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Evaluation of probability proportional to
predictions estimators of total stem volume

Steen Magnussen

Abstract: A plethora of probability proportional to predictions (PPP) estimators makes it hard for a user to decide

which one to use. This study demonstrates the need for an extensive screening procedure by example of four PPP esti
mators of total stem volume and five estimators of sampling error. Bias, absolute bias, root mean square error, sample-
based estimators of sampling error, and achieved significance levels of confidence intervals with a nominal significance
level were compared across 832 distinct settings. Population size, sample size, the variance and skewness of the vol
ume predictors, and the strength of the correlation and the slope between predicted and actual stem volume varied be
tween settings. Estimators converged in performance as sample sizes increased but were otherwise sensitive to actual
settings. Of the tested estimators, Brewer’s “cosmetically calibrated” estimator was consistently the best in terms of
mean absolute relative bias and generally favored in an overall assessment of five performance criteria. Grosenbaugh'’s
adjusted estimator was a close second and was often ranked first in overall performance wiehSN.

Résumé: Etant donné la grande diversité d’estimateurs de probabilté proportionnelle aux prédictions (PPP) il-est diffi
cile pour l'utilisateur de décider lequel utiliser. Cette étude démontre la nécessité d'une procédure intensive de sélec
tion en prenant pour exemple quatre estimateurs PPP du volume total de la tige et de cing estimateurs de I'erreur
d’échantillonnage. Le biais, le biais absolu, I'erreur moyenne quadratique, les estimateurs de I'erreur d’échantillonnage
basée sur I'échantillon et les seuils de signification des intervalles de confiance obtenus avec une valeur nominale de
signification sont comparés a 'aide de 832 groupes de données distincts. La taille de la population, la taille de
I'’échantillon, la variance et I'asymétrie des prédicteurs du volume, le degré de corrélation et la pente du volume prédit
sur le volume réel de la tige varient selon le groupe de données. La performance des estimateurs converge avec
'augmentation de la taille de I'échantillon mais ceux-ci sont sensibles aux groupes réels. Parmi les estimateurs testés,
I'estimateur artificiellement calibré de Brewer est constamment le meilleur en terme de biais moyen relatif absolu et est
généralement favori pour I'évaluation de I'ensemble des cing criteres de performance. L'estimateur ajusté de Grosen-
baugh suit de tres pres au deuxieme rang mais il occupe souvent le premier rang pour sa performance générale lorsque
n> 0,15\.

[Traduit par la Rédaction]

Introduction probability proportional to predictions (PPP) is economically

and statistically attractive and has a proven track record in

Extraction of tree volume from a forest stand is often-pre ¢, o1y (Schreuder et al. 1993; Shiver and Borders 1996).
ceded by a volume inventory to determine the amount,-com '

position,
Development of fast, cost-efficient, and accurate methods
volume estimation has a long tradition in forestry (Avery
and Burkhart 1983; Clutter et al. 1983). Fortuitous relation
ships among various tree attributes, such as diameter, heigH’
and taper, are exploited to make predictions of wood volum
from a simple and fast to measure attribute such as bas
area or diameter at breast height. These predictions can oft
be improved significantly by measuring one or a few addi
tional attributes, such as upper stem diameter(s) or th
height to various predefined positions along the bole on d
subset of trees (Lynch 1995; Turnblom and Burk 1996; varP
Deusen
Termikaelian 1994). Sampling the additional attributes wit

