
Evaluation of probability proportional to
predictions estimators of total stem volume

Steen Magnussen

Abstract: A plethora of probability proportional to predictions (PPP) estimators makes it hard for a user to decide
which one to use. This study demonstrates the need for an extensive screening procedure by example of four PPP esti-
mators of total stem volume and five estimators of sampling error. Bias, absolute bias, root mean square error, sample-
based estimators of sampling error, and achieved significance levels of confidence intervals with a nominal significance
level were compared across 832 distinct settings. Population size, sample size, the variance and skewness of the vol-
ume predictors, and the strength of the correlation and the slope between predicted and actual stem volume varied be-
tween settings. Estimators converged in performance as sample sizes increased but were otherwise sensitive to actual
settings. Of the tested estimators, Brewer’s “cosmetically calibrated” estimator was consistently the best in terms of
mean absolute relative bias and generally favored in an overall assessment of five performance criteria. Grosenbaugh’s
adjusted estimator was a close second and was often ranked first in overall performance whenn > 0.15N.

Résumé: Étant donné la grande diversité d’estimateurs de probabilté proportionnelle aux prédictions (PPP) il est diffi-
cile pour l’utilisateur de décider lequel utiliser. Cette étude démontre la nécessité d’une procédure intensive de sélec-
tion en prenant pour exemple quatre estimateurs PPP du volume total de la tige et de cinq estimateurs de l’erreur
d’échantillonnage. Le biais, le biais absolu, l’erreur moyenne quadratique, les estimateurs de l’erreur d’échantillonnage
basée sur l’échantillon et les seuils de signification des intervalles de confiance obtenus avec une valeur nominale de
signification sont comparés à l’aide de 832 groupes de données distincts. La taille de la population, la taille de
l’échantillon, la variance et l’asymétrie des prédicteurs du volume, le degré de corrélation et la pente du volume prédit
sur le volume réel de la tige varient selon le groupe de données. La performance des estimateurs converge avec
l’augmentation de la taille de l’échantillon mais ceux-ci sont sensibles aux groupes réels. Parmi les estimateurs testés,
l’estimateur artificiellement calibré de Brewer est constamment le meilleur en terme de biais moyen relatif absolu et est
généralement favori pour l’évaluation de l’ensemble des cinq critères de performance. L’estimateur ajusté de Grosen-
baugh suit de très près au deuxième rang mais il occupe souvent le premier rang pour sa performance générale lorsque
n > 0,15N.

[Traduit par la Rédaction] Magnussen 102

Introduction

Extraction of tree volume from a forest stand is often pre-
ceded by a volume inventory to determine the amount, com-
position, and type of wood products in the stand.
Development of fast, cost-efficient, and accurate methods of
volume estimation has a long tradition in forestry (Avery
and Burkhart 1983; Clutter et al. 1983). Fortuitous relation-
ships among various tree attributes, such as diameter, height,
and taper, are exploited to make predictions of wood volume
from a simple and fast to measure attribute such as basal
area or diameter at breast height. These predictions can often
be improved significantly by measuring one or a few addi-
tional attributes, such as upper stem diameter(s) or the
height to various predefined positions along the bole on a
subset of trees (Lynch 1995; Turnblom and Burk 1996; Van
Deusen 1987; Yamamoto 1994; Zakrzewski and
Termikaelian 1994). Sampling the additional attributes with

probability proportional to predictions (PPP) is economically
and statistically attractive and has a proven track record in
forestry (Schreuder et al. 1993; Shiver and Borders 1996).

Total volume TY of a set of trees in a stand is the attribute
of interest. The set includes either all trees of interest or a
sample representing a known area. The number of treesN is
known either prior to, or after, sampling (deVries 1986). The
volume of an individual treeYi (i = 1, 2, ...,N) is only deter-
mined on a subset of trees. A reasonable predictor of volume
Xi is available for each of theN trees. Although the total TX
of the predictorsXi is an estimator of TY, it is decided that
improvement is warranted. A subset of trees with a nominal
size ofn is now selected with PPP sampling, and their actual
volume Yi is determined. The actual volume may be an im-
proved estimate considered as error free, for example, a vol-
ume estimate obtained after a few additional measurements
of height and diameter (Lynch 1995). The number of trees
actually selected isns, where subscript s denotes the sample
(0 ≤ ns ≤ N, E(ns) = n).

For a given target sample sizen, the inclusion probability
pi of tree i (i = 1, 2, ...,N) is calculated as

[1] p n
X

i
i= 



TX
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where Xi is the available predictor of the tree’s actual vol-
ume Yi, and TX is the sum of theN predictors. In the event
p > 1, theith tree would be assured inclusion, and its inclu-
sion probability would be set to 1. The inclusion probabili-
ties of the remaining trees were then recalculated as above
with n replaced byn – 1, and so on until no inclusion proba-
bility was larger than 1. A decision to select a tree for vol-
ume estimation was determined byN random draws from a
uniformly distributed variableui on the interval [0, 1]. Ifui ≤
pi, then treei would be selected for estimation of volume
(Yi), otherwise not (i = 1, 2, ...,N). Sampling is thus without
replacement (a tree can enter only once in the sample).

