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Introduction 

Peat accumulates in wet environments where 
the rate of accumulation of plant biomass exceeds 
that of decomposition. It may be many meters 
deep and thousands of years old at the base, and 
it thus affords a valuable record of past environ
mental conditions (Campbell et al. 2000)_ Below 
the first few centimeters, decomposition is mainly 
hindered by lack of oxygen. Peat is essentially 
compressed plant litter, often very little affected 
by decomposition. Understanding its chemical 
composition and decomposition pathways 
requires the techniques widely used in studies of 
soil organic matter (Preston 1996, 2001; Kogel
Knabner 2000), coalification (Chague-Goff and 
Fyfe 1996; Dudley et al. 1990) and organic 
geochemistry (van der Heijden and Boon 1994; 
Hedges and Oades 1997; Hedges et al. 2000; 
Lichtfouse 2000). This basic understanding 
ultimately must underlie our efforts to predict the 
effects of climate change on peatlands and to 
enhance the development of mitigation or 
management strategies. 

Methods for Characterization of Peat 

General Methods 

Peatlands have long been used for extraction 
of fuel, planting media, and raw materials for 
environmental remediation and chemical pro
ducts, and drained for agriculture and managed 
forestry. Therefore, much research has been 
driven by practical considerations (Mathur et al. 
1984; Preston et al. 1986; Sped ding 1988; 
Humphey and Pluth 1996), and assessment of 
peat quality has been of longstanding interest 
(Levesque and Dinel 1978, 1982; Brown et al. 1990; 
Malterer et al. 1992). Two key components are 
botanical composition and degree of decomposi
tion, the latter comprising a wide array of physical 
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and chemical properties. In terms of botanical 
composition, peats or peat layers may be derived 
primarily from Sphagnum moss, sedges and other 
higher plants, or woody inputs. 

The von Post and rubbed fiber techniques 
have been commonly used to assess physical pro
perties related to the degree of decomposition of 
peat. These methods are based on the breakdown 
of plant fibers to smaller particles through 
decomposition_ The von Post index is particularly 
simple and suitable for field use, as it is based on 
how the substrate runs through the fingers when 
squeezed, whereas determination of rubbed fiber 
content requires simple laboratory equipment. 
The water-holding properties of peat have also 
been of great interest, especially as a single 
peatland may have several pools of water with 
different degrees of binding (Holmgren et al. 1990; 
Preston n.d.). These properties affect the drying 
characteristics of peat for commercial use, but also 
such characteristics as gas diffusion, which can 
influence drainage efficiency and methane release 
(Aravena et al. 1993; Buttler et al. 1994). 

Because wetlands are generally nutrient
limited systems, peats tend have high total carbon 
(C) and high C/N (C to nitrogen) ratios. As 
decomposition proceeds, the general tendency is 
for C to decrease and N to increase, which results 
in a decreasing C to N ratio, while bulk density, 
ash content, and cation-exchange capacity all 
increase_ As a substitute for accurate C analysis 
through combustion, the Walkley-Black method 
or approximations based on loss on ignition are, 
unfortunately, still being used; the resulting data 
cannnot be considered reliable, especially as the 
basis for large-scale assessment of C stocks or as 
input for modeling. The C and N isotope 
composition of plants and organic matter (l)13C 
and l)15N) are also sensitive to plant inputs, 
environmental conditions including agricultural 
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practices, and decomposition processes (DeLaune 
1986; Price et al. 1997; Ficken et al. 1998; Kalbitz et 
al. 2000; Kracht and Gleixner 2000; Rice 2000; 
Menot and Burns 2001; Preston, Bhatti et al. n.d.). 

Organic Components 

Beyond bulk physical and chemical 
properties, the C composition of peat can be 
characterized by a variety of organic chemical and 
spectroscopic techniques. Proximate analysis (PA) 
has long been used in studies of litter decomposi
tion and organic matter. Samples are sequentially 
extracted to remove nonpolar extractable compo
nents and then polar extractable components, and 
are then hydrolyzed in sulfuric acid to yield an 
acid-insoluble residue (AIR). This approach was 
developed for wood products and forage analysis, 
and is based on a structural model of extractables 
(including phenolics and soluble carbohydrates), 
celluloses, and lignin. It has recently been 
adapted to quantify nine organic fractions of 
Sphagnum-derived peats (Wieder and Starr 1998). 
However, these operationally defined fractions 
are inadequate to define more complex plant sub
strates incorporating cutin, suberin, and tannin 
structures, especially if modified by decomposi
tion (Preston et al. 1997). 

