaningful representa-
tion format for ecosystem classifications, while taking into
account data availability and reliability. The relationships
(and constraints) between ecosystems and attributes are
expressed in the form of belief functions which express the
degree of belief of a (human) expert in the occurrence of
an ecoregion, association, or ecosystem, given a particular
value for an attribute. Belief functions represent the
domain specialist's accumulated experience and enhanced
confidence gained by making classifications in the field
based on the (attribute) data provided.

The classification tool

Each polygon defined in the knowledge base is expected to
have a series of attributes each with one or more values.
The objective of the classification tool is to let these
attributes act as constraints on the ecosystems possible
and to compute a list of possible ecoregions and ecosystem
associations ordered by a belief measure. The classifica-
tion process forms a combination of symbolic and

probabilistic reasoning and it is guided by two different
principles: the principle of least commitment and the
principle of graceful degradation. The first principle
requires that at any time the attribute data are represented
by an ecosystem at a specialization level that is appropriate
for those data. The second principle implies that the
classification process reflects the reliability and availability
of attributes. More in particular, we do not want the
classification process to break down completely, if one or
more attributes are missing in a polygon, although we do
allow the level of confidence in the results to decrease.

The principle of least commitment is enforced by
specifically allowing certain attributes to constrain ecosys-
tems at one particular level of specialization only (see Fig.
I). As an example, "elevation" as an attribute cannot by
itself very accurately distinguish between ecosystem
associations, but does have that power for separating
ecoregions. Graceful degradation is reflected in two ways.
First, the system always generates a classification, no
matter how many or few attributes are available. Second,
the system provides a confidence factor for the classifica-
tion of each polygon which reflects both the quantity and
reliability of the attributes available.

In analogy with many perceptual systems the classifica-
tion process can be looked at conceptually as a cycle of
processes. In the Computer Vision literature this cycle is
often referred to as "the cycle of perception". Fig. 2 illus-
trates this cycle. It consists of four processes: cue discovery,
model invocation, model testing, and model elaboration. In the
Naia system cue discovery is essentially the process of
gathering together all the necessary information such as
the maps and attributes. It can therefore also be looked at

Attributes =>
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Figure 1: The
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as a segmentation process with the capability of creating map
overlays. This task is performed by the GIS (See Skye's
companion paper for a description of this process [12]).

The GIS polygon overlay process provides resultant
polygons with attributes attached to each. These polygons
constitute the finest resolution the system is capable of
producing based on the spatial information available.
Classification can also be looked at as a process of model
refinement. Attributes serve as cues for the classification
process. Model invocation is the start button that sets the
classification process in motion. Based on the attributes
found during cue discovery it creates a single (abstract)
classification model for each polygon. Model testing is the
process that computes the influence of each input attribute
on this classification model. As a result the original model
will be replaced by one or more specialized models. Model
elaboration is the process that adapts the classification
models of each polygon based on the classification models
of their immediate neighbors. Model elaboration is the
task performed by the consolidation tool. Consolidation
often leads to a merging of neighboring polygons which
effectively constitutes a resegmentation of the input maps,
thus closing the cycle. The cycle is usually entered at cue
discovery.

The consolidation tool

Consolidation represents the model elaboration and
resegmentation stage of the cycle. The consolidation tool
can compare interpretations of adjacent polygons and can
line up adjacent polygons as merging candidates based on
some merging criterion defined by the user. The system
provides the capability of doing merging based on a variety
of deterministic and probabilistic criteria. These include:
merging based on the same classification models (or

model testing

model elaboration model invocation

cue discovery

Figure 2

subset of models) occurring in two adjacent polygons,
merging based on the same most likely classification
models, and merging based on model management
interpretation criteria. The consolidation tool passes on
the appropriate information to the GIS which actually
performs the resegmentation.

Implementation

The system has been implemented and tested in three
different areas of west-central Alberta; one area near
Grande Prairie managed by Canadian Forest Products,
and two areas near Hinton managed by Weldwood,
Hinton division. The models used formed a subset of
ecosystems as defined in the "Field Guide to Forest
Ecosystems of West-Central Alberta" [1]. This led to the
creation of the hierarchical knowledge base illustrated in
Fig. 3. Each ecosystem occurs within one of three
ecoregions: Lower Boreal Cordilleran (LBC), Upper
Boreal Cordilleran (UBC), and Subalpine (SA).

For each of the test areas topographic base, soil, and
forest cover maps were obtained and overlaid by means of
a GIS. All available attributes of the overlaid maps were

Attributes =>
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stored in a relational database. A characteristic subset of
attributes was selected for use in the DSS. These include
attributes such as elevation, aspect (from base map), tree
species composition and abundance (from forest cover
map), and texture, drainage (from soil map) (see also
Skye's paper [ 12]). For the prototype we used ArclnfoTM
as a GIS, and Oracle" as a relational database. The DSS
was implemented in Common Lisp Object System (CLOS).

The classification process is analogous to what forest
ecologists do on the ground using conventional identifica-
tion keys in field guides. Each polygon is at first inter-
preted as an undifferentiated ecosystem (which we know
for certain). No attributes have been processed at this
time. As a result our confidence in the current interpreta-
tion is zero. As we introduce the attributes one by one the
ecosystem classification model is forced down the hierar-
chy (see Fig. 3). The elevation attribute, for example, may
constrain the undifferentiated ecosystem to specialize in to
lbc and ubc, each with an associated belief which expresses
the system's relative confidence in each classification.
Another attribute (e.g. aspect) may allow only some of
lbc's and ubc's refinements and may force the classification
down into the ecosystem association level (e.g lbc1 land
ubc5). The classification process thus takes the form of a
constraint based process that propagates constraints in
both a vertical direction (in between levels of specializa-
tion) and in a horizontal direction (at one specific level of
specialization). The constraints arc both symbolic (i.e each
attribute value allows a specific subset of ecosystems only)
and probabilistic (i.e each ecosystem comes with an
associated belief that requires continuous updating as new
attributes are brought in).