Empty samples (ns = 0) were rejected, and the selection
process was repeated until at least one tree was sampled for
volume estimation. Inclusion probabilities were adjusted to
reflect the rejection of zero samples~pi = pi/(1 – P0), where
P0 is the probability of obtaining a zero sample,

P p
i

N

i0
1
1= −

=
C( ). Note thatP0 was negligible in all cases (P0 <

0.0023,P0 = 0.0003). The set of trees selected for volume
estimation is denoted by s, and the number of trees in s by
ns. The expected sample size

E[ns] =
1

1
~pii

N

=
∑

which is exactlyn when all inclusion probabilitiespi are less
than, or equal to, 1.

Selection of trees with PPP has the obvious advantage of
concentrating sampling efforts to trees making a larger than
average contribution to the stand volume (Brewer and Hanif
1983; Cochran 1977; deVries 1986; Thompson 1992). Un-
equal probability sampling is mainly a tool to reduce the
sampling variance of an estimate or, conversely, a tool to re-
duce sample sizes for a fixed accuracy. Foresters were there-
fore quick to explore the potential of unequal probability
sampling in forest inventory procedures (Bonnor 1972;
Grosenbaugh 1965; Hartman 1967; Schreuder et al. 1968,
1971; Space and Turman 1977).

In PPP sampling the realized sample sizens is random
with a mean equal to a predefined targetn (Brewer and
Hanif 1983). Estimates of PPP sampling errors are therefore
quite variable; a definite drawback from a user’s perspective,
since the success of a volume inventory depends on its accu-
racy (Bonnor 1972; deVries 1986; Magnussen 2000;
Schreuder et al. 1968, 1971). To combat the high variability
of PPP estimates a variety of alternative estimators have
been coined (Brewer 1999; Brewer et al. 2000; Brewer and
Hanif 1983; Furnival et al. 1987; Gregoire and Valentine
1999; Särndal 1996).

Users of PPP volume estimators have a plethora of
choices (Brewer and Hanif 1983; Gregoire and Valentine
1999; Särndal et al. 1992; Schreuder et al. 1992, 1993).

Which one to use? A review of the literature would only
produce partial clues, as most estimators have only been
used or tested in a narrow range of conditions. It is known
that the performance of an estimator can vary in response to
population attributes such as the distribution and variance–
covariance structure of the predictor and the target variable
(Magnussen 2000; Schreuder et al. 1968, 1971; Williams
and Schreuder 1998). In forestry, where data structures varie
widely, an estimator that performs well across a wide spec-
trum of data structures would be preferable to an estimator
with fluctuating performance.

The objectives of this study are to demonstrate the need
for an extensive testing scheme for PPP estimators and to
provide a suitable testing procedure. An exhaustive testing
of all PPP estimators is neither intended nor desired. Instead
a select group of four PPP estimators and five variance esti-
mators are compared. The selected estimators represent a
mix of estimators that are well known to forestry and new
developments. Also, as sample sizes increases their perfor-
mance converges.

Simulated sampling
Nominal sample sizes ofn = 6, 8, 10, 11, and 13 were

taken from a population of 80 trees, and sample sizes ofn =
6, 13, 19, 26, 32, 38, 45, and 51 were taken from a popula-
tion of 320 trees. A sample size of six is a priori considered
as the smallest sample size that in 19 of 20 cases provides an
estimate of TY within 25% of the actual value. The maxi-
mum sample sizes are regarded as the limit for achieving a
sampling error around 5%. Sample sizes less than six were
deemed of low practical value. Estimation of reliable sam-
pling errors for small sizes appears to require special ap-
proaches (Magnussen 2001) beyond the scope of this study.

For each of the 832 distinct data settings, a PPP sample
was obtained via the protocol described above. Estimates of
totals and sampling errors were then obtained with estima-
tors listed in Tables 1 and 2. This process was repeated
27 000 times for a total of 22.464 × 106 samples. With
27 000 replicates of each sample, the mean estimate of a to-
tal obtained would have a relative standard error of less than
approximately 0.05%. Means of sampling errors obtained
with a specific estimator would have relative standard errors
of approximately 0.1%.

Estimators of total volume (TY)

Four PPP estimators of TY, two ratio estimators and two
calibration estimators, were chosen to demonstrate the need
for an extensive evaluation (Brewer et al. 2000; Gregoire and
Valentine 1999; Magnussen 2000). Recall that it is possible
for some estimators not included in this study to outperform
one or all of the included estimators. Table 1 lists details of
the estimators. The first is an adjusted ratio estimator by
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Grosenbaugh (1965), known in forestry as the 3P7 estima-
tor. The second is a ratio estimator (TYR

^
) developed by

Särndal et al. (1992). The third choice is a calibration esti-
mator (

^
TYC) that through a reweighting of the inclusion

probabilities ensures that the sample estimate of the total of
the predictors:

TX TX
s

s

s

^

~ [ ]
= =

∈
∑ X

p
n

E n
i

ii

and the sample estimate of population size:

$
~N
pii

=
∈
∑ 1

s

match the known values of TX andN, respectively. Table 1
detailsTYC

^
. Calibration weightswi that minimize the differ-

ence between the original inclusion probabilities and the
new weights were obtained from Särndal (1996):

[2] $ ~ ,w
p

X
c

ii
i

i

i

= +







 ∈1 1 λ

s

with

[3] c
p

p
i

i

i

=
−

~
~1

λ = − −( )
^

TX TX TS 1

and
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Estimator Estimation Reference

Adjusted ratio
TYGR

s

s s

^ [ ]
~=



















∈
∑E n

n

Y

p
i

ii

Grosenbaugh 1965

Ratio
TY TXR

^ $= ×R
Särndal et al. 1992

$
~ ~R
Y

p

X

p
i

ii

i

ii

=




















∈ ∈

−

∑ ∑
s s

1

Calibration
TYC

s

^
$=

∈
∑ w Yi
i

i
Särndal 1996

N w w Xi
i

i
i

i= ∧ =
∈ ∈
∑ ∑$ $

s s

TX

Calibration 2
TY TXC2 C2 C2

s

^
$ $= + −











∈
∑α β X

p
i

ii
(

Brewer 1999

Note: Contributions from trees with an inclusion probability of 1 are not included. See
text for definitions of symbols.

Table 1. Estimators of total volume (TY).

Estimator TY
^

Reference

(1) $
max( , ) [ ]

σGR
s s

s

s

TX
T2 01

1 1
= −

−


















 −P

n n

n

E n

Y

X
i

i

YGR

s

s^ [ ]







 −



∈

∑
2

1
i

E n

N
TYGR

^ Grosenbaugh 1976

(2) $
~

~ ( )$
^

^
σ

R
s

TX

TX

RX2

2

2
21=















− −
∈
∑ p

p
Yi

ii
i i

TYR
^ Särndal et al. 1992

(3) $ ~ ( $ $ )σ εC
s

2 21
1= −











∈
∑ p

w
ii

i i TYC
^ Särndal 1996

(4) $

( )
$ $

,σ

α β

C2

C2

s
C2

s

2

1

2

2
=

− − −








=

−

∈
∑

c p Y
Nn

X

p
c

i i i

ii

(

(
n

n
n

pi
i

s

s
s s

−

−










∈
∑

1

1 2(

TYC2
^ Brewer 1999

(5) $ $ ( $ )^ ^|
σ σ ρ

σ σ σ
TY TX TY

s s
R R

s s2 2 2
2

2

3

3
1 1

3 4 5
= − + − +XY

n n n

n n
s

s

s
4

4
1

n

n

N











 −





TYR
^

Note: The TY
^

column gives the corresponding estimator of totals as per Table 1.

Table 2. Sample-based estimators of sampling variance.
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TS
s

= −

∈
∑ X p

p
i i

ii

2

2

1( ~ )
~

The fourth choice,TYC
^

2, is also a calibration estimator
derived from first-order inclusion probabilities only and is
said to be interpretable in terms of design-based and model-
based inference simultaneously (Brewer 1999). It was
coined “cosmetically calibrated” to reflect that the estimator
retains its “natural” variance without attempts to manipulate
joint inclusion probabilities (the probability that both treei
and j are in the sample). It introduces scaled (generalized)
versions of the inclusion probabilities:

(p
n p
E n

i
i= s

s

~

[ ]

to dampen fluctuations of estimated totals caused by sam-
ples larger and smaller thann. Estimation (see Table 1) re-
quires an estimation of

[4]

$ ~

$
~

~

α

β

C2
s

C2
s

=

=
−











−










∈

∈

∑

∑

Y
p

p
Y

p

i

ii

ii
i

ii

1
1

1
1

∈
∑

s

Xi

Compared with the first calibration estimator,TYC
^

2 uses
an additive adjustment rather than a multiplicative one.

Sample-based estimators of sampling error
Five alternative sample-based estimators of sampling vari-

ance are listed in Table 2; the last is a new development.
Various studies indicate that these estimators exhibit desir-
able features (relative to other estimators) such as closeness
to the actual sampling variance in simulated sampling, low
root mean square errors, and low variability in replicated
sampling (Brewer et al. 2000; Gregoire and Valentine 1999;
Magnussen 2000). The first estimator, namedvS by
Grosenbaugh (1976), is an improvement over a previous ad-
justed variance estimator named 3P9a. The ratio variance es-
timator $

$σR
2 in Table 2 uses the sample based predictionTX

^

of TX to adjust the squared sum of the probability weighted
residuals between the actual volume and the volume pre-
dicted by the ratio estimatorRX

^
i. The calibration estimator

$σC
2 by Särndal (1996) is derived from a first order Taylor se-

ries of probability expanded and reweighted ($wi, see Table 1)
residuals$ε i, where $ $ε βi i iY X= − c and

[5] $
~ ~βc

s s

=




















∈

−

∈
∑ ∑X

p c
X Y
p c

i

i ii

i i

i ii

2
1

whereci is defined in [3]. The fourth variance estimator (Ta-
ble 2) was developed by Brewer (1999) and is, as the first

estimator, conditional on the actually achieved sample size
(ns). After limited testing it was accredited with desirable
properties (Brewer et al. 2000).