This limitation has led to overuse of the term 
"lignin" (from "Klason lignin", the AIR from PA of 
wood) for the AIR fraction. However, it reflects 
contributions from three biopolymer components: 
cutin (or suberin), condensed tannins, and lignin 
(Ha et al. 1997; Preston et al. 1997). The latter is 
properly defined as a polymer of phenylpropane 
units, with zero, one, or two methoxyl substitu
ents (hydroxyphenyl, guaiacyl, and syringyl units, 
respectively), and may be present at lower concen
tration than the other components. Lower plants, 
including Sphagnum and all mosses, do not even 
contain lignin (Williams et al. 1998), although 
other phenolics are present (Wilson et al. 1989), 
especially sphagnum acid (Rasmussen et al. 1995; 
Williams et al. 1998). 

Recent geochemical research focuses much 
more on specific chemical degradations, pyrolysis, 
gas chromatography, and mass spectrometry to 
generate molecular-level analysis of biochemical 
components, such as individual lipids, amino 
acids, lignin fragments, condensed tannins, and 
monosaccharides. There has also been rapid devel
opment of compound-specific isotope analysis 
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(Macko et al. 1991; Lichtfouse 2000). There is little 
information on individual amino acids in peats 
(Preston et al. 1981; Macko et al. 1991), but total 
amounts, molar distribution, and stereochemistry 
(levorotary versus dextrorotary) are all sensitive to 
imputs and decomposition. Lipids generally 
accumulate with decomposition, and there is some 
information on lipids in peat, although mainly 
those amenable to extraction (Karunen and 
Kiilviiiinen 1988; Lehtonen and Ketola 1993; Baas et 
al. 2000; Nott et al. 2000). 

Tannins (especially condensed tannins) are 
common in higher plants and, like lignin, absent 
from mosses (Preston et al. 1997; Preston 1999; 
Preston et al. 2000). While levels of chemically 
identifiable tannins usually decrease rapidly with 
decomposition, C structures derived from tannins 
may still be detected in peat and humus by 
nuclear magnetic resonance (NMR) (see next 
section). Occasional high levels of tannins (up to 
4%) have been found in black spruce humus 
(Lorenz et al. 2000; Preston 2001) and may be 
related to high water tables. Molecular-level 
analysis of tannin monomer components in soil or 
sediment is still under development (Hernes and 
Hedges 2000), but a specific colorimetric analysis 
for extractable and nonextractable tannins 
(Preston 1999; Lorenz et al. 2000) can provide 
valuable insight into peat plant sources and 
decomposition processes. Using the Folin-Dennis 
or Folin-Ciocalteu method to analyze total 
phenolics of the polar extract of PA does not 
distinguish condensed tannins from other classes 
of phenolics; in addition, the extraction proce
dures are not optimized for condensed tannins. 

Hydrolysis followed by analysis of individual 
monosaccharides is particularly useful for follow
ing the effects of decomposition, as the 
monosaccharide profile changes from plant to 
microbial (Morita et al. 1983; Moers et al. 1989; 
Moers et al. 1990; Macko et al. 1991). Analysis of 
lignin fragments has also proved extremely useful 
for understanding plant inputs and transforma
tions due to decomposition. Although mosses do 
not contain lignin, they do yield some phenolics 
(Williams et al. 1998), and litter inputs from higher 
plants leave their characteristic lignin signatures. 

The search for rapid methods to capture the 
chemicat botanical, and microbiological proper
ties of peat has stimulated application of Fourier 
transform infrared spectroscopy with principal 
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component analysis (Holmgren and Norden 1988; 
Holmgren et al. 1990; Chapman et al. 2001). 
However, the predictive ability of this method is 
generally limited to samples very similar to those 
in the classification set. Electron paramagnetic 
resonance spectroscopy has less diagnostic value, 
as it mainly shows a general tendency for free 
radicals to increase with decomposition (Holmgren 
et al. 1990; Karlstrom et al. 1994). 

Carbon-1 3  NMR of Peat 

A general problem with geochemical analysis 
techniques is that the yields of identifiable 
compounds cannot account for all of the C 
structures, even in fresh plant materials, and may 
decrease severely with increasing decomposition 
(Hedges et al. 2000). Carbon-13 (13C) NMR 
spectroscopy is a powerful technique that yields 
an overall characterization or fingerprint of the 
organic composition of complex substrates such 
as fresh plant material, litter inputs, organic 
matter (Preston 1996, 2001; Kogel-Knabner 2000), 
and peats and mucks (Preston and Ripmeester 
1982; Hammond et al. 1985; Preston et al. 1987; 
Norden and Albano 1989; Preston et al. 1989; 
Holmgren et al. 1990; Norden et al. 1992; Bergman 
et al. 2000). It is carried out on dry, powdered 
solids and thus can be used to examine intact 
samples or physical or chemical fractions. It uses 
high-speed spinning (magic-angle spinning or 
MAS), usually combined with cross-polarization 
(CP) from hydrogen nuclei to enhance sensitivity, 
the combined experiment being known as 
CPMAS NMR. There are definite limitations to its 
quantitative reliability, that is, its ability to detect 
all types of C with equal sensitivity. However, 20 
years on, these phenomena are well understood, 
and quantitative or semiquantitative spectra can 
be obtained under suitable experimental condi
tions, especially for samples high i:t:l total C (Hu et 
al. 2000; Preston 2001). 