. Total volume TY of a set of trees in a stand is the attribute
and type of wood products in the stand(.)?f interest. The set includes either all trees of interest or a
sample representing a known area. The number of ixeiss
known either prior to, or after, sampling (deVries 1986). The
tolume of an individual tre&; (i = 1, 2, ...,,N) is only deter
ined on a subset of trees. A reasonable predictor of volume
g is available for each of thBl trees. Although the total TX
& the predictors; is an estimator of TY, it is decided that
improvement is warranted. A subset of trees with a nominal
éize ofn is now selected with PPP sampling, and their actual
olumeY; is determined. The actual volume may be an im
roved estimate considered as error free, for example,-a vol
. : : ume estimate obtained after a few additional measurements
1987, ~Yamamoto = 1994; =~ Zakrzewski anﬂof height and diameter (Lynch 1995). The number of trees
actually selected is,, where subscript s denotes the sample
(0 <ng< N, E(ny) = n).
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where X; is the available predictor of the tree’s actual-vol Which one to use? A review of the literature would only
umeY,, and TX is the sum of th& predictors. In the event produce partial clues, as most estimators have only been
p > 1, theith tree would be assured inclusion, and its inclu used or tested in a narrow range of conditions. It is known
sion probability would be set to 1. The inclusion probabili that the performance of an estimator can vary in response to
ties of the remaining trees were then recalculated as aboymopulation attributes such as the distribution and variance—
with n replaced byn —1, and so on until no inclusion proba covariance structure of the predictor and the target variable
bility was larger than 1. A decision to select a tree for-vol (Magnussen 2000; Schreuder et al. 1968, 1971; Williams
ume estimation was determined byrandom draws from a and Schreuder 1998). In forestry, where data structures varie
uniformly distributed variabley; on the interval [0, 1]. Ifu; <  widely, an estimator that performs well across a wide spec
pi, then treei would be selected for estimation of volume trum of data structures would be preferable to an estimator
(YY), otherwise noti(= 1, 2, ...,N). Sampling is thus without with fluctuating performance.
replacement (a tree can enter only once in the sample). The objectives of this study are to demonstrate the need
Empty samplesr = 0) were rejected, and the selection for an extensive testing scheme for PPP estimators and to
process was repeated until at least one tree was sampled forovide a suitable testing procedure. An exhaustive testing
volume estimation. Inclusion probabilities were adjusted toof all PPP estimators is neither intended nor desired. Instead
reflect the rejection of zero sampl@s = p/(1 — Py), where  a select group of four PPP estimators and five variance esti
Py is the probability of obtaining a zero sample, mators are compared. The selected estimators represent a
mix of estimators that are well known to forestry and new
developments. Also, as sample sizes increases their perfor

0.0023,R, = 0.0003). The set of trees selected for volumemance converges.
estimation is denoted by s, and the number of trees in s by

n. The expected sample size Simulated sampling
Nominal sample sizes af = 6, 8, 10, 11, and 13 were

E[nd = %i taken from a population of 80 trees, and sample sizasof
=R 6, 13, 19, 26, 32, 38, 45, and 51 were taken from a popula-
. . . . tion of 320 trees. A sample size of six is a priori considered
which is exactlyn when all inclusion probabilitiep; are less 5 the smallest sample size that in 19 of 20 cases provides an
than, or _equal to, 1. i ) estimate of TY within 25% of the actual value. The maxi-
Select|or.1 of trees _W'th PPP has the ObV'(_)us advantage qf, sample sizes are regarded as the limit for achieving a
concentrating sampling efforts to trees making a larger tha'El,ampling error around 5%. Sample sizes less than six were
average contribution to the stand volume (Brewer and Hanifjoq a4 of jow practical value. Estimation of reliable sam
1983; Cochran 1977 deVries 1986; Thompson 1992). Ur‘pling errors for small sizes appears to require special ap

equal probability sampling is mainly a tool to reduce theproaches (Magnussen 2001) beyond the scope of this study.
sampling vanahce of an gsumate or, conversely, a tool o re For each of the 832 distinct data settings, a PPP sample
duce sgmple sizes for a fixed accgracy. Foresters Weret‘herﬁ/as obtained via the protocol described above. Estimates of
fore quick to explore the potential of unequal probability totals and sampling errors were then obtained with estima

sampling in forest inventory procedures (Bonnor 1972301 listed in Tables 1 and 2. This process was repeated
Grosenbaugh 1965; Hartman 1967; Schreuder et al. 196%,7 000 times for a total of 22.464 x 4Gamples. With

1971; Space and Turman 1977).

N
R, = LI - p). Note thatP, was negligible in all case$f <
i=1

i s o 27 000 replicates of each sample, the mean estimate of a to
.In PPP sampling the reallzed. sample sixeis random tal obtained would have a relative standard error of less than
with a mean equal to a predefined target(Brewer and 5000y imately 0.05%. Means of sampling errors obtained

Hgnif 19&_33)' Estimqtgs of PPP sampling errors are there_forﬁ/ith a specific estimator would have relative standard errors
quite variable; a definite drawback from a user’s perspective, ¢ approximately 0.1%

since the success of a volume inventory depends on its accu
racy (Bonnor 1972; deVries 1986; Magnussen 2000;_ .
Schreuder et al. 1968, 1971). To combat the high variabilit;FSt'mators of total volume (TY)
of PPP estimates a variety of alternative estimators have Four PPP estimators of TY, two ratio estimators and two
been coined (Brewer 1999; Brewer et al. 2000; Brewer andaalibration estimators, were chosen to demonstrate the need
Hanif 1983; Furnival et al. 1987; Gregoire and Valentinefor an extensive evaluation (Brewer et al. 2000; Gregoire and
1999; Sarndal 1996). Valentine 1999; Magnussen 2000). Recall that it is possible
Users of PPP volume estimators have a plethora ofor some estimators not included in this study to outperform
choices (Brewer and Hanif 1983; Gregoire and Valentineone or all of the included estimators. Table 1 lists details of
1999; Sarndal et al. 1992; Schreuder et al. 1992, 1993the estimators. The first is an adjusted ratio estimator by
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Table 1. Estimators of total volume (TY).

