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Abstract 
The NAIA program is concerned with the design and implementation of an ecologically-oriented 
spatial and knowledge-based framework to support forest and land resource management. As part 
of this program a decision support system was designed and implemented with the capability of 
representing the knowledge used by a forest ecologist to infer a forest ecosystem from a variety of 
data sources. The system is object-oriented. It has been designed as a classification shell with the 
capability of representing uncertainty in a hierarchically structured knowledge base. The classifi­
cation process implements a combination of symbolic and evidential reasoning and it predicts 
ecosystems from topography, forest cover, and soil maps. The shell operates in conjunction with a 
GIS. Polygons are at first interpreted as unspecialized eco-units. As features from different maps 
become available this interpretation is gradually specialized into one or more ecoregions or eco­
system associations. The final result of the inference process consists of a listing of possible eco­
system associations each with an associated belief value. This approach is referred to as 
Evidential Discrimination Reasoning. Three different ecosystem classification systems have been 
implemented covering several regions of Alberta and Manitoba. Test results indicate a prediction 
accuracy of 63 - 94%. Two different update rules were experimented with: Weighted Averaging 
and Dempster/Shafer. Test results favor Weighted Averaging. The decision support system can be 
used as a practical tool that can assist with the creation of an ecosystem-based land inventory 
while saving costs and at the same time improving the quality of the classification process. 

1. Introduction. 
This paper has three objectives: 
1. To explain the concept of Evidential Discrimination Reasoning and its implementation as a 

classification shell. 
2. To show how the shell can be used in the design of a decision support system capable of infer­

ring ecosystems from topography, forest, and soil data. 
3. To show how such a system can be used as a cost effective tool in the creation of an ecosystem-



based land inventory while at the same time improving the quality of the classification process. 

The NAIA program is a joint venture between Hughes Aircraft of Cant.ttl's Spatial Data Systems 
division and the Alberta Research Council. Its objective is to provide governments, forest indus­
tries, and other resource information users with practical, commercially-supported. and ecologi­
cally-oriented decision support tools for forestland planning. Designing the software and working 
closely with the forestry industry is a multi-disciplinary team of specialists in natural resources 
and information system technology. This project team is building a series of software tools using 
Geographic Information Systems, Knowledge-Based Systems, and computer modelling. 

The first product produced by the joint venture and also the focal point of this paper is a classifica­
tion shell with the capability to solve a wide variety of classification problems. With NAIA's 
focus on forestland planning the shell has been used to implement a decision support system with 
the capability to predict ecosystems from existing map data. 

Most of the existing forest inventories in Canada consist of topographic data (e.g. elevation, 
slope, aspect), forest cover data (mostly commercial tree species), and soil data. Due to political 
and socio-economic pressure forest management is quickly evolving into forestland management 
guided by the principle of sustainable development and integrated resource management (Jones, 
1993). This change is causing an increased pressure on forest companies and governments to tum 
forestland inventories into ecologically-oriented land inventories. Such inventories must not only 
contain forest overs tory data, but also data about the understory, shrubs, herbs, and other soil and 
land features . In addition, vollime-related information and data about the spatial distribution of 
the vegetation species described is needed. The latter information becomes particularly important 
when wildlife habitat is a consideration (Buech et al., 1990). 

Some standards for ecological land classification have been introduced in Canada both federally 
(Ironside, 1980) and provincially (Mitchell, 1981). Most land classification systems take a strati­
fied approach to the classification process. Ecosystems are represented at different levels of spe­
cialization (Le. refinement). An increasing specialization reflects a transition from macro­
bioclimate to micro-bioclimate. The Canadian ecological land classification system recognizes 
several levels of specialization. At increasing levels of specialization these are: ecozone, ecore­
gion, ecosite, and ecoelement. In this paper, we will follow the nomenclature used in Corns and 
Annas (1986) which refers to ecosites as ecosystem associations. The level of refinement pro­
vided by ecozone and ecoregion level classifications may suffice for some forms of strategic for­
estland management. At the operational level, however, forestland management requires 
ecosystem classifications at the ecoregion and ecosystem association level. Classification systems 
providing this level of specialization exist only for some parts of the country. The NAIA project 
has used three such classification systems for designated areas in Alberta and Manitoba (Corns 
and Annas, 1986; Knapik et al., 1988; Knapik et al., 1989). 