The last estimator,$ ^
|

σ
TY TXR

2 , is proposed as an improve-
ment to $

$σ
R
2 . It exploits the known sampling distribution of

sample sizesπ(ns). The first step computes the variance of
sample estimates of the total of the known predictorTX

^
,

which, of course, turns out to be a simple function ofns.
Second, a scaling toTYR

^
via the estimated volume ratio$Rof

actual to predicted volume leads to an estimate of the total
unconditional variance of the estimated totals. BecauseX is
known, only the conditional variance ofTY

^
given TX

^
con-

tributes to the sampling variance of totals. By conditioning
on TX

^
a final estimate of the sampling variance is obtained.

Hence the variance ofTYR
^

is

[6] $ $ [ ] $^ ^
^

$σ σ σTY TX RR
TX2 2 2 2 2= +R E

where expectation is over all possible sample sizes since
TX TXs

^
( / )= n n . The probability distribution of sample sizes

π(ns), 1 ≤ π(ns) ≤ N was recovered by standard techniques
(Johnson et al. 1992) from the probability generating func-
tion (pgf) of sample sizes

[7] pgf
sn

i

N

i iz p p z( ) ( ~ ~ )= − +
=

∏
1

1

Magnussen (2001) provides details.σ
TX^
2 was obtained from

[8] E E
n
n

[( ) ]
^

TX TX TX s− = −

















2 2
2

1

To compute the desired conditional variance$ ^
|

σ
TY TXR

2 an esti-
mate of the variance inYi explained byXi is needed. The
square of the correlation coefficientρXY betweenXi andYi es-
timates this quantity$ $ $^ ^ρ σ σXY R= −

TX TY
1 (Draper and Smith

1981). From this follows the estimator given in the last row
of Table 2. Two additional multipliers were added, the first:

[9] 1
3 4 52

2

3

3

4

4
+ − +













σ σ σn n n

n n n
s s s

s s s

provides a five-term Taylor series approximation to the ex-
pected value of$R2, and the second:

1−





n
N

s

provides a correction for the sampled fraction of a finite
population (Thompson 1992).

All sampling error estimates in excess of twice the esti-
mated total were considered as extreme. Extreme sampling
errors were censored to a value ofTY

^
2. The interval

TY TY
^ ^

± would then have a probability of containing the
true value of at least 88% ifTY

^
has a normal distribution
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(Wall et al. 2001). Censoring was a rare event; it was only
applied at a rate of about 1:4500. Censored cases were pre-
dominantly associated with the first and last variance esti-
mator, with the calibrated estimator a distant third. However,
the rates were considered statistically equal ($P = 0.17).

Performance criteria
Unbiased, low mean departure from the true total and low

variability are the desired attributes for the estimator of total
volume (Shiver and Borders 1996). Accordingly, the follow-
ing three performance indicators were chosen

(C1) $ [ ]
%^

E TY TY
TY

− × 100

expected percent bias

(C2) $ %^
E 3* *4TY TY

TY
− × 100

expected percent absolute bias

(C3) $ [( ) ]
%^

E TY TY
TY

0.5− ×2 100

expected percent root mean square error

where approximate expectations( $ )E are the mean of the
27 000 repeated samples,TY

^
is an estimator of total volume,

and TY is the actual total.
Attractive sample-based estimates of sampling error of an

estimated total are relatively small and positive; they match,
in expectation, the root mean square error of the estimated
total; and they achieve significance levels of estimated confi-
dence intervals that are close to the stated confidence level.
These desirable properties prompted two additional criteria
(C4 and C5). C4 is the ratio of sample-based root mean
square error to the root mean square error of the estimated
totals. Specifically

(C4)
$ [ $ ] $ [( )]

$ [( ) ]

^

^

^

E E

E

σTY

0

TY TY

TY TY

2 2

2

+ −

−



















.5

where $E denotes the expectation (mean) over the 27 000 re-
peated samples. For estimated sampling variances ($ ^σTY

2 )
close to their actual values, the ratio should be close to 1
when TY

^
≈ TY. A ratio less than 1 generates an optimistic

(liberal) estimate of the sampling variance and vice versa
(conservative).

C5 measures departures in the achieved significance levels
( $α) of a sample-based confidence interval with a nominal
chance of 1 –α of containing the true mean. The achieved
significance level was computed from the indicator variable
δα, where

[10] $ [ $ , $ ]

,

^
/

^
/^ ^δ σ σ

α α α= ∈ − + −1

0
2 1 2if TY TY TY

otherwi

TY TYz z

se







wherezα is the 100(1 –α)% quantile of a standard normal
distribution. For each of the five estimators and 832 data set-
tings, the meanδα over the 27 000 replicated samples was
compared with the nominal levels of 1 –α = 0.80, 0.90,
0.95, and 0.99. C5 was then computed as

(C5) 1− −α δα

Deviations in achieved significance level of ±0.17% would
be declared significant at the 95% level of significance under
the null hypothesis of nominal significance level (χ2 test,
Miller 1980)

Estimators of totals were ranked against C1–C3, and estima-
tors of sample errors (and bias), against C4–C5. Recommenda-
tions for practical use were based on an overall performance
index (PI) calculated from the five criteria as outlined below.