Estimator Estimation Reference
ED Y Grosenbaugh 1965
D? P

Adjusted ratio Y

Ratio N Sarndal et al. 1992

Jﬁ@im
'O)‘X
Eunm)

Calibration Sarndal 1996

z
1
DM

Calibration 2 Brewer 1999

A A . XI:I
TYco =0co +Bczgx - ég%

Note: Contributions from trees with an inclusion probability of 1 are not included. See
text for definitions of symbols.

Table 2. Sample-based estimators of sampling variance.

Estimator TY Reference
0 IZI] 0 A If A Grosenbaugh 1976
W= LB Mn Be X g dg g T
o maxt, g~ DTE DA O % 0 N
DZ A Sarndal et al. 1992
D TY
) a§=%xﬂ T Py - RXi)? R
IixH & P
O A Sarndal 1996
()62 =Y O-=0(EW)? TYc
=0 P
& . A Brewer 1999
(¢ - p) o - G2 -BchDZ ez
A a Nny a n -1
(4) 6%, = z - ,C=
y p? O 0
10s | _l r)z
%15 s = I %
O 30-2 40—3 &-4 O A
A2 (A2 n, _ n, naH _ nsH TY
O e e @@ = ;

Note: The TAY column gives the corresponding estimator of totals as per Table 1.

Grosenbaugh (1965), known in forestry as the 3P7 estimamatch the known values of TX anld, respectively. Table 1
tor. The second is a ratio estimatofY(z) developed by detailsTY .. Calibration weightsv, that minimize the differ
Sarndal et al. (1992). The third choice is a calibration-estience between the original inclusion probabilities and the
mator (TY ) that through a reweighting of the inclusion new weights were obtained from Sérndal (1996):
probabilities ensures that the sample estimate of the total of

the predictors: 2] W= ~l ME i Os
pd ¢ o
X =5 Xi= N 1x with
10s M E[nS] ~
Bl o=
and the sample estimate of population size: 1-p
. 1 A = (TX -TX)TS?
N = il
ils P and
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TS= X?1-1) estimator, conditional on the actually achieved sample size
é p? (ny. After limited testing it was accredited with desirable

he fourth choice T < al lbrat . properties (Brewer et al. 2000).
The fourth choiceTYc,, is also a calibration estimator ~ . | ¢ estimatoré?Y . is proposed as an improve

derived from first-order inclusion probabilities only and is ment toéé. It exploits the known sampling distribution of

said to be interpretable in terms of design-based and mOdeé'ample sizesyny). The first step computes the variance of
based inference simultaneously (Brewer 1999). It WaSSampIe estimates of the total of the known predicT?X,
coined “cosmetically calibrated” to reflect that the eSt'matorwhich, of course, turns out to be a simple function rgf

retains its “natural” variance without attempts to manipulateSecond a scaling tBY g via the estimated volume ratRof
joint inclusion probabilities (the probability that both tree actual to predicted volume leads to an estimate of the total

andj are in the sample). It introduces scaled (generalizedhnconditional variance of the estimated totals. Becalse
versions of the inclusion probabilities: A \

known, only the conditional variance @fY given TX con
B = n.p tributes to the sampling variance of totals. By conditioning
E[ng on TX a final estimate of the sampling variance is obtained.

. . Hence the variance ofYR is
to dampen fluctuations of estimated totals caused by-sam

plgs larger apd smaller tham Estimation (see Table 1) +e [6] 6%\( _ ﬁzo%x + gTX] 26,%
quires an estimation of R

oy = Y where expectation is over all possible sample sizes since
D TX = (ng/ N)TX. The probability distribution of sample sizes
01 0 1(ny), 1 < m(ny) < N was recovered by standard techniques
[4] B% —194 (Johnson et al. 1992) from the probability generating func-
Ber = w2 tion (pgf) of sample sizes
1 O
Z T _lDXi N
=L 71 poh@=[]C-B+R3
1=1

Compared with the first calibration estimatdry -, uses _ _ .
an additive adjustment rather than a multiplicative one. ~ Magnussen (2001) provides detaits;, was obtained from