As mentioned before, many forest companies and governments are currently faced with the prob­
lem of how to transform existing land inventories into ecologically-oriented inventories that can 
support both strategic and operational management. This requires the availability of ecosystem 
classifications both at a small scale (i.e. ecoregion) and large scale, site specific (i.e. ecosystem 
association) level. The most straightforward approach to the creation of a new ecosystem inven-
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tory is to hire a team of forest ecologists who will use an ecosystem classification system to map 
the area at a scale of 1 : 15,000 by means of systematic ground observations and air photo inter­
pretation. However, extensive field work and data digitization is a costly practice, especially when 
forest management areas are very large. A more cost effective approach which is described in this 
paper is to use an ecosystem prediction decision suppon system to facilitate the ground truthing 
process. 

The NAIA classification system is a knowledge-based, object-oriented system implemented as a 
shell. Within this shell ecosystem classes are represented as models organized in a specialization 
hierarchy. The unit of interpretation is a polygon, which is obtained from a Geographic Informa­
tion System. Each polygon is interpreted in terms of one or more ecosystem classes each of which 
is embedded in a specialization hierarchy. The set of possible ecosystem classes is constrained by 
features which are associated with each polygon. Feature values constrain ecosystem classes in 
both a symbolic and probabilistic manner. These constraints are represented in the form of mass 
functions. For each polygon the classification process creates a listing of possible ecosystem 
classes each with an associated belief value. The classification process can be characterized as a 
process that at first classifies each polygon as an unspecialized eco-unit. As different features are 
introduced this classification is gradually specialized into one or more ecosystem classes located 
funher down in the specialization hierarchy while updating the beliefs of these classes. This 
approach is referred to as Evidential Discrimination Reasoning. 

The remainder of this paper is laid out as follows. In section 2 we explain the design of a classifi­
cation shell that embodies the Evidential Discrimination Reasoning (EDR) concept. Section 3 
describes the implementation of EDR as a decision support system (DSS) for predicting ecosys­
tems. Section 4 looks at the results of validating the ecosystem prediction DSS for three different 
areas in Alberta and Manitoba. As well, this section discusses how the DSS can be used in prac­
tice and how it can save costs. The paper is summarized in section 5, with acknowledgments and 
references in sections 6 and 7 respectively. 

2. The classification shell 

The classification shell is a generic tool for performing classification tasks. The shell consists of 
two components: a knowledge base component and a process component. 

2.1 The Knowledge Base. 
The knowledge base is object-oriented and it recognizes three types of objects: primitives, mod­
els, andfeatures. Primitives and features are derived from a data domain, whereas the models 
constitute an interpretation domain. Primitives are the unit of interpretation. They are interpreted 
by models. Both primitives and models can be characterized by means of a property list which 
takes the form of an attribute-value list. 

Primitives and models are linked by means of features. A feature is an entity that is derivable from 
input data. A feature can be discrete or continuous and can take on a range of possible values. A 
feature links a primitive with a model by means of a mass function. In the classification shell a 
mass function is a continuous or discrete function that can assume any value between -1 and + 1. 
Mass functions are obtained through knowledge elicitation sessions with domain experts. A mass 



function expresses the subjective belief of a domain expert in the occurrence of a model for each 
possible value of the feature represented by the function. Hereby -1 expresses strong disbelief, 0 
expresses neutrality, whereas +1 expresses strong belief. The function can be completely or par­
tially defined over the feature's value range. Through the mass function the value of each feature 
constrains both the models possible and the belief values these models can assume. 

