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Abstract:  Large area land cover mapping with 
Landsat data is affected by differing image spectral 
characteristics caused by factors such as solar, 
radiometric, atmospheric, and phenologic conditions.  
For mapping land cover, especially forested land cover 
with single date satellite imagery, acquisition of 
imagery is ideally undertaken during the peak growing 
periods during the summer months.  Yet, during the 
summer months cloud cover may preclude the 
collection of suitable imagery.  To enable the collection 
of imagery to compile a large area coverage, the range 
of acceptable acquisition dates must be extended from 
the optimal mid-summer period.  The question is how 
far can the acquisition dates range before the spectral 
information in the imagery is no longer appropriate 
for land cover mapping.  To address this issue we have 
classified Landsat imagery representing a range of 
within year and between year dates and have assessed 
the variability in spatial features developed and the 
spectral information contained in the imagery.   

To ensure consistent radiometric characteristics 
between scenes we applied a top of atmosphere 
radiometric correction and a dark target subtraction.  
Our data set consists of 7 images.  To assess within 
year variability we obtained 5 images over a range of 
dates within 1999.  To calibrate the within year 
differences, we obtained images to represent the 
previous (1998) and following year (2000) during an 
optimal image acquisition window.  Our results have 
shown that differences in class area are highly variable 
over the range of image acquisition dates.  Spatial 
metrics also illustrate that the composition of the 
resultant classification units are also variable.  The 
spectral variability of the within year image set are 
found to exceed those found for the between year 
image set.   
 

I. INTRODUCTION 
 

Land cover mapping objectives have 
continued to expand to include mosaics of Landsat 
Thematic Mapper (TM) multitemporal imagery over 
large geopolitical and ecological areas [1]. 
Understanding and developing methods of handling 
a spatially-changing spectral response pattern, 
caused by solar, radiometric, atmospheric, 
phenologic, and other differences captured in 
imagery, represents a significant challenge for the 
remote sensing community in this application [2]. 
Unfortunately, methods of image analysis in support 

of such large-area TM mapping of land cover are 
fragmented and poorly developed [3]. Depending 
on the purpose of the classification, the skill of the 
analysts, and the tools available, methods used 
have ranged from relatively simple unsupervised 
clustering algorithms to more comple x decision-
rule based classifiers that employ aspects of 
spatial reasoning and set theory. In support of 
Earth Observation for Sustainable Development 
of Forests (EOSD) [4] and the need to develop a 
national land cover classification product [5], 
understanding and resolving the many technical 
difficulties in repetitive and robust large-area 
classification must be tested and assessed prior to 
implementation.  

We reviewed numerous possible options for 
the classification algorithm/approach for EOSD 
Land Cover [3] and determined that, with 
consideration of the project possibilities and 
constraints, a Hyper-Clustering and Labelling 
Procedure (HCLP) , is an appropriate approach. 
HCLP is an unsupervised technique generally 
recommended in areas where little is known of the 
class structure or where training (field) data are 
scarce or impractical to acquire (e.g., [6, 7, 8]). It 
has been suggested that the hyperclusters require 
relatively little manual effort (thereby limiting 
field and ancillary data needs [1]). It is also 
apparent that the tasks are generally well-
understood and easily implemented in 
commercially- or publicly-available image 
processing systems. The procedure appears to 
have the potential to be robust and repeatable.  

A test is required of the K-means clustering 
algorithm commonly employed within the general 
HCLP process. The goal is to determine the 
ability of an HCLP to handle the differences in 
vegetation phenology that accompany seasonal 
imagery. For example, it is well known that the K-
means algorithm is influenced by four major 
characteristics [9]: 
1. the number of cluster centres specified,  
2. the choice of initial cluster centres,  
3. the order in which the samples are taken, and,  
4. the geometrical properties of the data.  
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Are these influences small enough that imagery 
acquired at different times of the year in a large-area 
mosaic can be processed with a virtually-automatic 
method? Could decisions taken during cluster 
merging by an image analyst reduce these 
influences? More generally, anniversary or multiple 
year imagery will likely be employed in large-area 
TM mosaics without physically-based radiometric 
processing (i.e. with only image normalization or 
preliminary radiometric correction that does not deal 
with atmospheric effects); what is the influence of 
the scene-dependent factors on the ability of the 
hyperclustering approach to generate the land cover 
classes required over large spatially-variable image 
mosaics?  To help address this question, we devised 
an experiment involving seven different Landsat 
images acquired over one growing season and three 
years (Table 1) in the region of Prince George, 
British Columbia, Canada: 
 