The results of the classification process are stored again
in the relational database. A GIS with access to this
database can then be used to display the results as a map
of predicted ecosystem associations [12]. For example, the
user can define a legend for each ecosystem association
and display for each polygon the ecosystem with the
strongest belief. For each polygon in the map the user can
also bring up a window that displays all classification
information associated with the polygon. An example of
information contained in such a window is illustrated in
Fig. 4. The window displays information about the
polygons's attributes, classifications, and confidence. The
classification results are given on a level by level basis (see
Fig. 3). The confidence is expressed by a value between
0 and 1. It reflects the number of attributes that was
processed relative to the total number of potentially
available attributes.

The user is also given the possibility of looking at the
classification "trace" for each polygon. That is, the system
keeps a record of the complete classification process
attribute by attribute basis. Thus, the use, 	 i se,
what influence each attribute had on the .s	 i, — o,

orovides an easy means of tr.	 ttc,
''le results. If, for exar-	 -ore]
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Name: polygon 16
elevation: 950
aspect: Flat
texture: Organic
Drainage: Very poor

Classifications:

ecoregion level: [lbc 0.6] [ubc 0.4]
ecosystem association level: [lbc11 0.6][ubc5 0.4]

confidence: 1.0

Figure 4: Example output window

attribute values ecosystem association ubc5 should have
come out as the most desirable, then a close inspection of
the trace will reveal immediately which attribute(s) caused
ubc5 to loose its strength. The knowledge base may need
adjustment or it may raise questions about the quality of
the source map information.

Validation

As the validation process was still in progress at the time
of writing of this paper we can only report some prelimi-
nary (albeit encouraging) results. The knowledge base and
classification tool have been validated in two different
ways. In one of the test areas, for which an ecosystem
classification was determined by a ground crew, a sample
of 52 points was selected. The attribute data for each
point were entered into the system after which the system
generated a classification list. Several probabilistic update
formulas were experimented with. The most powerful
results were generated by means of a weighted averaging
formula and the Dempster-Shafer formula for evidential
reasoning [ 1 1] . Fig. 5 shows the results for both formulas.
The results are reported in three different categories: the
percentage of cases in which the most likely ecosystem was
also the human expert's choice (1), the percentage of cases
in which the expert's choice was among the first two most
likely choices of the system (2+), and the percentage of
cases in which the expert's choice was among the first
three most likely choices of the system (3+).

A knowledge base which is partially based on fuzzy
logic operations can be subject to what one may call
"pathological suppression". An ecosystem association is
pathologically suppressed if there is no combination of
attribute values that will force that association to come out
as the most likely classification. A second form of valida-
tion testing was therefore done to ensure that the knowl-
edge base did not suffer from this phenomenon. The
' -	 the test.
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Update formula

category weighted averaging dempster/shafer

1

2+

3+

63%

79%

88%

58%

79%

94%

Figure 5: Test point results.

of polygons based on the most likely classification shows a
very large reduction (by as much as 90% in one area) in
the number of polygons.

Discussion and potential application

Many forest companies do not yet have a land inventory
that includes the spatial distribution of forest ecosystems.
Without further aids, the classification of local ecosystem
associations will require a time consuming and costly
ground truthing effort. It is here that the Naia DSS can
become a worthwhile investment. The Naia DSS uses the
map data already available in the current land inventories
to predict the local ecosystem associations.

Depending on the attributes available and their values
the Naia DSS will sometimes uniquely predict and map an
ecosystem association whereas in other cases the result will
be a series of classification models each with an associated
belief. Forest ecologists can use the system to locate areas
of homogeneity and disparity. In homogeneous areas a few
ground sample points may suffice to verify the system's
prediction, whereas in areas of disparity more intensive
ground truthing may be necessary. The ecologist can also
take a careful look at the belief values of each ecosystem.
Less ground verification may be necessary in areas where
one ecosystem stands distinctly above its competitors.
Finally, the system may sometimes fail to come up with
any interpretation at all. This by itself is useful informa-
tion. It indicates that either there is a gap or incorrectness
in the ecological models for the area, or it may indicate a
problem with some of the attribute source data (i.e. the
maps). Overall the Naia DSS can have the effect of
reducing the cost of building a forest ecosystem inventory.

The Naia DSS also has applications for forest manage-
ment. Because forest ecosystem classification systems
typically include management interprej ,.	 r
interpretations can be used f ihe predic tive
consolidation process. Manage 	 xi;;-	 Ira tables
include such things as considcr,	 if harvest,

ing method, site prepai a ,Ictr,	 .:ompaction
and	 ' c ling hazard, ref....tr,-.:4:ion me	 .1 many

others. Any of these factors can potentially be used as a
consolidation measure in an ecosystem map. The DSS
thus has the capability of supporting more efficient
planning and resource decisions.

As mentioned before, the Naia system is a DSS based
on ecosystem classification knowledge. Two decision
support tools have been built which assist in ecosystem
prediction and consolidation. These tools can address
some of the short term needs of forest companies intent
on developing forest management strategies based on
sustainable development and integrated resource manage-
ment. In the longer term a variety of other tools will be
needed. These include: predicting changes in ecosystems
over time (e.g. ecological succession), predicting volumes
based on different harvesting and reforestation proce-
dures, suggesting potential harvest areas based on a variety
of constraints such as minimally required quantities of
certain forest vegetation, and many more. Future phases
of Naia will be targeting such issues (see also Jones's
companion paper [6]).
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