The notion of a mass function is based on the idea of obtaining degrees of belief for one question 
from subjective probabilities for a related question. We are avoiding the term "belief functions" 
here, because these are usually associated with the Dempster/Shafer theory of evidence (Shafer, 
1976). In this paper we want to make an explicit distinction between the representation of beliefs, 
and the update rules used to update beliefs. The theory of belief functions combines the definition 
of belief functions with Dempster's rule for combining degrees of belief (Shafer, 1990). 
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Figure 1: an example of a mass function 
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Our mass functions need not be completely defined over the range of the feature's possible values 
and this is done for a very particular reason. In constraint-based reasoning problems we often 
need to combine symbolic and numerical constraints. Partially defined mass functions enable such 
combinations. Fig. 1 illustrates a mass function that represents the relationship between a feature 
and a model. For the range of values for which the function is defined, the model is not only per­
mitted to exist, but is also supported by a belief value. The absence of belief values for a sub­
range of feature values expresses a symbolic constraint. It means that in the range given the model 
cannot exist. Thus, mass functions have the capability of expressing both symbolic and numerical 
constraints. 

----------- -------- - -- - -



Models can often be organized in the fonn of an and/or graph more commonly referred to <.s a 
specialization hierarchy. Such hierarchies represent classes of models with similar propertes. The 
leaf nodes of the hierarchy represent elementary models which describe a primitive unambigu­
ously. All other nodes represent abstract classes of such models. Each class of models inherits the 
attributes and values of its parent in the hierarchy. When used as an interpretation in the classifica­
tion process an abstract class represents the fact that all of its descendents are a possible interpre­
tation. The prime representational advantage of specialization hierarchies is their inherent 
capability to represent primitives at different levels of abstraction or refinement. The prime pro­
cessing advantage of these hierarchies is their potential for increasing the processing efficiency of 
the classification process. We will discuss this in more detail in section 2.2. 

Feature 1 => 

Feature 2 => D [0.25] G [0.25] 

Figure 2: an example of a specialization hierarchy 

Fig. 2 illustrates a two-level specialization hierarchy. The role of inheritance in such hierarchies 
has received a great deal of attention in the Artificial Intelligence Knowledge Representation liter­
ature (e.g. Hanson et al., 1978; Brooks, 1981; Brachman, 1982; Mulder, 1988). However, the 
focus has mostly been on the inheritance of symbolic properties. Although some attention has 
been given to the propagation of beliefs in hierarchies (Pearl, 1986; Shafer and Logan, 1987) very 

h little attention has been paid to the inheritance of such numerical properties. The root node (A) in 
! Fig. 2 intrinsically represents the fact that each of its successors constitutes a possible interpreta-
". tion. At the belief level, however, things are less evident. Since A is the root node and is repre­

senting the whole interpretation domain we will have to believe A with absolute certainty (i.e. 1). 
~1 However, we have no information about the distribution of A's belief among its successors. Intu-
al itively, there are at least two possible ways out of this dilemma and we will refer to these as the 

strong inheritance and weak inheritance approach. 
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In the strong inheritance approach each model automatically inherits the mass functions assigned 
to its parent in the hierarchy. If a specialization hierarchy takes the form of a directed acyclic 
graph and a model has more than one parent, then rules for parent dominance must be provided. 
In Fig. 2 B and C inherit A's belief, D and E inherit B's belief and so forth. If, in addition, we 
adopt a normative approach (i.e. the belief in a model equals the sum of beliefs of its successors), 
then B and C will obtain 0.5 as a belief, whereas D,E,F, and G obtain 0.25 each. A weak inherit­
ance approach, on the other hand, prevents us from making any inferences about the beliefs of a 
successor, although, if we adopt the normative approach, we can still ascertain that, for example, 
the belief in B must be equal to the sum of the beliefs of its successors. However, knowing the 
belief in B, does not allow for any inferences of the belief in D and E. The classification shell 
implements the strong inheritance approach. 

2.2 The Classification Process. 
The objective of the classification process is the creation of a listing of possible models for each 
primitive whereby each model carries an associated belief value. The classification process is 
based on two principles: the principle of least commitment and the principle of graceful degrada­
tion. The first principle requires that at any time input data (represented as features) are classified 
at a level of specialization that is appropriate for those data. The second principle implies that the 
classification process reflects the reliability and availability of input data. More in particular, the 
classification process must still produce a listing of models if one or more features have no value, 
even though such results may be less reliable. For this purpose the shell maintains a confidence 
value (a number between 0 and 1) for every model listing. . 

