
Assessing the Role of Environmental and Remote Sensing Variables in
Modeling Canada's Forest Biomass

J.E. Luther
Natural Resources Canada
Canadian Forest Service
Atlantic Forestry Centre-

Corner Brook
(709) 637 4917

j luther@nrcan.gc.ca

R.J. Hall, D.T. Price, R.M. Siltanen,
Y. Wang

Natural Resources Canada
Canadian Forest Service
Northern Forestry Centre

(780) 435 7210
rhall(cD,nrcan.gc.ca

dpriceP,nrcan.gc.ca
msiltaneP,nrcan.gc.ca
ywangRnrcan.gc.ca

C.-H. Ung
Natural Resources Canada
Canadian Forest Service

Laurentian Forestry Centre
(418) 648 5834

ung (xfl.forestry.ca

R. Fournier
Natural Resources Canada
Canadian Forest Service

Laurentian Forestry Centre
(418) 648 3440

rfournierRcfl.forestrv.ca

R.H. Fraser
Natural Resources Canada

Canada Centre for Remote Sensing
(613) 947 6613

Robert.fraserP,ccrs.nrcan.gc.ca

Abstract

Mapping the spatial distribution of Canada's forest biomass is needed for estimating large-scale forest carbon
budgets and to assess the possible responses of Canada's forests to a changing climate. Large areas offorest in
Canada, particularly those of lower productivity in more northerly regions, do not have ground-based inventories

from which to estimate biomass. Hence, in these regions, methods of estimating biomass from environmental and
biophysical data is of considerable interest. This study reports a preliminary statistical modelling approach using
such data in combination with SPOT VEGETATION remote sensing data to estimate the large scale distribution of
forest biomass for softwoods, hardwoods and mixed-wood species. The RED, NIR, and SWIR bands and ND VI
computed from SPOT VEGETATION data were correlated with biomass density and key environmental variables,
although their magnitudes varied appreciably among the three species groups. The combination of environmental
and remote sensing variables selected from a stepwise process resulted in statistical models with higher adjusted R2
and lower root mean square error values than either variable set alone. Moreover, the statistically best models were
found to predict the overall distribution of observed biomass with a statistical precision comparable to that of the
ground-based source data. Highly accurate estimations of biomass density from these predictor variables cannot be
expected due to spatial variations associated with forest age-class structure that cannot be detected using data from
passive sensors and descriptors of the environment. This suggests the addition of spatial disturbance data to these
methods may be a particularly promising approach for biomass estimation at national scales in non-inventoried
areas.

Introduction
Simply defined, forest biomass is the dry mass of live
plant material (trees and understory species)
occurring in a forest ecosystem. When expressed in
density terms (kg 111-2, tonne ha-1 ), it can be
considered a measure of forest ecosystem condition
(Canadian Council of Forest Ministers, 1997). The
estimation of forest biomass is becoming increasingly
important for sustainable forest management (Natural
Resources Canada 1998; Sips 1996), and to support

scientific studies of ecosystem productivity, energy
and nutrient flows, and for assessing the contribution
of forests to the global carbon (C) cycle earresol
1999; Penner et al. 1997). Accurate estimation of
forest biomass over extensive regions is, however,
extremely challenging, and said to be one of the most
persistent uncertainties concerning global C budgets
(Harrell et al. 1995). For countries such as Canada
with large forested landscapes, there is considerable
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policy interest in estimating biomass stocks because
changes in these stocks can represent substantial
losses or gains of stored carbon, which will affect the
national C balance (reference: http://www.cnn.com
/SPECIAL S/1997/global.warming/stories/treaty/).
The influence of climate on the spatial distribution of
forest biomass, particularly in boreal forests, is also
of great interest. Better understanding of the
ecosystem processes (growth, decomposition, natural
disturbances) that affect forest biomass distribution
will allow the testing of process models needed to
assess the potential impacts of climate change on
global forests (Bonan et al. 1990; Kasischke et al.
1995). Estimates of forest biomass are therefore
critical to the development and testing of models
used for calculating and forecasting carbon budgets
(Kurz and Apps 1999; Price et al. 1997, 1999), and to
assess impacts of global change (Michael et al. 1999).