[11] PI Rank C1 Rank C2 Rank C3
^

( ) ( ) ( )= − − −12

− × − − × −10 1 20* * * *C4 0.95 0.05 δ
− × − 10 * *0.80 0.20δ

where |x| is the absolute value ofx, andjxk is the smallest in-
teger larger thanx. Consequently, an estimator with a rank-
ing of 1 for C1–C3, a ratio of 1 between expected and
observed root mean square error, and a perfect probability
coverage of stated confidence intervals would havePI

^
= 9.

Conversely, a really poor estimator could end up with a per-
formance index of –16. The overall ranking of methods
based on the performance index was rather insensitive to the
exact weighting of criteria C4 and C5.

Sample data
A wide spectrum of data structures were generated to al-

low for a comprehensive testing of the PPP estimators.
Paired values of the predictorX and the actual volumeY of
an individual tree were generated for populations of sizes of
80 and 320. Populations are trees sampled from a forest
stand with either fixed-area plots or variable-radius plots
(deVries 1986; Schreuder et al. 1993). It is assumed that 80
(and 320) trees provide a good representation ofX. To
mimic a series of realistic distributions forX andY and sto-
chastic linear relationships betweenX and Y with variances
of Y given X increasing inX (Gregoire and Dyer 1989; Wil-
liams 1997), 64 distinct bivariate distribution were generated
for each combination ofn andN. A step-by-step protocol for
the data generation is listed below. It can be skipped with
impunity, since there is no transparent relationship between
the bivariate distribution ofX and Y and the parameters of
the protocol. The protocol only documents the actual data
generation.
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The data generation protocol produced coefficient of vari-
ation of X that would run from 0.48 to 1.28 (mean = 0.69).
Skewness coefficient ofX attained values from 0.4 to 3.5,
with a mean of 1.3. Slopes and intercepts of the linear rela-
tionship betweenX and Y would run from 0.77 to 1.23 and
−0.087to 0.69, respectively. Pearson’s product moment cor-
relation coefficients betweenX and Y were always positive
with a low of 0.63 and a high of 0.98 (mean = 0.88). Fig-
ure 1 provides a scatterplot ofY and X for six settings.

Protocol for data generation
(1) GenerateX by random draw from a gamma distribution

with parametersα andβ with (α, β) e {1.5, 3.0}. Hence,
a mean ofX is αβ and a variance ofX is (αβ)2 (Johnson
et al. 1994).

(2) Generate constantsxi = Min(X) and xx = Max(X).
(3) Determine the population regression lineY = a + bX by

solving a + b × xi = η × xi v a + b × xx = λ × xx for a
and b for fixed values ofη and λ. Values forη and λ
were {0.7, 1.3} and {0.8, 1.2}, respectively.

(4) Generate stochastic realizations ofY > 0 given the mean
population regression line asY = (a + bX)(r(B – A) + A),
wherer is a random draw from a beta distributionB(2,

2), andA andB were assigned values of {0.3, 0.6} and
{1.5, 3.4}, respectively.

Results

Criterion C1
Relative bias of all four estimators declined at about equal

rates ($P = 0.13) with increasing sample size but could other-
wise not be shown to depend on any attribute ofX or Y or
the joint distribution ofX andY. The second calibration esti-
mator (TYC2

^
) produced in most (410 of 832) data settings

the lowest relative bias of the four estimators, yet the ad-
justed ratio estimator (TYGR

^
) was a close second and occa-

sionally the best (in 227 of 832 cases). A sample of the
results is presented in Table 3. For fixedN and increasingn,
the second calibration estimator lost terrain to either the ad-
justed ratio or the ratio estimator. Generally,TYC2

^
was ei-

ther the best or the third best (in 302 cases) estimator in
terms of bias. Attempts to predict the ranking ofTYC2

^
from

design attributes (n andN), attributes ofX, Y (coefficient of
variation and skewness), and the relationship betweenX and
Y (correlation, regression coefficient, and proportionality factor
between regression residuals andX) by logistic regression
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Fig. 1. Six scatterplots of simulated predicted volume (X) and actual volume (Y). $β XY is the slope of ordinary least squares linear re-
gression ofY on X; $ ,ρX Y is the Pearson moment correlation coefficient betweenX and Y; cv

^
X is the coefficient of variation ofX; and

$g3 is the coefficient of skewness ofX.
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with multiple responses (McCullagh and Nelder 1989) only
identified the slope as a statistically significant ($P = 0.04)
predictor. On average, the rank ofTYC2

^
would increase

(worsen) by 0.37 ± 0.18 (mean ± SE) for every unit increase
in the regression slope betweenX and Y. However, 98% of
the regression slopes were in the interval from 0.6 to 2.7, a
range barely wide enough to trigger a rank change. Ranks of
TYGR