The least commitment principle is also illustrated in Fig. 2. Each primitive is constrained by one 
or more features. The belief functions of these features normally constrain classes of models at 
one particular level of specialization. Feature 1, for example, constrains B and C, whereas feature 
2 constrains the models D, E, F, and G. At the start of the classification process each primitive is 
depicted by the model at the root node of the specialization hierarchy with a belief 1. No features 
have been considered at this time and the confidence in the current listing will therefore be O. For 
each primitive we sequentially process each of its features. Every feature introduced will replace 
the current model listing by one defined at the level of specialization imposed by the feature. Each 
feature also has an associated confidence. As more and more features are processed, the model 
listing becomes more specialized while their belief values are updated. As well, the confidence in 
the listing increases with the number of features processed. The evidence-based process of spe­
cializing a root model into one or more of its specializations is a process of discrimination and is 
therefore referred to as Evidential Discrimination Reasoning. 

The selection of a mass function and update rule is a task that must be dealt with in the context of 
the application (Shafer, 1990). Although the value of a mass function is expected to range 
between -1 and + 1, there are no further restrictions on the use of mass functions and update rules . 
Mass functions and update rules are therefore represented independently. An explicit distinction is 
thus made between the representation of beliefs and the process that updates beliefs. 

The processing of each feature takes place in three stages: 
1. Hierarchical (symbolic) constraint propagation. 
2. Hierarchical belief distribution. 
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3. Belief updating. 

Hierarchical constraint propagation applies the constraints imposed by a new feature to the exist­
ing listing of models. It removes the models from the current listing that are inconsistent with the 
models proposed by the new feature. Conversely, hierarchical constraint propagation also 
removes those models proposed by the new feature that are inconsistent with the models in the 
current listing. Hierarchical constraint propagation has been implemented as a network consis­
tency algorithm (Mackworth, 1977). A special version of such an algorithm was developed for 
hierarchically structured domains (Mulder,1988). A particular advantage of the hierarchical algo­
rithm is its efficient behavior both in space and time. The reason for this behavior is that the size 
of the model listing (i.e. the domain size) can be suppressed by replacing sets of elementary mod­
els by a smaller set of abstract models. Whereas most network consistency algorithms are expo­
nential with respect to the domain size, the hierarchical algorithm is cubic in the domain size in 
the worst case, but only logarithmic in the domain size in the best case (Mackworth et al., 1985). 

Hierarchical belief distribution projects beliefs from one level of specialization onto another. The 
general assumption is made, that a belief update rule requires two model listings of identical mod­
els with similar or different beliefs. Before the beliefs of the models in the current listing can be 
updated with the beliefs associated with the model listing of a new feature, the beliefs in the cur­
rent listing and the new listing must be "levelled". This process is best explained by means of an 
example. Suppose the current model listing is: [B 1.0] (see Fig. 2). Let us also assume that the list­
ing provided by the new feature is: [D 0.7 E 0.3]. Before belief updating can take place, the belief 
of B must be brought down (i.e. levelled) to the level of D and E. With strong inheritance and a 
normative approach we can replace [B 1.0] by [D 0.5 E 0.5] . This creates two listings with identi­
cal models but with different beliefs. 

The choice of an appropriate belief updating rule is dependent on a variety of factors . These 
include: the domain of application, the appropriateness of a normative approach, and the interde­
pendence of features . As mentioned before, the classification shell itself does not impose any par­
ticular update rule. The user can make that choice according to the requirements of the domain of 
implementation. A mathematical survey of updating rules has been provided by Planchet (1989). 
A review of the practical meaning of these rules can be found in Smets (1993) . 