In Canada, large areas of forest are considered
unproductive and therefore have not been subjected
to detailed ground-level sampling. Hence there is
considerable interest in estimating biomass in such
regions directly from biophysical data using models
(Canadian Council of Forest Ministers, 1997). The
spatial distribution of forest biomass is to some
extent determined by climate and topography, as well
as by the frequency of natural disturbances.
Additional ecological information for classifying
regions characterised by differing biomass densities
could be obtained using remote sensing data (Harrell
et al. 1995). There are at least three roles that remote
sensing may serve in estimating forest biomass at
regional and national scales. First, by classifying
images into cover types (i.e., species) and structure
(i.e., crown closure and height). Biomass estimates
could then be obtained by use of look-up tables that
assign biomass densities to specific species and
structure categories mapped from remote sensing
(Fournier et al., 2001). Second, by mapping biomass
based on empirical relationships obtained between
image radiometric values and known biomass
densities. Third, by combining environmental and
remote sensing variables as drivers of spatial biomass
distribution in statistical models. This last approach
was employed in the study reported here, but focused
at the national level.

The primary objective was to determine whether it
was possible to estimate the distribution of forest
biomass density and species types across Canada
from environmental and remote sensing variables
using traditional forest inventory-based biomass data
for calibration and testing. It was recognized at the
outset that remote sensing using low resolution
passive sensors cannot easily distinguish forest stands

containing few large old trees with large crowns from
those containing younger and many smaller trees of
similar species composition and crown closure.
Nevertheless, because biomass has not previously
been estimated from environmental or remote sensing
data sources at the national scale, we pursued an
exploratory study to determine what relationships
may exist. The results should provide useful insights
into scaling issues that are likely to arise from
modeling 30 m to 1 km resolution data over the
Canadian land mass.

To achieve the study objective, two questions were
posed: (1) How do empirical regression models for
estimating biomass compare when developed as a
function of environmental variables, remote sensing
variables, or their combination? and (ii) What is the
influence of broad forest types determined from
coarse resolution remote sensing data on the
sampling and modeling of forest biomass? This paper
addresses the first question by presenting some initial
modeling results based on forest types defined by the
compilation of the 1991 Canadian National Forest
Inventory as updated in 1994 (CanFI-91) (Lowe et al.
1994, 1996). Future reporting will focus on biomass
estimation based on forest types mapped from
Advanced Very High Resolution Radiometer
(AVHRR) (Beaubien et al., 1997; Cihlar et al.,
1997a) and SPOT VEGETATION sensors.

Methods

Biomass data base
A rasterized spatial database of Canada's
aboveground forest biomass on timber-productive
land was developed from the Canadian forest
biomass estimates of Penner et al. (1997), derived
from CanFI-91. The CanFI GIS polygons have a
nominal 10 km resolution that prevents the forest
inventory data from being geo-located with any
higher precision. In addition these polygons are
irregularly distributed, and follows provincial
township boundaries across the country. Some
polygons covering remote northern areas are in fact
significantly larger than 10 km.

These vector GIS coverages were first converted to a
national raster grid with a nominal 1 km cell size
(Lambert Conformal Conic projection) to preserve as
much as possible, the original spatial information.
The Penner et al. (1997) biomass estimates and
inventoried area data were then linked to this grid to
create a set of biomass and inventoried area grids.
These 1 km grid cells were then reaggregated into 10
km cells, so that the spatial precision was comparable
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to that of the original polygons, but the numerical
data, organised as a grid of uniform density, could be
used with other gridded data sets for statistical
analysis. For	 the purposes	 of this study, forest
biomass density (tonnes/ha) and inventoried area data
were totalled for all species groups and age classes on
timber productive land. Biomass density within each
10 km cell was then calculated by dividing the
biomass estimates by the total inventoried area data.

A 10 km resolution cover type classification grid was
also derived from the CanFI "land-type" variable
distributed	 on	 the	 CanFI	 web	 site
(http://www.pfc.cfs.nrcan.gc.ca/monitoring/inventory
/canfi/landtype/ltypdisc_e.html) . This land-type gives
the area within a CanFI cell covered by combinations
of broad forest cover type (softwood, hardwood,
mixedwood) and CanFI-91 land class as defined in
Gray and Power (1997). The dominant land-type for
timber productive land was determined for each 10
km grid cell.

An overlay mask was made by comparing the CanFI
inventoried area of timber productive land within
each cell to its true ground area, and selecting only
cells where at least 90%	 of the cell area was
inventoried. In this way, the statistical relationships
between inventoried biomass at 10 km resolution and
the environmental or remote sensing variables could
be constrained to only those cells for which the
spatial correspondence would be very high.