1. Classify a large region (approximately 100000 

square kilometres, a single Landsat TM scene) 
in several image dates to simulate the expected 
variability that will be contained in large-area 
Landsat TM mosaics such as are available in 
Canada (e.g., the Centre for Topographic 
Information (CTI) satellite image database) 
[10]; 

2. Determine the range and stability of the 
radiometrically norma lized input digital 
numbers by examining representative features 
in some of the broad classes proposed for 
EOSD Land Cover;  

3. Statistically examine the stability of the classes 
that emerge after hyperclustering the data sets 
using both per-pixel and ‘area-based’ 
assessments; 

4. Visually interpret the classes and spatial 
configuration of classes to lend confidence in 
the statistical comparisons; and assess 
qualitatively the expected effects of clouds and 
other changes in the imagery on the HCLP with 
an interpretation of class stability and 
persistence over time. 

 
II. METHODS 

A. Image Acquisition and Processing 
 

The available images acquired for the Prince 
George study area (Path 49, Row 22) are listed in 
Table 1.  Clouds were a problem in most of the 
imagery; only the August 3, 1999 image was 
reasonably cloud-free with some haze. This image 
was selected as the ‘master’ image for the tests in 
this paper; the ‘master’ against which the others 
could be compared.  

 
TABLE 1. 

TM IMAGERY SELECTED FOR TESTS IN THE PRINCE  
GEORGE STUDY AREA. 

Satellite Date    Solar 
  Zenith 
(degrees) 

Landsat 5  July 31, 1998    51 
Landsat 5  April 29, 1999     47 
Landsat 5  July 18, 1999     53 
Landsat 5 August 3, 1999     50 
Landsat 7  September 12, 1999     38.6 
Landsat 5  September 20, 1999     35 
Landsat 7  June 26, 2000    56.5 

 
B. Georadiometric Processing 
 

The August 3, 1999 image was orthorectified 
using 15 GCPs identified on the imagery and in 
the 1:50000 scale topographic maps available for 
the area. The RMS error in pixel units in this 
registration was 1.33 in the x-direction and 1.18 in 
the y-direction. This image was used as the master 
for the correction of the remaining six scenes. 
Cubic convolution resampling was used to output 
the geocoded data.  Top-of-Atmosphere 
radiometric correction and a dark-object 
subtraction procedure was implemented for an 
atmospheric correction on each of the seven 
image scenes.   
 
C. Hyper-Clustering and Labelling Procedure (HCLP) 
 

We implemented the K-means algorithm 
within the following five-step HCLP: 
 
1. Generation of a cloud mask using interactive-

thresholds for each image; 
2. K-means clustering after 12 iterations (the 

maximum allowable in the formulation 
available) and 50 clusters requested (this 
amount was thought to represent a reasonable 
compromise between the number of clusters 
that could be managed reasonably by a 
human interpreter in the following step and 
the maximum number – more than 240 – that 
can be generated in the available code);   

3. Cluster merging based on Bhattacharrya 
distance separability measures and visual 
cues in the imagery for known class features 
(e.g., grassy areas at the Prince George 
Airport, forest cover types available in the 
GIS, lakes, etc.); 

4. Recode of clusters to an 8 class scheme 
(snow/ice, water, dense conifer, open conifer, 
deciduous/shrub, shrub/grass, grass, exposed 
soil, cultural features); 

5. Export of recoded class scheme to GIS map 
creation and display software. 



 
The classification analysis was conducted in 

three steps: 
 
1. Area Analysis – this involved the comp arison 

of total class areas in the full scene and in 
several selected subareas. The maximum and 
minimum differences, expressed as percent 
compared with the ‘master’, were compiled in 
areas with and without the cloud masks. 

2. Correspondence Analysis – this involved a 
pixel-by-pixel comparison of the image classes 
for the entire TM scene. A confusion matrix 
and the kappa coefficient of agreement were 
used to summarize the agreement between 
classes on the ‘master’ and the six other images 
on a pixel-by-pixel basis. 

3. Spatial Indices Analysis – this involved the 
computation and comparison of the following 
representative landscape metrics for selected 
subareas: class area (ha), number of patches, 
mean patch size (ha), edge density, mean 
proximity index). These are presented as 
percent difference between the ‘master’ image 
and the remaining six images in the database. 