3. Implementation. 

Ecosystems can be organized as a taxonomy based on commonalities in bio-geoclimatic proper­
ties. Different applications require different levels of refinement. At the upper levels in a land 
classification hierarchy ecoregions provide a framework for small scale planning and land use 
policy. Examples include the reservation of national parks or protected areas, areas climatically 
suitable for wilderness creation, forestry, or arable agriculture. Ecoregions are typically mapped at 
scales of 1 : 2,000,000 to 1 : 250,000. At the lower levels of the hierarchy, ecosites or ecosystem 
associations provide a framework for large scale land use planning such as roads and access, har­
vest scheduling, location of environmentally sensitive sites, gravel deposits, wildlife habitat etc. 
Ecosites or ecosystem associations are typically mapped at scales of 1 : 50,000 to I : 12,000. 

Several ecosystem knowledge bases have been implemented in the classification shell. The con-



,; struction of these knowledge bases was the result of an intensive knowledge elicitation process 
with forest ecologists. Local forest ecosystem knowledge bases have been implemented by using 
the classification systems for West-Central Alberta (Corns and Annas, 1986), and for the Duck 
Mountain (Knapik et al., 1988) and Sandilands area (Knapik et al., 1989) in Manitoba. As all 
knowledge bases are similar in set up, we will only discuss the Duck Mountain area here. The 
specialization hierarchy for ecosystems is two levels deep. The root node is an eco-unit (level 0), 
which can be specialized into a series of ecoregions (level 1). Ecoregions, in tum, can be special­
ized into ecosystem associations (level 2). Fig.3 illustrates the Duck Mountain specialization hier­
archy. Duck Mountain has two ecoregions: Boreal Mixed Woods (BMW) and Mid Boreal 
Lowlands (MBL). BMW has 13 specializations: BMWI, 2, 3,4, 5a, 5b, 5c, 5d, 5e, 6, 7,8, and 9. 
MBL has 18 specializations: MBLl, 2a, 2b, 3,4, 5a, 5b, 5c, 6, 7, 8a, 8b, 8c,9, 10, 11, 12, and 13. 
These ecosystem associations are elementary models in the sense that they can be uniquely identi­
fied based on elevation, aspect, overs tory, understory, shrub, herb, and soil data. 

Ecoregion level 

Ecosystem Association 
level B 1 

BMW9 
MBLI 

Figure 3: specialization hierarchy for the Duck Mountain, Manitoba area 

The primitives in this system are polygons which are the result of overlaying a geographic, forest 
cover, and soil map. Each polygon is described by a variety of attributes such as area, perimeter, 
and neighbors. A variety of features can be derived from the maps. These include: elevation, 
aspect, forest cover, soil texture, drainage, and organic thickness. The mass functions were pro­
vided by a forest ecologist with expertise in the local classification system. For the ecosystem 
domain the mass functions are seen as a SUbjective expression of the probability of the occurrence 
of a particular ecoregion / ecosystem association given a particular feature value. These probabil­
ities are based on the ecologist's field research and experience. 

Not all input data are necessarily equally reliable. Each feature was therefore assigned a confi­
dence value such that the sum of all confidence values equals 1. Beliefs were expressed on a scale 
between 0 and I where 0 means neutral and 1 very strong belief. Some mass functions were only 
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partially defined which means that symbolic constraints were applied. Belief values were nOlmal­
ized before the application of an update rule. As well, belief values were always distributed over 
mutually exclusive subsets of ecosystems which implies that the application of Bayes rule and 
Dempster's rule leads to the same result. 

Two different update rules were experimented with: Weighted Averaging and Dempster's rule as 
proposed in Shafer (1976). Weighted averaging simply updates beliefs by computing the average 
of the current belief and the belief introduced by a new feature. In this process both the current 
and new belief are weighted by their confidence values. We assume the features to be independent 
which is a requirement for the application of Dempster's rule. We chose these two approaches 
because of their differences in update behavior. Table 1 demonstrates this behavior in the case of 4 
features each of which provides beliefs for two ecosystems: A and B. Each feature supports A 
with belief 0.4 and B with 0.6. The table shows the resulting beliefs of the sequential processing 
of the features 1 - 4. Whereas weighted averaging leaves the beliefs unchanged, Dempster's rule 
systematically weakens the belief in A while strengthening the belief in B. We wanted to find out 
which update rule leads to a better match in follow up field validation trials. 