A O

Sample-based estimators of sampling error  [8]  E[(TX-TX)?] :TXZE% ‘lg E
Five alternative sample-based estimators of sampling vari

ance are listed in Table 2; the last is a new developmenflo compute the desired conditional variarzfr?re” . an esti
Various studies indicate that these estimators exhibit desirmate of the variance irY; explained byX; is needed. The
able features (relative to other estimators) such as closenesguare of the correlation coefficiept, betweenX; andY, es
to the actual sampling variance in simulated sampling, lowtimates this quantityp,, = Rox 67, (Draper and Smith
root mean square errors, and low variability in replicated1981). From this follows the estimator given in the last row
sampling (Brewer et al. 2000; Gregoire and Valentine 1999pf Table 2. Two additional multipliers were added, the first:
Magnussen 2000). The f_irst estimator, name& _by 0 %2 4% 540
Grosenbaugh (1976), is an improvement over a previods aqg] ﬁ+ zf‘s - ;s + :sD
justed variance estimator named 3PBhe ratio variance es ns N's Ms H
timatoréé in Table 2 uses the sample based predicfioh ) ) , o
of TX to adjust the squared sum of the probability weightedprov'des a five-term Taylor series approximation to the ex
residuals between the actual volume and the volume preoected value o, and the second:
dicted by the ratio estimatdRXi. The calibration estimator _ng
62 by Sarndal (1996) is derived from a first order Taylor se @ NH
ries of probability expanded and reweight&y, (see Table 1)
residualsé;, whereg, =Y, —f3.% and

provides a correction for the sampled fraction of a finite
population (Thompson 1992).

O_ x2 00 Xy All sampling error estimates in excess of twice the -esti
5]  Bc= ) ?qg E’% ﬁqg mated total were considered as extreme. Extreme sampling
s M s M A

errors were censored to a value o ﬁ The interval
whereg; is defined in [3]. The fourth variance estimator {Ta TY + TY would then have a probability of containing the
ble 2) was developed by Brewer (1999) and is, as the firstrue value of at least 88% iTY has a normal distribution
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(Wall et al. 2001). Censoring was a rare event; it was only A @ A . A .
applied at a rate of about 1:4500. Censored cases were prd0] Oy = it TY UMY = Z267y TY + 20y 207 |
dominantly associated with the first and last variance- esti FD, otherwse

mator, with the calibrated estimator a distant third. However,Where is the 100(1 —a)% quantile of a standard normal
the rates were considered statistically equk(0.17). Z °d

distribution. Forfeach of the five estimators and 832 data set
tings, the mead, over the 27 000 replicated samples was

compared with the nominal levels of 1 & = 0.80, 0.90,
Unbiased, low mean departure from the true total and lowp.95, and 0.99. C5 was then computed as

variability are the desired attributes for the estimator of total _
volume (Shiver and Borders 1996). Accordingly, the follow (C5) ‘1_0‘ =9
ing three performance indicators were chosen

Performance criteria

Deviations in achieved significance level of +0.17% would

. 100% be declared significant at the 95% level of significance under
(C1)  ETY=TY]x TY the null hypothesis of nominal significance levef (test,
expected percent bias Miller 1980) _ _
Estimators of totals were ranked against C1-C3, and estima
R tors of sample errors (and bias), against C4—C5. Recommenda
(c2) E[TY-Tv| . 100% _ ple ( ), ag
TY tions for practical use were based on an overall performance

expected percent absolute bias index (PI) calculated from the five criteria as outlined below.

(©3) BTy Tv)2]0s x 100% [11] PI=12- RanKCl- Rank Q> Rafk {3
TY -10x|1-C4 -[120% | 0.95- &y od[]
expected percent root mean square error - DOX\O-SO—So.szD

where approximate expectatiofg) are the mean of the where ¥| is the absolute value of and[X] is the smallest in-

27 000 repeated sampleBY is an estimator of total volume, teger larger thax. Consequently, an estimator with a rank-

and TY is the actual total. ing of 1 for C1-C3, a ratio of 1 between expected and
Attractive sample-based estimates of sampling error of aBbserved root mean square error, and a perfect_probability

estimated total are relatively small and positive; they matchcoverage of stated confidence intervals would hBves 9.

in expectation, the root mean square error of the estimategonversely, a really poor estimator could end up with a per-

total; and they achieve significance levels of estimated eonfiformance index of —16. The overall ranking of methods

dence intervals that are close to the stated confidence levadased on the performance index was rather insensitive to the
These desirable properties prompted two additional criteri@xact weighting of criteria C4 and C5.