^
were more stable, the estimator came in second 404

times and with an equal split between first and third for the
remainder. The influence of the regression slope betweenX
and Y on the ranking of TYGR

^
was an improvement

(decrease) of 0.40 ± 0.18 for every unit increase in the re-
gression slope. None of the differences betweenTYGR

^
and

TYC2
^

were statistically significant (t test, all P values >
0.21). Relative bias ofTYGR

^
and TYC2

^
were about 0.15%

lower than the bias of the ratio estimator whenn ≤ 12 ( $P =
0.05 or less) but within 0.001% forn > 12 ($P > 0.30). The
rank of the ratio estimatorTYR

^
was somewhat sensitive to

sample and population sizes. Ranks increased by an average
0.5 when N increased from 80 to 320 but improved (de-
creased) by 0.01 for every unit increase inn. The calibration
estimatorTYC

^
trailed the other three by a wide margin (fac-

tor 10 or more,$P < 0.001). It was only best in four settings
(N = 320, n = 50, and $R > 1.5).

Criterion C2
Across all data settings the mean relative absolute bias

(±SD) was 4.5 ± 2.1% forTYC2
^

, 6.0 ± 2.8% for TYGR
^

,
7.8 ± 4.3% forTYC

^
, and finally 20.1 ± 7.3% forTYR

^
. Note

the parallel increase in standard deviations as the expected

absolute bias goes up. Absolute bias was strongly dependent
on design factors, the coefficient of variation ofX, and the
strength of the correlation betweenX andY, but the relation-
ship depended on the estimator (Table 4). After adjusting for
the linear effects of significant covariates, a test of equal
mean relative bias led to the rejection of this null hypothesis
(analysis of covariance$F[3,3308] = 205.4, $P = 0.001).

In all 832 data settings, theTYC2
^

estimator outperformed
the others. Second place was in all but four cases (N = 320,
n = 50) held byTYGR

^
. TYC

^
consistently ranked third, except

in the said four cases.TYR
^

always produced the highest ex-
pected absolute bias.TYGR

^
was significantly better than the

third placed estimator in all 13 combinations ofN andn (t >
27, $P < 0.001).

Criterion C3
Relative root mean square errors ofTYGR

^
, TYR

^
, and

TYC2
^

were virtually identical (mean 7.58%) with differences
of less than 0.02%, which are of no practical significance.
An analysis of variance confirmed the null hypothesis of no
difference ($P > 0.9) in each of the 13 tested combinations of
N and n. In all 13 cases,TYC

^
produced significantly ($P <
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Estimator*

N = 80 N = 320

n = 6 n = 13 n = 6 n = 51

TYGR
^

x 0.010 –0.005 –0.001 0.002

s(x) 0.100 0.084 0.089 0.025
r 1.6 2.0 1.6 2.1
s(r) 0.6 0.8 0.6 0.7

TYR
^

x –0.160 –0.006 –0.229 0.002

s(x) 0.102 0.084 0.088 0.025
r 2.6 2.0 2.8 –0.190
s(r) 0.8 0.7 0.5 0.471

TYC
^

x –5.782 –2.636 –6.273 0.017

s(x) 0.152 0.141 0.089 0.19
r 4.0 4.0 4.0 3.8
s(r) 0.0 0.0 0.0 0.7

TYC2
^

x 0.010 –0.006 –0.001 0.000

s(x) 0.103 0.075 0.089 0.003
r 1.8 2.0 1.6 1.8
s(r) 0.6 1.0 0.5 1.0

Note: x, mean across 64 data settings;s(x), standard deviation ofx
(relative bias);r , mean rank of relative bias;s(r), standard deviation ofr
(rank).

*See Table 1 for details on estimators.

Table 3. Relative bias (%) of total volume estimates.

Effect $β SE($β)

δGR 19.05 0.63
δR 6.4 0.63
δC 12.81 0.63
δC2 14.03 0.63
ρ(X, Y) –7.55 0.45

δGR 1 −





n

N
n@

16.26 0.44

δR 1 −





n

N
n@

82.36 0.44

δC 1 −





n

N
n@

46.30 0.44

δC2 1 −





n

N
n@

20.46 0.44

δ ρGR$ ,X Y –26.04 0.79
δ ρR$ ,X Y –7.47 0.79
δ ρC$ ,X Y –21.06 0.79
δ ρC2 $ ,X Y –19.01 0.79
δGRcv̂X 4.61 0.50
δRcv̂X –0.26ns 0.50
δCcv̂X 3.05 0.50
δC2cv̂X 3.33 0.50

Note: Model R2 = 0.993. Root mean square error of predictions =
0.62%.δM is the indicator variable for estimatorM. δM = 1 if estimator is
M and 0 otherwise. Estimators are listed in Table 1.$ρ(X, Y) is the
correlation coefficient betweenX and Y. cv

^
X is coefficient of variation of

X. All effects but one (ns) are significant at the 99.9% level.

Table 4. Estimated effect ($β) of estimator and estimator interac-
tions with design variables and attributes ofX on expected abso-
lute bias (in percent of true value).
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0.01) higher relative root mean square error than any other
tested estimator. The performance ofTYC

^
did, however, im-

prove rapidly with increasingN and n (Table 5). The influ-
ence of the coefficient of variation and skewness ofX andY,
the correlation and regression slope betweenX and Y, and
the proportionality factor between regression residuals andX
was, as expected, similar to their influence on the mean rela-
tive bias (C2).

