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Abstract 

Abstract - Leaf Area Index (L) is one biophysical parameter that has been extensively examined for its potential of 
routine and even automated estimation from remotely sensed signals. Maps of L are today regularly produced in 
Canada using Landsat imagery in conjunction with ground truth, by determining a relationship between a satellite 
based vegetation index and field measurements of L. To examine this technique, sites were visited across Canada 
during the 1998 and 2000 growing seasons. Common measurement standards were followed using the TRAC and 
LAI-2000 instruments, and some destructive shoot sampling was performed. In this paper, a semi-empirical method of 
scaling from ground based measures of L to 30 m resolution Landsat imagery using the Simple Ratio (SR) is 
documented and compared to purely empirical and purely model based approaches. Recent investigations into effects 
such as foliage clumping and canopy gap distributions allow for a more intensive error estimation of ground based L 
observations. Errors in producing at-surface reflectance and their propagation to the L -VI relationship were also 
examined for the SR. 

Introduction 

Leaf area index (L) is defined as half the total surface 
area of foliage per unit ground area projected on the 
horizontal datum (Fernandes et al., 2000). This 
definition stems from Levy and Madden (1933) who 
defined foliage area ratio as the area of foliage 
expressed as a percentage of ground area modified by 
Chen and Black (1992) by adding the term "half' to 
consider the various forms of leaves. allow some 
consistency in using L for canopy radiation 
estimation. However, it differs from all previous 
defmitions we know of in that it is per unit horizontal 
projected ground area rather than per unit ground area 
~as defined in Chen and Black, 1992) to make it 
Invariant to local slope. L is a quantitative measure of 
vegetation Cover and an input to models of 
vegetation/atmosphere interactions including carbon, 
water and energy cycles. L can be estimated from 
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measurements following (Nilson, 1971; Chen, 1996 
and Kucharik et aI., 2000): 

L= YE (OX1-a(0)]ln[P(0)]cosO (1) 

G(O}a E (0 )cos f3 

Where P is the sub-canopy gap fraction, G is the 
fraction of foliage and QE is the element clumping 
index, 'J1> is the needle-to-shoot area ratio and (I-a) is 
the ratio of green to total plant area, all with respect 
to view angle Orelative to the local surface normal 
and f3 is the relative angle between the local surface 
normal and the horizontal datum. 

In this study we use the SR to map L: 

SR = PNIR 

PRED 

(2) 



where p is the top-of-canopy hemispherical 
directional reflectance in red and near-infrared (NIR) 
wavelengths. 

In general L and SR are both measured with error. 
Denote the set of available co-located (in time and 
space) measurements C={(L',SR')} as the calibration 
set. Estimation of L then corresponds to the 
estimating the marginal probability density function p 
(LISR'). Empirical estimation methods use only C 
(e.g. Chen et al., 2(01) while physical methods make 
no use of C (e.g. Knyazhikin et al., 1998). The goal 
of our study was to document and assess a semi­
empirical approach to large area L estimation that 
was based on broadband spectral vegetation indices 
from moderate (30m) resolution Landsat imagery 
together with co-registered surface L measurements. 
In doing so we addressed the following questions: 

1. What is the error in estimation of L from surface 
measurements and SR from Landsat? 

2. What is the appropriate empirical regression 
predictions of p(LISR') for general land cover 
classes using Canada wide data sets? 

3. How do empirical predictions with limited data 
compare to physical reflectance models? 

4. Can we use a combination of empirical 
relationships and reflectance models to model 
uncertainty in L retrievals? 

Study Sites and Data 

Surface L measurements were conducted at 93 
needleleaf, 113 broadleaf (including 18 agriculture) 
and 22 mixed sites across Canada during the 1998 
and 2000 growing season. We omitted from 
consideration sites that deviated from green foliage, 
including certain agriCUltural sites, grasslands with 
substantial thatch, or forest canopies expressing 
hystological or stress related differences in leaf level 
reflectances. This was a limitation of our study 
necessitated by the reliance on a broadband SR. 

P was measured using either the LAI-2000 and 
TRAC instruments as described in Chen et al. 
(1997). Sites were stratified across 9 World 
Reference System 2 Frames and within site transects 
were used to allow co-location of a 3x3 Landsat pixel 
block (Chen et al., 2(01). Canopy clumping was 
measured using the TRAC over a subset of sites. 
Sites without OE measurements were assigned the 
mean OE for all sites of the same species. Both rand 
a were estimated by destructive sampling as reported 
inby Chen et al. (1997) and Gower et al. (1999). 
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Species mean values for rand a. were applied to all 
sites. 