(C4 and C5). C4 is the ratio of sample-based root mean
square error to the root mean square error of the estimateSlample data

totals. Specifically A wide spectrum of data structures were generated-o al
5 low for a comprehensive testing of the PPP estimators.
O g Paired values of the predictdf and the actual volum¥ of

EE[G%Y] + E[(TY‘TY)]ZB an individual tree were generated for populations of sizes of

. A ) 80 and 320. Populations are trees sampled from a forest
E EI(TY=TY)"] H stand with either fixed-area plots or variable-radius plots
. (deVries 1986; Schreuder et al. 1993). It is assumed that 80
where E denotes the expectation (mean) over the 27 000 reand 320) trees provide a good representationXofTo
peated samples. For estimated sampling varian6&s)( mimic a series of realistic distributions ot and Y and ste
close to their actual values, the ratio should be close to }thastic linear relationships betwednhand Y with variances
whenTY = TY. A ratio less than 1 generates an optimistic of Y given X increasing inX (Gregoire and Dyer 1989; Wil
(liberal) estimate of the sampling variance and vice vers3iams 1997), 64 distinct bivariate distribution were generated
(conservative). for each combination afi andN. A step-by-step protocol for

C5 measures departures in the achieved significance levejfe data generation is listed below. It can be skipped with

(@) of a sample-based confidence interval with a nominalimpunity, since there is no transparent relationship between
chance of 1 -a of containing the true mean. The achievedthe bivariate distribution oK and Y and the parameters of
significance level was computed from the indicator variablehe protocol. The protocol only documents the actual data
Oy, Where generation.

(C4)
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Fig. 1. Six scatterplots of simulated predicted volum¥ @nd actual volumeY). QXY is the slope of ordinary least squares linear re
gression ofY on X; py y is the Pearson moment correlation coefficient betwieand Y; cvy is the coefficient of variation oK; and

g5 is the coefficient of skewness of.

24| Byxy=170
20 62(,Y= 0.88
16| Svy=078
12 —

8 -y

Y (m3)

a| a4 g3 =138

24| PByy=1.43

20| pyy=081
& 16| Cvy=0.70
E AT
> 38 L -

4 ,’,,«”’ gs =0.99

Bxy=1.76

45| pyy=0.78
36| Cvx=0.70 -
(]
£ 27 =7
~ -
> 18 //’/

-
9 /’/ A =
W gy =151

4 8 12 16 20
X (md)

The data generation protocol produced coefficient of-vari
ation of X that would run from 0.48 to 1.28 (mean = 0.69).
Skewness coefficient oK attained values from 0.4 to 3.5,
with a mean of 1.3. Slopes and intercepts of the linearrela
tionship betweerX andY would run from 0.77 to 1.23 and

12| Bxy=088
10 pZ(’Y= 0.94
g| Ccvx=078 _
6 4
/’/
4 Sl
2 ,/”// §3 =1.04

12 Pxy=0.96

10 f’z(,Y: 0.96
g| Svi=0s84 ;
6 e
-
4 L7
-
2| 2t Gy =1.22

Byy = 2.00
40| pxy=089
32| Ccvy=086 <
b
24 -~~~
//
16 et
//
8| == G, =1.18
|~ 3 '

3 6 9 12 15 18
X (m3)

2), and A andB were assigned values of {0.3, 0.6} and
{1.5, 3.4}, respectively.

Results

—0.087to 0.69, respectively. Pearson’s product moment COr criterion C1

relation coefficients betweeK and Y were always positive
with a low of 0.63 and a high of 0.98 (mean = 0.88). Fig

ure 1 provides a scatterplot af and X for six settings.

Protocol for data generation

(1) GenerateX by random draw from a gamma distribution
with parameterst and3 with (a, B) € {1.5, 3.0}. Hence,
a mean ofX is af and a variance oX is (@B)? (Johnson

et al. 1994).
(2) Generate constanis = Min(X) and xx = Max(X).

(3) Determine the population regression Iie= a + bX by
solvinga+b xxi=nxxiAa+hbxxx=A xxxfora
and b for fixed values ofn andA. Values forn and A

were {0.7, 1.3} and {0.8, 1.2}, respectively.