Root mean square errors ofTYGR
^

, TYC
^

, andTYC2
^

were,
as expected, strongly correlated ($ρ > 0.990) with the ex-
pected absolute relative bias. For the fourth estimator,TYR

^
,

the correlation was only moderately strong (0.87). The ex-
pected absolute relative bias was about 0.7 times the relative
root mean square error in the former group of three estima-
tors versus 1.8 inTYR

^
. In absence of bias the absolute mean

deviation of a normally distributed variable is (2/π)0.5 ≈ 0.80
times its standard deviation.

Criterion C4
Relative root mean square errors derived from the sample-

based estimates of variance plus squared bias were, in four
of five estimators, strongly correlated ($ρ > 0.990) with the
root mean square errors obtained via resampling (Fig. 2).
Variance estimates obtained with the adjusted ratio estimator
were more erratic, especially as relative root mean square er-
rors increased.

The mean ratio of expected to observed relative root mean
square error varied from a low of 1.22 ± 0.10 for the calibra-
tion estimator to a high of 1.50 ± 0.10 for the conditional

variance estimator$ |σTY TX
2 . Each estimator produced a mean

ratio that was significantly different from the others ($P <
0.001). Root mean square error ratios obtained with the cali-
bration estimator were more consistent across levels of rela-
tive root mean square errors without a tendency to increase
for higher relative root mean square errors as evident in the
others. Design parameters (N andn), the strength of correla-
tion betweenX andY, and the relative variation ofX all had
a significant impact on the ratio (robust regression coeffi-
cients (Staudte and Sheather 1990) were all significantly dif-
ferent from zero,$P < 0.01), albeit with distinct differences
among estimators in sensitivity and response to a change in
data settings.

Relative root mean square error of the conditional vari-
ance estimator was 1.15 (±0.01) times the relative root mean
square error of the cosmetically calibrated estimator, and the
correlation between them was almost perfect (0.996) and
higher than between any other pair of estimators.

Criterion C5
Two variance estimators$σC2

2 and $σTY|TX
2 achieved nearly

identical (difference less than 0.02) significance levels,
which were also significantly closer to their nominal levels
than were the other three estimators. At a nominal signifi-
cance level of 0.80, their estimated confidence interval cap-
tured the true total with a mean probability of 0.83. At a
nominal significance level of 0.95 they were within 1% of
the target value. Figure 3 illustrates the results. Note that the
best results were also associated with the smallest variation
across the various data settings. Relative results from the
0.90 and 0.99 levels of significance were quite similar. Poor
results (under-coverage) were obtained with the calibration
estimator $σC

2 with deviations of –0.04 for the 0.99 level of
significance and –0.08 for the 0.80 level of significance. The
adjusted ratio estimator$σGR

2 on the other hand was overly
conservative with achieved significance levels well above the
nominal targets. Results with the ratio estimator$σR

2 were in-
termediate (about 0.02 below nominal level forα = {0.2,
0.10, 0.05}). Design parameters (N and n), correlation be-
tweenX and Y, and the relative variance ofX all exerted a
significant impact on the achieved significance level. Coeffi-
cients in a logistic regression were significantly different
from 0 (Collett 1991). Again, these effects varied signifi-
cantly from one estimator to another.

Overall performance index (PI)
Two estimators, the cosmetically calibrated and the ad-

justed ratio estimator, achieved the best overall performance
index of 2.7 ± 1.3 and 2.5 ± 3.2 (mean ± SE), respectively.
Third place was earned by the ratio estimator (0.6 ± 1.0),
and the last place was held by the calibration estimator
(−1.8 ± 0.7). Of 832 cases, the cosmetically calibrated esti-
mator was best 444 times (53%), but it clearly lost ground to
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N = 80 N = 320

Estimator* n = 6 n = 13 n = 6 n = 51

TYGR
^

x 12.6 7.4 13.3 3.6

s(x) 3.0 1.9 3.1 0.8
r 2.4 2.3 2.5 1.7
s(r) 0.5 0.4 0.5 0.6

TYR
^

x 12.6 7.4 13.2 3.6

s(x) 3.0 1.9 3.1 0.8
r 1.0 1.3 1.0 1.5
s(r) 0.2 0.4 0.0 0.6

TYC
^

x 21.5 10.4 22.8 3.8

s(x) 1.4 1.3 1.3 0.8
r 4.0 4.0 4.0 4.0
s(r) 0.0 0.0 0.0 0.0

TYC2
^

x 12.6 7.4 13.3 3.7

s(x) 3.0 1.9 3.1 0.3
r 2.6 2.5 2.5 2.8
s(r) 0.6 0.9 0.5 0.6

Note: x, mean across 64 data settings;s(x), standard deviation ofx; r ,
mean rank of relative bias;s(r), standard deviation ofr.

*See Table 1 for details on estimators.