SR was derived from reflectance estimates from 8 
Landsat S (TMS) Systematic Corrected nearest 
neighbour resampled data processed using (GICS , 
Radarsat International Inc.) and a LlG Landsat ETM 
scene processed using Landsat Processing Ground 
Segment (LPGS, United States Geological Survey). 
ETM radiances were back calibrated to equivalent 
radiances of the TMS scenes using cross-calibration 
coefficients (Teillet et al. in press). Surface 
reflectance was estimated using 6S (Vermote et al., 
1997) together with estimates of aerosol optical 
depth, water vapour and ozone concentrations (Chen 
et al., 2001) for the TMS scenes and measurements of 
aerosol optical depth and water vapour from the 
AEROCAN network for the ETM scene. 

Error Analysis of Surface L 
Measurements 

Surface measurements of L were conducted such that 
the overstory foliage, defined as foliage for stems 
extending above 1.37m, was within the sensor field 
of view. This section provides an error analysis for 
estimation of overstory L assuming no contamination 
from understory foliage. Assuming measurement 
errors for terms in Equation 1 are uncorrelated, 
Gaussian and multiplicative the 1 standard deviation 
(1cr) relative error in L measurements is given by: 

Where E is the 1cr uncertainty in each subscripted 
parameter and we assume ea=<>. 

Chen (1996) cited Ea from S% to 12% for destructive 
sampling within a site. There is additional uncertainty 
when applying these estimates to other sites due to 
spatial variability and between species differences. 
Based on Gower et al. (1997) the coefficient of 
variation of stand mean stem area (S) is on the order 
of 50% for the jack pine stands to 2S% for the aspen 
and black spruce. We use a 1cr value of 25% and 
assume it applies to total woody area (W). Whittaker 
and W oodwell (1967) report a relative difference in S 
between 31 % to 40% when comparing of parabolic 
versus conic bole shapes. Assuming a symmetric 
distribution of differences ranging +/- 2cr gives a 
standard error estimate ranging from 7.5% to 10% 
due to stem shape uncertainty. Assuming the three 
error components are uncorrelated Gaussian and a 
S:W ratio of O.S ( Gower et al., 1997) gives an Ea of 



27%. For a typical a of 0.2, EI-a is approximately 
6%. 

We assume "IE = 1 and E.y =0 for broadleaf stands. 
Measurement errors for 'YE in conifers is likely far less 
than the 7% to 20% observed range in 'YE between 
stands of the same species (Gower et al. 1999). To 
convert the observed range into a standard error we 
assume a mean value of'YE is used and the range 
corresponds to +/-2cr. We therefore adopted a value 
of 3.5% for E.y conifers and 0 for deciduous. 

Errors in TRAC estimates of QE are reportedly less 
than 3.5% (Chen and Cihlar, 1995). However, a 
species mean QE is applied to stands where the LAI-
2000 is used to estimate P. The coefficient of 
variation of our measurements ranged from 5% for 
sugar maple to 14% for black spruce stands. We 
used a value of 6% for E {) for broadleaf stands and 
15% for conifer stands. 

For fJ between 30° and 60° G ranges from 
approximately 0.4 to 0.6 (Warren-Wilson, 1958). We 
used a value of 0.5 for all stands giving a mean E G of 
7% assuming a uniform distribution of fJbetween 30° 
and 60° degrees 

Under clear sky conditions and for fJless than 60° 
degrees the error in InP estimates from TRAC are 
less than 1%. Based on Leblanc and Chen (2001) 4th 
ring LAI-2000 estimates of lnP are typically within 
5% oflnP. However, the LAI-20oo estimates oflnP 
in our database correspond to a weighted average for 
5 annular rings based on Miller's Theorem (Miller 
1963): 

TC/2 

L = 2 f -In p(fJ} sin fJ cos(HfJ (4) 

° Formally, from Equation (1) Miller's Theorem 
requires modification (see Appendix A): 

TC/2 

L f InP(fJ}. 
= 2 ----smfJcos(H() 

° Q(fJ) 
(5) 