(4) Generate stochastic realizationsyof O given the mean
population regression line &= (a + bX)(r(B — A) + A),
wherer is a random draw from a beta distributi&g2,

Relative bias of all four estimators declined at about equal
rates P = 0.13) with increasing sample size but could other
wise not be shown to depend on any attributeXobr Y or
the joint distribution ofX andY. The second calibration esti
mator (TYc,) produced in most (410 of 832) data settings
the lowest relative bias of the four estimators, yet the ad
justed ratio estimatorT(Y gg) was a close second and oeca
sionally the best (in 227 of 832 cases). A sample of the
results is presented in Table 3. For fixBldand increasing,
the second calibration estimator lost terrain to either the ad
justed ratio or the ratio estimator. Generallyy ¢, was et
ther the best or the third best (in 302 cases) estimator in
terms of bias. Attempts to predict the rankingTf o, from
design attributesn(and N), attributes ofX, Y (coefficient of
variation and skewness), and the relationship betwéand
Y (correlation, regression coefficient, and proportionality factor
between regression residuals aXy by logistic regression

© 2002 NRC Canada
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Table 3. Relative bias (%) of total volume estimates. Table 4. Estimated effectfi) of estimator and estimator interac
N = 80 N = 320 tions yvith .design variables and attributesXfon expected abso
Estimator* P 213 n=6 = lute bias (in percent of true value).
™ er X 0010 -0005 0001 0002  Cfrect 1319 - SEQ)
sx 0100 0084 0089  0.025 gGR > %‘%z
r 1.6 2.0 1.6 2.1 R ' '
) 06 0.8 0.6 0.7 S¢ 12.81 0.63
™V % -0.160 -0.006  —0.229 0.002 Oc2 14.03 0.63
s 0102 0084 0088 0025 PXY =755 0.45
r 2.6 2.0 2.8 -0.190 5, @_gg/n 16.26 0.44
s(r) 0.8 0.7 0.5 0.471 N
™, X -5.782  -2.636  —6.273 0.017 5 n 82.36 0.44
sx 0152 0141 0089 019 °R @r NQ/ :
r 4.0 4.0 4.0 3.8 e 46.30 0.44
s 00 0.0 0.0 07 & [d-1H/n
Ve, 7 0.010 -0.006  -0.001 0.000 N
s 0103 0075 0089 0003 g5, @_ﬂg/n 20.46 0.44
r 1.8 2.0 1.6 1.8 N
S(r) 0.6 1.0 0.5 1.0 Scrdx.y -26.04 0.79
Note: X, mean across 64 data settingé), standard deviation of OrPx.y —7.47 0.79
E:glr?lg\./e bias)y, mean rank of relative bias(r), standard deviation af 3Px.y -21.06 0.79
*See Table 1 for details on estimators. BcaPx,y -19.01 0.79
drEVy 4.61 0.50
with multiple responses (McCullagh and Nelder 1989) onlyaRCAVX —0.26ns 0.50
identified the slope as a statistically significafit £ 0.04) BcClix 3.05 0.50
X ol 3.33 0.50

predictor. On average, the rank afYc, would increase —

o Note: Model R? = 0.993. Root mean square error of predictions =
(worsen) by 0.37 £ 0.18 (mean + SE) for every unit 'ncreaseo.GZ%.(SM is the indicator variable for estimatdd. 3, = 1 if estimator is
in the regression slope betwe&nandY. However, 98% of M and 0 otherwise. Estimators are listed in Tabl@(X, Y) is the
the regression slopes were in the interval from 0.6 to 2.7, correlation coefficient betweeX and Y. cvy is coefficient of variation of
range barely wide enough to trigger a rank change. Ranks 8? All effects but one (ns) are significant at the 99.9% level.
TY g Were more stable, the estimator came in second 404
times and with an equal split between first and third for theabsolute bias goes up. Absolute bias was strongly dependent
remainder. The influence of the regression slope between on design factors, the coefficient of variation Xf and the
and Y on the ranking of TYgg was an improvement strength of the correlation betwe&nandY, but the relation
(decrease) of 0.40 + 0.18 for every unit increase in the reship depended on the estimator (Table 4). After adjusting for
gression slope. None of the differences betw&fyg and  the linear effects of significant covariates, a test of equal
TYc, were statistically significantt(test, all P values > mean relative bias led to the rejection of this null hypothesis
0.21). Relative bias ofYgg and TY, were about 0.15% (analysis of covariancé[&%ogh: 205.4,P = 0.001).
lower than the bias of the ratio estimator wher 12 (P = In all 832 data settings, th€Y ¢, estimator outperformed
0.05 or less) but within 0.001% far > 12 (P > 0.30). The the others. Second place was in all but four cades @20,
rank of the ratio estimatofYr was somewhat sensitive to n = 50) held byTY gg. TY ¢ consistently ranked third, except
sample and population sizes. Ranks increased by an averagethe said four cased'Y always produced the highest-ex
0.5 whenN increased from 80 to 320 but improved {de pected absolute bia3.Y g was significantly better than the
creased) by 0.01 for every unit increaseninThe calibration thirdApIaced estimator in all 13 combinationsfandn (t >
estimatorTY ¢ trailed the other three by a wide margin (fac 27, P < 0.001).
tor 10 or moreP < 0.001). It was only best in four settings