Table 5. Relative root mean square errors (%) of total volume
estimates.
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the adjusted ratio estimator as sample sizes increased for a
given N. For example, withN = 320 the chance of a better
result with the adjusted ratio estimator increased from 1:6 to
7:8 asn went from 6 to 51. Even the ratio estimator had a
2:8 chance of outperforming the cosmetically calibrated esti-
mator. For the ratio estimator the odds of a first place im-
proved as sample size increased. For the conditional
estimator, the odds of a first place were about 1:8 in all data
settings. Only the calibration estimator had virtually no
chance of being the best within the tested settings.

Discussion

To combat the high variability inherent in PPP estimates
of totals and sampling error, a phenomena linked to “too
many small” or “too few large” (Brewer 2000; Brewer et al.
2000) observations in the sample, various modifications of
the basic Horvitz–Thomson (Hanurav 1963) estimator have
been successfully developed (Brewer 1999; Brewer and
Hanif 1983; Grosenbaugh 1976; Särndal et al. 1992). Even
optimal combinations of various estimators have been tried
(Gregoire and Valentine 1999), but Leblanc and Tibshirani

(1996) found that the conditions for a composite gain in effi-
ciency by combining estimators may be relatively rare in
most real life applications.

Highly variable results are anathema to practitioners,
since they cannot afford to invalidate suspect results or the
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Fig. 2. Relative root mean square errors computed from sample-based estimates of sampling variance plus squared bias (RMSEE (%))
plotted against the root mean square error obtained from 27 000 repeat samples (RMSES (%)). The variance estimator used in RMSEE

is displayed in each scatterplot (see Table 2 for definitions). A 1:1 line is added for comparison. Each scatterplot contains 832 paired
observations.

Fig. 3. Achieved significance level of confidence interval of total
volume with a nominal chance of containing the true total of
80% (solid squares) and 95% (gray squares). Variance estimators
used for calculating confidence intervals are positioned along the
horizontal axis of the graph. Vertical lines have a total length of
two times the standard deviation of the achieved significance
level in 832 data settings.
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time to measure a “surplus” of trees (Bonnor 1972). System-
atic and stratified volume sampling will remain attractive al-
ternatives until the PPP variability problem has been
completely resolved (Magnussen 2000; Schreuder 1975).

When PPP sampling is the chosen method, a careful
choice of estimator(s) must be made because estimators do
differ significantly in various aspects of performance. Yet,
the choice could be difficult since no single estimator ap-
pears to be uniformly best throughout a set of applied crite-
ria. Differences among methods also diminish as sample
sizes and population size increase. In a typical forest enter-
prise, the application settings of a PPP estimator will vary
greatly from one case to another. Only a comprehensive
comparison of estimators across a wide range of realistic
settings will produce a reliable assessment and quantify the
odds that one estimator when compared with another will
produce superior results. Comparisons restricted to a single
data setting have a nonzero chance of inverting the expected
performances of two estimators. The sensitivity of estima-
tors to the strength of the correlation and slope between pre-
dicted and actual stem volume and to the variation and
skewness of the predictors predicates testing across the
range of values expected in practical applications. Outliers
in either X, Y, or both can drastically change the perfor-
mance of a PPP estimator (Willliams and Schreuder 1998).
Williams and Schreuder (1998) found Grosenbaugh’s ad-
justed ratio estimator to be especially sensitive to outliers.
The data used here were free of outliers; results obtained can
therefore not be extended to situations where outliers must
be expected.

The choice of estimator will also depend on the value at-
tached to various performance criteria. In terms of absolute
bias, Brewer’s cosmetically calibrated estimator was uni-
formly best, but in terms of root mean square error, the ratio
estimator (Särndal et al. 1992) would in most cases be a
better choice. Emphasis on relative bias would confirm the
former but the odds that another estimator would be better in
a single application were nevertheless slightly over 1.0. A
desire to have sample-based estimates of sampling error
matching the actual sampling error would clearly favor the
calibration estimator (Särndal 1996), which has odds of 1.4
of producing the best match. The otherwise poor perfor-
mance of the calibration estimator may be due to the rela-
tively small population and sample sizes entertained in the
evaluation scheme. For populations counted in the thousands
and beyond and sample sizes in excess of 50, a calibration
estimator should be expected to perform much better
(Deville et al. 1993; Gregoire and Valentine 1999). However,
it is difficult to imagine a practical forestry application of
PPP volume sampling in such settings. Finally emphasis on
achieved probability coverage of confidence intervals would
consider the cosmetically calibrated and the conditional vari-
ance estimator as equally best. Combining the performance
against various criteria into an overall index of performance
is a pragmatic approach to finalize the choice. For use in a
wide variety of settings, the cosmetically calibrated estima-
tor appears to be the overall best. The margin is quite nar-
row, however, with odds ratio of obtaining the best results in
a given data setting of no more than 1.16. Computing the
mean of the adjusted and cosmetically calibrated estimator

would produce a 5% drop in average performance ($P =
0.11). A solution that should appeal to practice where buff-
ering against adverse results is appropriate (Pope and
Ziemer 1984).
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