Furthermore, the LAI-2000 software uses a 
trapezo~dal approximation to Equation 4 that may be 
Sub-optimal. The possible bias errors for these 
factors may explain the consistent bias between L 
estimates using 4 versus a single ring or the TRAC 
and Equation 1 reported in Leblanc and Chen (2001). 
Le~lanc and Chen (2001) also report that InP can be 
Calibrated to within 2% of the fourth ring InP 
Suggesting a total EInP of7%. 
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The total lcr error budget for LAI estimates is less 
than 20% for conifer and 14% for broadleaf stands. 
The estimate for broadleaf stands is similar to the 
range of 11.5% to 13.5% reported in Oltoff et al. 
(2oo1).There is an additional error on the order of 
0.25 LAI units due to unmeasured understory leaf 
area. 

Error Analysis for Landsat SR 

An analytical error analysis of SR is complicated by 
correlations in errors between component 
reflectances. We group errors into mutually 
uncorrelated components: 

( 2 2 2 2 )0.5 
eSR = \eatm +eNIRIRED +ered +eNIR (6) 

where Emm is the error in estimating the SR due to 
atmospheric correction of input radiances, EN1Rlred is 
the error in relative calibration or PNIR and Pred (2% 
based on pre-launch calibration but assumed to have 
increased to 4%) and Ered and ENIR are errors due to 
sensor quantization. 

We ran simulations with 6S for parameters 
corresponding to ranges observed in the Landsat data 
(aerosol optical thickness at 550nm between 0.01 and 
0.2, water vapour concentration between 1.5cm and 
2.5cm, ozone concentration between 0.32cm and 
0.35cm, Pred between 0.02 andO.28 and PNIR between 
0.21 and 0.52) with a continental atmosphere and 
vegetation target and surroundings. SR was chiefly 
sensitive to aerosol optical depth rather than water 
vapour or ozone. Using a typical uncertainty of 0.05 
for optical depth (Kaufmann and Sedra, 2000) we 
determined for the SR: 

e6s =O.OO71SR-O.0074 r2 =0.88 (7) 

To model sensor quantization errors we note that 
estimated reflectance p is given by: 

(8) 

where X a , Xb and Xc are derived using the 6S and e is 
at sensor radiance. The second term in the 
denominator is typically 0(10.2) while the numerator 
is at least 0(10~ so we write: 

(9) 



but P. is estimated using: 

(10) 

where DN is sensor count and ao and a} are offset and 
gains respectively. Assuming a uniform distribution 
of quantization errors we have a 10- error in DN of 
O.28DN giving: 

(11) 

Using mean values of Xa over all simulations (the 
coefficient of variation is less than 10%) and a} from 
GICS reports for the scenes used gives ep of 1.27xlO-
3p .l for, 1.4*1O-3

p-l for NIR. Typical values of p for 
vegetation results in less than 4% for EREO and eNlR. 

The total 10- error budget for less than 12% for SR 
from Landsat TM 5 at a SR of 15 assuming a 4% 
relative calibration error between red and NIR bands. 
The error budget for Landsat ETM is lower since 
eNIRlred is given as 1 % and in-situ aerosol optical 
depth measurements was used. However, the 
additional error in back-calibrating the ETM data to 
the TM 5 data will tend to counter this reduction. 

Comparison of Empirical L Estimators 

Satellite measurements of SR are, in general, 
responsive to both overstory and understory L. 
However, our surface measurements were intended to 
correspond to overstory L. We have included an error 
term in the L budget to account for overlap of 
overstory and understory foliage. But. the impact of 
unmeasured leaf area on the relationship between SR 
and measured overstory L is relegated to noise in the 
regression. 

Figures la through c illustrate the trends between 
observed L versus SR stratified by leaf type. The 
increase in scatter with increasing SR and L is due to 
both physics and measurement errors. Physically, the 
sensitivity of top of canopy reflectance to L is 
inversely proportional to L (Sellers, 1985). In terms 
of measurement errors, red reflectances are often on 
the order of 2-3% for observed simple ratios above 
15. Both atmospheric correction error and 
quantization error is therefore largest at high SR. 
Regression fit residuals without transformation are 
heteroscedastic and should not be applied although 
this has been the case in the majority of previous 
studies. A log transform was applied to SR. A 
power transform (exponent 0.25) was applied to L 
since a log transform would overly emphasise 
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additive errors due to understory L. A Type IT 
(structural) regression (Kendall and Stuart, 1951) and 
+/-20- confidence intervals of p(LAlISR) are shown 
an Figure 1. 
a. 

h. 

c. 