(N = 320 n = 50, andR > 1.5). Criterion C3 . .
Relative root mean square errors @ gr, TYg, and

Criterion C2 TY ¢, were virtually identical (mean 7.58%) with differences
Across all data settings the mean relative absolute biasef less than 0.02%, which are of no practical significance.
(+SD) was 4.5 + 2.1% forTYcz, 6.0 + 2.8% forTYer, An analysis of variance confirmed the null hypothesis of no
7.8 £ 4.3% forTYc, and finally 20.1 + 7.3% foiTYr. Note  difference P>0.9)in each of the 13 tested combinations of
the parallel increase in standard deviations as the expectédiand n. In all 13 casesTY ¢ produced significantly B <
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Table 5. Relative root mean square errors (%) of total volume  variance estimatod%,rx. Each estimator produced a mean

estimates. ratio that was significantly different from the otherB &
N = 80 N = 320 0.001). Root mean square error ratios obtained with the cali
Estimator* n=6 n=13 n=6 n=51 bration estimator were more consistent across levels of rela
™ on 2 126 74 133 36 tive r_oot mean square errors without a tendency _to inc_rease
(%) 30 19 31 0.8 for higher relative root mean square errors as evident in the
P 2.4 23 25 1.7 others. Design parameterd Andn), the strength of correla
S(r) 0.5 0.4 0.5 0.6 tion betweenX andY, and the relative variation of all had
TAYR X 12.6 7.4 13.2 3.6 a significant impact on the ratio (robust regression ceeffi
S(X) 3.0 1.9 3.1 0.8 cients (Staudte and Sheather 1990) were all significantly dif
r 1.0 13 1.0 15 ferent from zeroP < 0.01), albeit with distinct differences
R s 0.2 0.4 0.0 0.6 among estimators in sensitivity and response to a change in
TY. X 21.5 10.4 22.8 3.8 data settings.
f,(x) i'g 111'3 411.3 Z'g Relative root mean square error of the conditional -vari
s(r) 0:0 0:0 0:0 0:0 ance estimator was 1.15 (x0.01) times the relative root mean
TAYcz % 12.6 7.4 13.3 37 square error of the cosmetically calibrated estimator, and the
¥ 3.0 1.9 3.1 0.3 correlation between them was almost perfect (0.996) and
7 26 25 25 28 higher than between any other pair of estimators.
S(r) 0.6 0.9 0.5 0.6
Note: X, mean across 64 data setting&), standard deviation of; r, Criterion (-?5 . R . .
mean rank of relative bias{r), standard deviation of. Two variance estimator§%, and 0-2|-y|-|-x achieved nearly
*See Table 1 for details on estimators. identical (difference less than 0.02) significance levels,

which were also significantly closer to their nominal levels

. . than were the other three estimators. At a nominal signifi-
0.01) higher relative root mean square error than any other

. . _ cance level of 0.80, their estimated confidence interval cap-
tested estimator. The performanceTof c did, however, im- . .
. . . . tured the true total with a mean probability of 0.83. At a
prove rapidly with increasingN andn (Table 5). The influ- . Co .
- L nominal significance level of 0.95 they were within 1% of
ence of the coefficient of variation and skewnesXaindY, . .
. . the target value. Figure 3 illustrates the results. Note that the
the correlation and regression slope betweeand Y, and

. . . : best results were also associated with the smallest variation
the proportionality factor between regression residualsXand . : .
L . across the various data settings. Relative results from the
was, as expected, similar to their influence on the mean rel

_ . a(5.90 and 0.99 levels of significance were quite similar. Poor
tive bias (C2). . . . .
A A A results (under-coverage) were obtained with the calibration
Root mean square errors @ g, TY ¢, andTY ¢, were,

! ) estimator@% with deviations of —0.04 for the 0.99 level of
as expected, strongly correlatel ¥ 0.990) with the ex

’ ) ) significance and —0.08 for the 0.80 level of significance. The
pected absolute relative bias. For the fourth estimatyig,

h lati | d | 0.87). Th adjusted ratio estimataiZg on the other hand was overly
the correlation was only moderately strong (0.87). The X conservative with achieved significance levels well above the

pected absolute relative bias was about 0.7 times the relativﬁominal targets. Results with the ratio estimai@rwere in

root mean square error in the former group of three EStimatermediate (about 0.02 below nominal level for= {0.2
tors versus 1.8 iTYR. In absence of bias the absolute mean; 14 g 05}) Design. parametersl @nd n), correlation -br:z