 
III. RESULTS AND DISCUSSION 

 
We report a test of the sensitivity of the K-

means clustering algorithm, as part of a five-step 
Hyper-Clustering and Labelling (HCLP) procedure, 
to issues related to seasonality, cloud, ice/snow, and 
changing vegetation phenology. Large differences in 
the classes resulting from HCLP classification of 
seven Landsat TM images acquired over three years 
and in five different months of the Prince George 
area were interpreted: 
 
- Visually, the different imagery contained large 

and variable amounts of cloud, haze, ice and 
snow, which affected the initial clustering 
sequence and results. In one case, clouds 
obscured the city of Prince Ge orge, and no 
urban/cultural/road class could subsequently be 
distinguished in the hyperclusters. 

 
- The selected TM images displayed differences 

in general land cover condition that would be 
consistent with the seasonal changes; i.e., in 
vegetated areas, the June, July, and August 
scenes showed higher ‘greenness’ in normal 
colour composites, and the later fall and early 
spring scenes showed more ‘brownness’.   

 
- Several features changed reflectance 

dramatically as a consequence of the formation 

and melting of ice. The recently cut areas 
appeared to contain significant variability 
related to the presence of snow in the April 
29, 1999 image; but a reasonably stable 
spectral response pattern existed for these 
features in the visible bands in the other 
scenes. There was a tendency for increased 
DN values to occur in the September 
imagery; perhaps related to the senescence of 
broad-leaved species in the clearcuts. The 
older cuts appeared to have a diminished 
‘snow-effect’ in the April 29, 1999 imagery 
compared to the recent cuts, and also to 
contain less variability from scene to scene in 
general. There was a tendency for the green 
band to increase in DN values to a greater 
extent than the other two bands in the 
September imagery. In the June 26, 2000 
scene, the green band was much higher than 
either the blue or red bands; this was 
interpreted as indicating a higher shrub 
content and early broad-leaf emergence. 

 
- The conifer feature selected appeared stable 

in the July and August scenes; no more than 
one DN value change. In September, the DN 
values increased considerably (almost by a 
factor of two) in the blue and red bands, and 
by a factor of three in the green band. The 
June 26, 2000 image showed a different 
pattern; greater values in the green than the 
blue and red. The normal pattern appeared to 
be for decreasing DN values in the blue, 
green, then red. The 29 April 1999 image 
contained the highest DN values, as expected: 
the ‘snow-effect’, even though the area did 
not contain visible amounts of snow in the 
stand selected for this study. 

 
- The open wetland in the July and August 

scenes displayed values very similar to those 
obtained in the conifer forest stand and a 
similar seasonal pattern was apparent. Later, 
in September, the open wetland showed 
higher DN values than in the June, July, and 
August imagery. The pattern between the red 
and green bands observed in the conifer stand 
was reversed for the open wetland, however. 

 
- Deciduous forest DN values increased as the 

season progressed; the lowest values were 
observed in June, and the highest (apart from 
the snow-effect ) were observed in 
September. The pattern between the red and 
green bands resembled that of the open 
wetland more so than the conifer stand, with 



a predictable high green peak in June and 
September. In July and August, green and red 
reflectance were more equal. 

 
- The kappa coefficient of agreement suggested 

that the correspondence was at best moderate 
between the ‘master’ and the July 18, 1999 and 
June 26, 2000 HCLP classification product 
classes; the other four only weakly 
corresponded. These results suggested very low 
persistence and stability of most vegetation 
classes. 

 
- In two selected subareas (and four others not 

discussed but mentioned here for 
completeness), we found that spatial indices 
such as the number of patches, edge density, 
and mean proximity index, varied greatly with 
different HCLP output maps. The smallest 
absolute differences, for example, exceeded 4% 
in each of the tested spatial metrics across the 
six HCLP output maps for a relatively 
undisturbed environment with large patches and 
no noticeable land cover change. 

 
IV. CONCLUSIONS 

 
Our results have shown that differences in 

class area are highly variable over the analysed 
range of image acquisition dates.  Spatial metrics 
also illustrated that the composition of the resultant 
classification units are also variable.  The spectral 
variability of the within year image set are found to 
exceed those found for the between year image set.  
This is an important finding as it indicates that off-
year imagery may be preferred to off-season 
imagery.  As a result, if image classification is your 
only aim, off-year imagery from the same season is 
preferred over same year off-season imagery.  While 
off-year / on-season imagery may be preferred for 
classification objectives, potential conflicts may 
arise for fixed year studies of image change 
detection. This research indicates the need to 
carefully select imagery for large area land cover 
mapping projects.  When selecting imagery it is 
important to remain as close to peak photosynthetic 
activity as possible.  Due to issues such as cloud 
cover, imagery will often not be available during the 
optimal acquisition period requiring users to 
consider the implications of the selection and 
inclusion of an off-season image in the large area 
classification.   
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