12~------~----;---;-~'~~ 
:c .. 

10 

8 

LAI 
6 

4 

2 

. 
• 

0+---.1""""""l------.--------,----I 
o 5 10 

SR 
15 20 

8 -r------------+-. --::;--• ..., .. 
7 ~ 

j/ 

6 

5 

:54 
3 

2 

1 

O+-~~r_--_.----_.--~ 

o 5 10 

SR 

15 20 

12.---------------------~ 

10 

8 

3 6 

4 

2 

o 5 10 15 20 

SR 

Figure 1. Empirical estimation of p(LISR) from a 
needleleaf b. broadleaf and c. mixed sites surface 
measurements and Landsat TM based SR acros! 
Canada. Modelled measurement error bars are showl 
for a sub-sample of needleleaf and broadleaf stands 



Solid lines in la and Ib are Type II m.l.e. curves 
while dashed are corresponding +/-20 intervals. 
Dotted lines in la and Ib are Type I m.l.e. curves. 

The influence of measurement error of remotely 
sensed quantities on regression has been considered 
previously using the reduced major axis method 
(Curran and Hay, 1986) when applied to canopy 
cover estimation (Larsson, 1993) However, the 
RMA estimate does not produce the maximum 
likelhood unbiased regression estimate as derived in 
Kendall and Stuart. Our use of Type II regressions is 
in contrast to other empirical L studies that assume 
either error free Lor SR measurements (e.g. Ripple, 
1985; Peterson et a. 1987; Spanner et. al. 1990; Chen 
and Cihlar, 1996; Brown et al. 2000; Chen et al. 
2001). For comparison we include Type I regressions 
using the assumptions adopted in Chen et al. (2001). 

Additionally, we suggest that it is sufficient (and 
preferable) to show the confidence intervals of 
p(LISR) rather than either the coefficient of 
determination or standard error since these latter 
parameters are only marginal aspects of the quantity 
of interest (i.e. p(LISR». The confidence intervals 
get wider with increasing L both due to the increase 
in scatter and, for needleleaf stands, due to a bias in 
sampling to lower L stands. 

Physically Based Estimation of L 

Models exist that relate physical properties of 
canopy, soil, sensor and sky irradiance to the 
integrated intensity and net flux of energy within and 
at the boundary of the canopy (Myneni and Ross, 
1991). It is possible to define a family of models 
that conserve quantities of energy, mass and 
momentum at the expense of a large number of 
parameters to specify the entire range of canopy 
realisations we expect over large areas. Given both 
the additional uncertainty in parameters with more 
complex (Physically realistic) models and our desire 
to focus on nadir SR versus L relationships we 
decided to use simplified models that have been 
Validated with field measurements over a number of 
sites. 

We adopted a well studied two-stream plane-parallel 
radiative transfer model that has been proven to 
explain variability in nadir broadband reflectance 
relatively well for homogenous broadleaf canopies 
(Sellers, 1985). We did so at the expense of ignoring 
Controls on reflectance due to foliage clumping. 
Clumping has been demonstrated to be important in 
characterising nadir reflectance of conifer stands 
through the use of geometric-optics models such as 
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4-Scale (Chen and Leblanc, 1997). We selected a 
simplified version of 5-scale, FLAIR (White et al. 
2001), in an effort to capture controls of L and 
clumping on reflectance while reducing demands in 
both specification of other model parameters (e.g. 
crown dimensions) and numerical computation. 
FLAIR was modified to include an estimate of 
multiple scattering using the Sellers model with a 
simple reduction in L based on the clumping factor. 

Both models were run over a wide range of parameter 
values measured over vegetated surfaces in Canada 
and northern United States. All runs assumed clear 
sky conditions with 35° solar zenith angle 
representative of the TM data used. Each run 
provided a realisation, Cj, of (L,SR) given an input 
parameter vector x.We estimated p(L,SRjp(x» by 
varying x over some joint pdf p(x). As in Knyazhkin 
et al (1998) we ran the physically based model with 
p(x) equal to the unifrom joint distribution of x (Le. 
u(x». 