L o . ) 5
deviation of a normally distributed variable is (89> = 0.80 tweenX and Y, and the relative variance of all exerted a

times its standard deviation. significant impact on the achieved significance level. Ceeffi
cients in a logistic regression were significantly different

Criterion C4 . from 0 (Collett 1991). Again, these effects varied signifi
Relative root mean square errors derived from the Samplec'antly from one estimator to another

based estimates of variance plus squared bias were, in four

of five estimators, strongly correlate@ ¢ 0.990) with the  oyerall performance index (PI)

root mean square errors obtained via resampling (Fig. 2). Two estimators, the cosmetically calibrated and the ad

Variance estimates obtained with the adjusted ratio estimatqusted ratio estimator, achieved the best overall performance

were more erratic, especially as relative root mean square eindex of 2.7 + 1.3 and 2.5 + 3.2 (mean * SE), respectively.

rors increased. Third place was earned by the ratio estimator (0.6 + 1.0),
The mean ratio of expected to observed relative root meaand the last place was held by the calibration estimator

square error varied from a low of 1.22 + 0.10 for the calibra (1.8 + 0.7). Of 832 cases, the cosmetically calibrated-esti

tion estimator to a high of 1.50 + 0.10 for the conditional mator was best 444 times (53%), but it clearly lost ground to
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Fig. 2. Relative root mean square errors computed from sample-based estimates of sampling variance plus squared hiag@«(RMSE
plotted against the root mean square error obtained from 27 000 repeat samplesg(R®HEThe variance estimator used in RMSE
is displayed in each scatterplot (see Table 2 for definitions). A 1:1 line is added for comparison. Each scatterplot contains 832 paired

observations.
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the adjusted ratio estimator as sample sizes increased forRy. 3. Achieved significance level of confidence interval of total
given N. For example, witlN = 320 the chance of a better volume with a nominal chance of containing the true total of
result with the adjusted ratio estimator increased from 1:6 t$0% (solid squares) and 95% (gray squares). Variance estimators

7:8 asn went from 6 to 51. Even the ratio estimator had a

Discussion

used for calculating confidence intervals are positioned along the

) ] ) ) “horizontal axis of the graph. Vertical lines have a total length of
2:8 chance of outperforming the cosmetically calibrated estiy,, times the standard deviation of the achieved significance

mator. For the ratio estimator the odds of a first place im |evel in 832 data settings.
proved as sample size increased. For the conditional
estimator, the odds of a first place were about 1:8 in all data
settings. Only the calibration estimator had virtually no

chance of being the best within the tested settings.

To combat the high variability inherent in PPP estimates
of totals and sampling error, a phenomena linked to “too
many small” or “too few large” (Brewer 2000; Brewer et al.
2000) observations in the sample, various modifications of

the basic Horvitz—Thomson (Hanurav 1963) estimator havg1996) found that the conditions for a composite gain in-effi

been successfully developed (Brewer 1999; Brewer andiency by combining estimators may be relatively rare in
Hanif 1983; Grosenbaugh 1976; Sarndal et al. 1992). Evefost real life applications.

optimal combinations of various estimators have been tried Highly variable results are anathema to practitioners,
(Gregoire and Valentine 1999), but Leblanc and Tibshiranisince they cannot afford to invalidate suspect results or the
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time to measure a “surplus” of trees (Bonnor 1972). Systemwould produce a 5% drop in average performanfe=(

atic and stratified volume sampling will remain attractive al 0.11). A solution that should appeal to practice where -buff
ternatives until the PPP variability problem has beenering against adverse results is appropriate (Pope and
completely resolved (Magnussen 2000; Schreuder 1975). Ziemer 1984).

When PPP sampling is the chosen method, a careful
choice of estimator(s) must be made because estimators gicknowledgement
differ significantly in various aspects of performance. Yet, ) ) ) )
the choice could be difficult since no single estimator ap  Dr. S. Titus (University of Alberta) provided helpful cem
pears to be uniformly best throughout a set of applied criteMents on an earlier draft.
ria. Differences among methods also diminish as sample
sizes and population size increase. In a typical forest enteReferences
prise, the application settings of a PPP estimator will vary
greatly from one case to another. Only a comprehensiv@very’ T.E., _and Burkhart, H.E. 1983. Forest measurements.
comparison of estimators across a wide range of realistic McGraw-Hill, New York. . ing in . .
settings will produce a reliable assessment and quantify th og(r)nror,sg.lillé 11?);2_.2,8\2test of 3-P sampling in forest inventories.

odds that One.esnmator when co_mpared W.Ith another .WII|3rewer, K.R.W. 1999. Cosmetic calibration for unequal probability
produce superior results. Comparisons restricted to a single samples. Surv. Met25: 205212
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