. 

Figure 1 shows spectra of size fractions of two 
peats differing in degree of decomposition (from 
Preston et al. 1989). Spectra of Sphagnum and 
poorly decomposed peat typically have a large 
signal at 73 ppm from polysaccharides (C-2, C-3, 
and C-5), the major biochemical component. This 
is accompanied by the peak for anomeric C (C-1 of 
polysaccharides) at 105 ppm. The peak at 30 ppm 
comes from alkyl C, especially in long chains 
(-CH2-), and the carboxyl signal (173 ppm) 
includes contributions from free acids, amides, 
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and esters. There is little intensity in the aromatic 
and phenolic regions (112-140 and 140-160 ppm, 
respectively). 

Changes in C Composition with Decomposition 

The changes due to decomposition (here 
reflected in decreasing particle size) are clearly 
shown by NMR. The accumulation of organic 
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Figure 1 .  Carbon- 1 3  cross-polarization magic-angle 
sp inn ing nuclear magnetic resonance 
spectra of particle-size fractions of poorly 
decomposed Gatineau Sphagnum peat 
and wel l-decomposed Farnham peat with 
composition of 50% wood, 40% sedge, 
and 1 0% mosses. Reprinted from Organic 
Geochemistry, Volume 1 4, CM. Preston, 
D.E .  Axelson, M. Levesque, S.P. Mathur, H. 
Dinel, and R.L. Dudley. Carbon-1 3  NMR 
and chemical characterization of particle
size separates of peats d iffering in degree 
of decomposition, pages 393-403, copy
right 1 989, with permission from Elsevier 
Science. 

31 



matter in upland or wetland ecosystems (develop
ment of Folisols or Histosols) is due to conditions 
that restrict decomposition. These may include 
low temperatures, low oxygen and nutrient 
supply, excessive moisture, lack of earthworm 
activity, and the chemical composition of litter 
inputs (known as "litter quality"). The latter is a 
complex concept comprising nutrient content, 
organic composition, and physical toughness. 
The consequences of organic composition are 
poorly understood, but hard-to-decompose litter 
tends to be associated with high content of 
tannins, suberin (from bark), cutin (from leaves 
and fruits), and lignin from wood. Even celluose 
may be in this category, if highly crystalline and 
well protected by association with other 
components (Huang et al. 1998; Preston et al. 
2000), whereas sphagnic acid may have a specific 
inhibitory effect (Verhoeven and Toth 1995). 

NMR studies have consistently shown that 
decomposition in peat is associated with a relative 
increase in alkyl C (lipids, 0-50 ppm) and a 
decrease in 0- and di-O-alkyl C (60-110 ppm) 
mainly associated with polysaccharides. There 
may be a small accumulation of carboxyl C 
(including ami des and esters), but there is often 
little or no change in aromatic C (Hammond et al. 
1985; Preston et al. 1987; Preston et al. 1989; 
Holmgren et al. 1990; Norden et al. 1992; Baldock 
and Preston 1995). Thus, increases in "lignin" 
content indicated by PA may have much less to do 
with accumulation of aromatics than with 
accumulation of alkyl C-based components. 
Accumulation of lignin with high aromaticity in 
forest floor and Lignic Folisols is generally 
associated with large inputs of coarse woody 
debris (de Montigny et al. 1993; Fox et al. 1994; 
Preston et al. 1998; Preston 1999; Preston, 
Trofymow et al. n.d.). It was found by 13C CPMAS 
NMR analysis of a woody peat from Brazil (Freitas 
et al. 1999) and a peatified log from Indonesia 
(Bates et al. 1991). Charcoal is also a source of 
high aromaticity in organic matter (Preston, 
Trofymow et al. n.d.; Schmidt and Noack 2000), 
and thus may also influence some peat sites 
(Campbell et al. 2000). 

NMR spectra of organic matter fractions high 
in charcoal or lignin from highly decayed wood 
are shown in Figure 2. For the charcoal-rich 
sample, the prominent peat at 128 ppm comes 
from highly condensed aromatic structures and 
that at 30 ppm from the accumulation of alkyl C. 
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The spectrum for lignin-rich samples includes 
characteristic lignin peaks at 148 ppm for phenolic 
C, 112-140 ppm for aromatic C, and 56 ppm for 
methoxyl C. Both spectra also have the main peak 
for cellulose-hemicellulose at 73 ppm and for the 
aromeric C-1 at 105 ppm. 