Semi-Empirical Approach 

In generalp(x) is not uniform. For example, mineral 
soils and needle litter often exhibit a linear 
relationship between nadir reflectance and 
wavelength. Furthermore, simplifications in the 
reflectance models will result in both large area and 
local errors in p(LISR,p(x». Assuming C is an 
unbiased sample across x we used p(x )=p(xIC) rather 
than u. Then, 

p(xIC)=maxp(xICj) (12) 

where p(xl cJ is specified by the error models for SR 
and Land Cj are mutually independent. Figures 2 and 
3 show p(LISR, u (x», where u is the uniform 
distribution, for selected values of SR together with 
empirical and semi-empirical estimates. 

Results 

Empirical Model 

The majority of the broadleaf measurements were for 
mature forests and productive crops so low L values 
are undersampled. Measurements during leaf out or 
senescence are not included due to the need to 
recalibrate a. Needleleaf data covered a fairly large 
range of L and SR values and exhibit nearly constant 
scatter of SR across L. Low L conifer stands are 
typically heterogeneous in spatial foliage distribution 
and understory characteristics. The scatter in the 



national data set is then a limitation of pooling data 
across a number of species, growing condition, soil 
types and understory cover. There was insufficient 
mixed forest data to support a regression model. In 
addition, a separation of needleleaf and broadleaf 
contribution to L was not available. Rather, the 
mixed forest data was used to evaluate our current 
approach to estimation of LA! over mixed sites. 
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Figure 2. Comparison of physical, semi-empirical, 
and empirical estimates of p(L\SR,x) for conifer 
stands at at SR of 5 (curves on left) and 10 (curves on 
right). Physical estimates are shown for both 
p(x)=u(x) and p(x)=p(xlC). 
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Figure 3. Comparison of physical, semi-empirical 
and empirical estimates of p(LISR,x) for broadleaf 
stands at SR of 5 (curves on left) and 10 (curves on 
right). 

Type n regressions were almost linear for both 
needleleaf and broadleaf sites although it must be 
remembered that the regressions are from non-linear 
transformations of the fitted lines. The +/-2cr 
intervals encompassed most of the data suggesting 
that outliers did not unduly influence the regressions. 
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The needleleaf interval was substantially larger than 
that for broadleaf. The interval was fit in transformed 
space so it tended to increase as L and SR increases 
in linear space. This is a purely empirical result 
although we shall see that it was also reflected in the 
physical models. The intervals likely overestimate 
local uncertainties in L as well as the potential 
precision of locally c.alibrated algorithms since they 
reflect scatter due to variability in conditions across 
Canada. However, we believe the increasing 
confidence interval width as L increases is a better 
reflection of known errors in L and SR than an 
interval derived from a regression applied in 
untransformed (linear) space. This is further 
supported for the deciduous data where the sampling 
distribution of L was fairly uniform over middle and 
high L ranges. Additional samples for high L 
needleleaf stands would likely reduce the current 
large uncertainty in p(LISR) for this data set. 

There is potential for bias when using Type I 
regressions with broadleaf sites (Figure Ib). 10 
contrast, the bias error was smaller for needleleaf 
stands due to the more even distribution of samples 
across L and the increased scatter at low L. 
However, even with needleleaf stands, fitting 
regression models in untransformed space results in 
smaller confidence intervals (not shown for brevity) 
than those predicted by Type n or physical methods. 

Figure lc indicates that the empirical fits tend to 
support a smooth transition between broadleaf and 
needleleaf models. Furthermore, the available mixed 
forest data lies close to or within the envelope formed 
by the curves. In summary we suggest the following 
empirical models for estimating the maximum 
likelihood estimate (m.l.e.) of L given SR across 
Canada in the absence of additional information: 

L = {(0.449In SR +0.514): needleleea! (13) 
(0.424 In SR+0.276) broadlea! 

and a linear weighting of these two models for mixed 
stands by fraction of needleleaf and broadleaf cover. 
It should be remembered that this refers to overstory 
Lonly. 

Equation 13 only provides m.l.e. under the 
constraints of measured data. Encouragingly, the 
m.l.e. from the physically based model generally 
agrees with that of the empirical model. Figures 2 
and 3 indicated that substantial differences in p(LISR) 
occur at L<1 and L>5. At low L both the lack of 
surface measurements and uncertainties in co· 
locating surface measurement footprints with satellite 
measurements suggest the physically based model is 

1 , 



preferred. Furthennore, we currently used a two­
parameter linear fit (in transformed space) for the 
empirical regression. 