Feature Feature constraints Weighted Averaging Dempster's rule 

1 A [0.4] B [0.6] A [0.4] B [0.6] A [0.4] B [0.6] 

2 A [0.4] B [0.6] A [0.4] B [0.6] A [0.31] B [0.69] 

3 A [0.4] B [0.6] A [0.4] B [0.6] A [0.23] B [0.77] 

4 A [0.4] B [0.6] A [0.4] B [0.6] A [0.17] B [0.83] 

Table 1: effects of different update rules 

The predictive mapping shell has been implemented in Common Lisp Object System (CLOS). 
The shell is loosely coupled with a Geographic Information System (GIS). Information exchange 
with the GIS occurs through a file exchange. Data collection and map overlay takes place in the 
GIS. Information about polygons and features is output into a formatted ASCII file. The mapping 
shell takes this file as input. The shell, in turn, creates several output files some of which serve as 
input to the GIS for the creation of ecosystem maps. For the implementation of the predictive eco­
system mapping we used ArcInfo TM running on a Unix workstation. A more detailed description 
of the GIS application can be found in Skye (1993). The spatial uncertainty of input data was also 
considered. A detailed account of the spatial uncertainty issue has been provided by Crain et al., 
(1993). 

4. Results and Discussion. 

Table 2 illustrates the results of field tests for the three different ecosystem knowledge bases and 



test areas. In each test area a number of locations were selected where the ecosystem class had 
been Jetermined by an expert during field observations. Validation results are reported in three 
differ.:,nt categories; 1 +: TI:e percentage of cases in which the expert's choice is also the system's 
highest ranked choice, 2+: The percentage of cases in which the expert's choice is among the two 
most highly ranked choices of the system, 3+: The percentage of cases in which the expert's 
choice is among the three most highly ranked choices of the system. 

Table 2 indicates that Weighted Averaging is consistently better than Dempster/Shafer. Two rea­
sons can be given for the difference in performance. The first one is that, apparently, Weighted 
Averaging better reflects the reasoning process of the domain experts. Another reason is that, 
because of perceived data reliability, features need to be weighted. While Weighted Averaging has 
the capability to account for weights on features, Dempster/Shafer does not, although some efforts 
in this direction have been undertaken by Yen (1986). 

Test Area No of Points Category Weighted Averaging Dempster/Shafer 

West 1+ 63 38 
Central 52 2+ 77 71 
Alberta 3+ 85 81 

Manitoba 1+ 85 77 
Duck 53 2+ 92 92 
Mountain 3+ 98 92 

1+ 94 82 
Manitoba 17 2+ 100 100 
Sandilands 3+ 100 100 

Table 2: field test results for three ecosystem knowledge bases 

As mentioned in the introduction, this paper had three main objectives: 
1. To explain the concept of Evidential Discrimination Reasoning and its implementation as a 

classification shell. 
2. To show how the shell can be used in the design of a decision support system capable of infer­

ring ecosystems from topography, forest, and soil data. 
3. To show how such a system can be used as a cost effective tool in the creation of an ecosystem­

based land inventory while at the same time improving the quality of the classification process. 

The key idea behind Evidential Discrimination Reasoning (EDR) is the organization of the inter­
pretation domain into a specialization hierarchy of models. This enables us to represent the inter­
pretation domain at different levels of refinement. The question of how beliefs are inherited in 
specialization hierarchies has not been addressed well in the AI literature. We have shown how 
the traditional notion of a specialization hierarchy can be extended for the purpose of representing 
and propagating beliefs. Beliefs are represented by mass functions which express the symbolic 



and numeric constraints imposed by features on models. A feature can constrain a model at any 
level of specialization. We have adopted the strong inheritance approach in which each node in 
the hierarchy inherits both the symbolic properties and the mass functions of its parent. 