Research Needs for Climate Change Issues 

For climate change issues, filling the know
ledge gaps in peat chemistry and decomposition 
will increase interdisciplinary cooperation. 
Peatlands hold vast amounts of C and factors 
controlling decomposition, DOC and methane 
release, and long-term C storage cannot be 
understood without reference to organic C 
chemistry. As noted earlier, much previous 
research on the C chemistry of peat and its 
decomposition pathways has been driven by 
issues surrounding the commercial use of peat or 
to provide insight into coal formation. Many of 
the detailed molecular-level studies only account 
for a very small fraction of the total C, and much 
chemical and isotope work has been from 
temperate or tropical peats. There are few studies 
providing the specific chemistry and process 
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Figure 2. Carbon-1 3 cross-polarization magic-angle 
spinn ing n uclear magnetic resonance 
spectra of charcoal-rich and l ignin-rich 
samples of the 2- to 8-mm water-floatable 
fraction from 1 0-30 em depth of British 
Columbia coastal forests (project 
described in Preston, Trofymow et al. n.d.). 
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information to complement large-scale studies of 
C fluxes and stocks, and the associated modeling 
exercises. The NMR studies analyzed peats with 
various degrees of decomposition as assessed by 
other techniques, and there do not appear to be 
any NMR or molecular-level analyses of time
course decomposition studies, not even to 
characterize the starting materials. 

Climate change issues have recently stimu
lated much research on C stocks and fluxes in 
peatlands, including C isotope studies. However, 
this has not been accompanied by corresponding 
advances in C chemistry. Recent studies of 
decomposition have focused on environmental 
controls of mass loss, with assessment of substrate 
quality largely restricted to C and N contents 
(Farrish and Grigal 1988; Braeke and Finer 1990; 
Johnson and Damman 1991; Szumigalski and 
Bayley 1996; Thormann and Bayley 1997; Latter et 
al. 1998; Hartmann 1999; Scheffer and Aerts 2000; 
Thormann et al. 2001). Two studies of peat soils 
(rather than fresh litter) showed the importance of 
distinguishing different pools of C and also the 
limitations of PA to explain C, N, and P 
mineralization (Updegraff et al. 1995; Bridgham et 
al. 1998); by contrast the simple von Post measure 
of decomposition was more successful. 
Liihdesmiiki and Piispanen (1988) examined 
sequences of fresh leaves, litter, and humus 
through PA and enzyme activity. Very narrowly 
focused studies of enzyme activities (Pind et al. 
1994, Freeman et al. 1996) culminated in the claim 
that limited activity of one enzyme - phenol 
oxidase - could be the controlling factor for C 
storage in peat (Freeman et al. 2001). 

Compared with the efforts expended for 
forests, grasslands, and agriculture, there has been 
little detailed process work on C flows and 
transformations in wetlands. Some recent studies 
used carbon-14 labeling to track the fate of C from 
litter (Domish et al. 2000) and recently assimilated 
C (Richart et al. 2000). The metabolic pathways of 
13C-Iabeled glucose were followed with varying 
pH, temperature, and redox conditions (Bergman 
et al. 1999; Bergman et al. 2000). Van den Pol-van 
Dasselaar and Oenema (1999) determined 
methane and carbon dioxide (C02) production 
from size and density fractions of peat. 

Factors controlling production of C02, 
methane, and DOC have been examined by Moore 
and Dalva (1997, 2001) and by Scanlon and Moore 
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(2000); the latter found that CO2 production was 
best correlated with the von Post index of 
decomposition. Other recent research indicates 
that the radiocarbon age of peatland DOC may 
differ from that of the bulk peat, and that the 
complexities of DOC formation and movement 
require further investigation (Aravena et al. 1993; 
Bellisario et al. 1999; Chasar et al. 2000; Kracht and 
Gleixner 2000; Palmer et al. 2001). Compared with 
our understanding of DOC in forest soils 
(Guggenberger and Zech 1993, 1994; Kaiser et al. 
2000), there has been very little chemical inves
tigation of DOC from peatlands (Kracht and 
Gleixner 2000). 

While environmental factors exert the 
primary control, substrate quality secondarily 
influences decomposition (Preston et al. 2000) and 
associated releases of dissolved and gaseous 
products. Its influence may be more important 
where decomposition is hindered by unfavorable 
environmental conditions. Addressing the 
significant current questions on C stocks and 
fluxes in peatlands, especially in Canada's boreal 
regions, requires an interdisciplinary approach to 
examine the relevant C chemistry with the 
appropriate analytical tools. 
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