A comparison of the physical model and empirical 
estimates, shown in Figures 4 and 5, suggest that the 
actual relationship between SR and L may be more 
complex (if we believe the physical model) and may 
not be similar for high and low ranges of L. The 
physical model also results in a much larger range of 
p(LISR) at low SR due to the use of u(x). 
Essentially, low SR simulations correspond to cases 
where understory variability has a larger effect on 
overstory SR and therefore p(LISR) is more sensitive 
to the joint distribution of overstory and understory 
model parameters. Figures 2 and 3 indicate that at 
higher values of L the physical model reaches a 
saturation point (sensu Knyazihkin et al., 1998) 
where p(LISR) is nearly uniform over a large range. 
Evidently an m.l.e. estimate using the physical model 
alone is ill-conditioned as a mode does not seem to 
exist However, one must remember that there are 
other constraints of peL) from the environment. For 
example, if we assume that our measured dataset C 
captures these other constraints then we have a 
relatively well defined estimate of L even for higher 
SR. Evidently, the resolution of p(LISR) is 
insufficient for unbiased estimates of L at higher 
values of L. Other remote sensing methods such as 
multi-angle retrieval (Knyazihkin et al., 1998), 
LIDAR (Lefsky et al. 1999) measurements may 
provide more precise estimates ofp(L). In any event, 
confidence intervals of physical models and empirical 
models should be compared rather than simply 
accepting the m.l.e. estimate of the physical model. 

While our national data set is not sufficient to also 
estimate an a priori peL) we do use it to constraint 
p(x). Figures 2 and 3 show there is closer agreement 
between empirical and physical models after 
constraining simulations using p(xIC). Furthennore, 
as indicated in Figures 4 and 5, the physical model 
tends to support the increase in the confidence 
intervals of p(LISR) with increasing L; both in 
magnitude and skew. Comparison of the coverage of 
the semi-empirical and empirical model also allows 
us to identify areas where the empirical data set is 
Sufficient (e.g. L ranging from 3 to 5 for deciduous 
and from I to 6 for conifer) and is lacking. 

Based on our results we conclude that: 

1. Estimation errors were below 20% for L 
assuming no understory contribution to 
measurements and 12% for SR. 
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2. Type II regressions on transfonned data were 
appropriate for estimating L using empirical 
methods. This is in contrast to other studies that 
have applied Type I regressions in 
untransfonned space to similar empirical data 
sets. 

3. Conditional on our limited sample two parameter 
regressions for m.l.e. estimates of p(LISR) for 
needleleaf and broadleaf were provided. Equal 
weighting is suggested for mixed stands in the 
absence of cover fraction data. Empirical m.l.e. 
estimates should be used for L>5 while 
physically based estimates are preferred for L 
<1. Our method of constraining the input 
parameter space for the physical method using 
measurements allows for more appropriate 
estimates of p(LISR). 

--'0.7 

,0.6 

L 

SR 

Figure 4. Density plot of p(LISR) for needleleaf 
stands using the semi-empirical method and Type II 
regression and confidence intervals and observations. 

L 

SR 



Figure 5. Density plot of p(LISR) for broadleaf 
stands using the semi-empirical method and Type II 
regression and confidence intervals and observations 

Our study was limited to relatively healthy green­
foliage under natural conditions except for the 
agricultural sites. Furthermore, all of the sites were 
near peak growing season conditions without 
apparent stress. In addition, we did not consider sites 
with substantial thatch, extreme planophile or 
erectophile leaf angle distributions or well separated 
overstory strata as in shelter-wood plantations. These 
issues will need further research, both in surface 
measurement and remote sensing. 

Appendix A 

To prove Equation (5) we have from Miller (1963): 

tr/2 

L~ 2 J I(O)sinIHO 
o 

(AI) 

Where I( ()) is the average number of contacts per unit 
length traversed in the canopy along Owhen Q=1. 
Assuming Equation 1 is valid, the number of contacts 
when Q is not equal to one is given by: 

I (0)= InP(O)cosO 
Q Q(O) 

(A2) 

But, Equation 1 and EquationA2 gives: 

(A3) 

Substituting Equation A2 into Al gives Equation 5: 

tr/2 InP(O) . 
L=2 J Q(O) cosOsmlHO (A4) 

o 
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