The principle of least commitment allows us to conduct the classification process in an efficient 
manner. EDR becomes particularly advantageous when the specialization hierarchy is very large 
(i.e. more than 100 leaf nodes). At any time the current interpretation results are represented at the 
level of specialization required by the features processed thus far. The order in which features are 
processed, although irrelevant with respect to the final result, is important with regards to process­
ing efficiency. The classification process will be most efficient if the features that invoke the more 
general models are processed first. Such an order will both keep the average size of each model 
listing down, as will it shorten the time to process each feature. 

The classification shell will work most efficiently if the structure of the specialization hierarchy 
closely follows the constraints imposed by the features. In ecosystem classification, for example, 
one feature (elevation) constrains models at the ecoregion level, whereas all other features con­
strain models at the ecosystem association level. Given an exhaustive listing of features and the 
models constrained by them, it is possible to automatically construct specialization hierarchies 
(Mulder, 1987; Muise, 1987). 

As mentioned before, the issue of belief representation can be separated from belief updating. The 
strong inheritance approach provides a prescription for the distribution of a model's belief over its 
specializations in the hierarchy. Belief updating, on the other hand, can be treated as a separate 
issue. The mapping shell allows for the use of different update rules appropriate for the domain of 
application. 

The second objective of this paper was to show how the EDR approach can be applied to the 
problem of predicting ecosystems from topographic, forest cover, and soil data. The classification 
shell can solve any classification task that can be represented in tenns of primitives, features, and 
models organized in a specialization hierarchy. The discussion in section 3 has shown, how the 
ecosystem prediction task can be translated into the EDR format. 

The third objective was to show how a decision support system for predicting ecosystems from 
existing land resource data can be used as a cost effective tool in the creation of ecosystem-based 
land inventories. An ecosystem-based land inventory can be created in two different ways: 
1. By a detailed and systematic field survey effort during which a team of field ecologists map a 

forest management area into ecosystem associations followed by digitization of the data col­
lected. 

2. By "Naiatization" of the area. 

The first alternative is both expensive and time consuming. Application of the NAIA system, on 
the other hand, can save both costs and time. The NAIA system uses data that already exists. In 
combination with a Geographic Infonnation System it creates an ecosystem map for the area that 
displays, for each polygon, the ecosystem association with the strongest belief. In addition, the 
system can show for each polygon the complete list of possible models and belief values. The sys­
tem can be used as a focal point for the field work. For example, if the predictive map shows a 



particular ecosystem association as the favorite for a particular area and the belief value for this 
association is consi;;tendy much higher than the value of its closest rival, then a few ground obser­
vations may suffice ':0 verify the system's predictions. On the other hand, if the system's predic­
tions are highly ambiguous (i.e. many models with nearly equal belief values), then more ground 
observations will be necessary. Thus, the system can be used as a basis for prioritizing where field 
work should be done to maximize the quality of the ecomap for decision making. 

Another feature of the system is its capability to bring out inconsistencies between data and mod­
els. This happens, when the system fails to classify one or more polygons. Such a failure indi­
cates, that there is a gap or incorrectness in the ecological models for the area, or it may indicate a 
problem with some of the map data used. 

However, the main advantage of the NAIA system remains that it reduces the need for field work 
while it eliminates the need for digitization as the results are already in digital form. This is where 
NAIA can save costs. The reduced need for field work also implies that the job can be done by a 
single forest ecologist rather than by a team. This ecologist can either build the knowledge base, if 
one is not already available, or he/she can refine the mass functions to accommodate local condi­
tions in the area to be classified. As different ecologists do not necessarily use the exact same clas­
sification criteria this will enhance the consistency (and thus, the quality) of the classification 
process. 

5. Summary 

This paper has described the concept of Evidential Discrimination Reasoning and its implementa­
tion as a classification shell. The object-oriented shell recognizes three different types of objects: 
primitives, features, and models. Models are organized in a specialization hierarchy. The tradi­
tional notion of inheritance has been extended to include the representation and propagation of 
beliefs. The classification process is guided by the principle of least commitment and the principle 
of graceful degradation. A decision support system for predicting ecosystems from existing land 
resource data has been successfully implemented in the shell. This system can assist with the cre­
ation of ecosystem-based land inventories with the potential of saving costs while at the same 
time improving the quality of the classification process. 
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