Regression models were then developed treating the
CanFI biomass density data as a dependent variable
and the remote sensing and biophysical data as
predictors variables.

Predictor variables
Data sets that served as drivers or predictor variables
for modeling biomass included the GTOP030 Digital
Elevation Model (DEM) (Verdin and Jenson 1996),
total annual precipitation (PPT), and total annual
growing degree days (GDD) (calculated from
monthly mean temperature above 5°C). The latter
climate variables were products of the Canadian
Forest Service National Geo-Referenced Information
for Decision-makers (NatGrid) project (McKenney et
al. 1998) that utilizes the ANUSPLIN thin-plate
spline interpolation software (Hutchinson 1999; see
also Price et al. 2000) to interpolate climatic variables
across Canada from weather station data. Soil texture
data were represented by sand fractions (SD) of the
dominant parent material extracted by the Canada
Centre for Remote Sensing (CCRS) from 	 the
Canadian Soil Information System (CanSIS)
(http://sis.agr.gc.ca/cansis/intro.html).

A national coverage of climatic moisture index
(CMI) expressed as total precipitation minus
estimated potential evapotranspiration (PET) was
also created. This followed Hogg (1994, 1997) who
used the Jensen-Haise method for estimating PET,
but in our case precipitation, solar radiation, and
temperature data were first interpolated to the 10 km
grid from the 1961-1990 Meteorological Service of
Canada (MSC) climate station normals (McKenney
et al 1998).

Remote sensing variables
The SPOT VEGETATION instrument provides daily
imagery at a 1.15 km resolution in four reflectance
channels (0.45 mm BLUE, 0.66 mm RED, 0.83 mm
NIR, and 1.65 mm SWIR). In this analysis we used
nominal clear-sky ten-day VGT composites (S10
syntheses) covering the snow-free period June 1 -
September 30, 1999. The top-of-atmosphere
reflectances were corrected for bi-directional
reflectance effects and atmospheric contamination
using the CCRS ABC3 algorithms developed for the
NOAA/AVHRR sensor (Cihlar et al., 1997b). After
the corrections were applied, representative summer
reflectance values were computed for the RED, NIR
and SWIR channels by averaging the 12 ten-day
composites. The BLUE channel was not analyzed due
to severe atmospheric contamination. NDVI was
computed as the ratio of the difference-over-sum of
the RED and NIR channels.

Nine environmental and remote sensing variables
were therefore assembled for modeling of forest
biomass for softwood, hardwood and mixed-wood
species groups (Table 1).

Table 1. Environmental and remote sensing variables
used to model biomass.

Variable
	

Abbreviation
Digital elevation
	 DEM

Precipitation
	 PPT

Growing degree days
	

GDD
Percent Sand fraction
	

SD
Climate moisture index
	 CMI

Spot Vegetation: Red
	

RED
Spot Vegetation:

Near infrared
	

NIR
Spot Vegetation:

Shortwave infrared
	

SWIR
Spot Vegetation: NDVI 
	

NDVI
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Sampling and statistical analysis
A 60% systematic sample was drawn as a fitting data
set and the remaining 40% was used as a validation
data set for statistical analysis and model validation.
A two-sample T-test for sample means and an F-test
for ratio of variances for all variables (Table 1), were
computed at the 5% probability level to test for
statistical differences in the fitting data set relative to
the full sample.

Descriptive statistics and calculations of correlation
coefficients were undertaken to describe the
environmental and remote sensing variables and their
relationship with softwood, hardwood and mixed-
wood biomass distribution. Biomass is most
frequently estimated using regression methods
(Parresol 1999) and similar methods were applied in
this study. Three sets of stepwise linear regressions
were undertaken for each species to produce models
as a function of environmental variables, remote
sensing variables, and the combination of these
variable sets. These models were then assessed for
statistical differences using a two-sample T-test
between predicted biomass and Penner et al. (1997)
biomass for the validation data set.

Results and Discussion

The 10 km grid coverage of Canada consists of 480
rows by 570 columns of which 101,089 cells contain
the land mass of Canada. When only cells with at
least 90% of the area in the CanFl inventory were
selected, 1189 cells were softwood-dominated,
compared to 98 for hardwood and 363 for mixed
wood.

For the biomass variable and the nine environmental
and remote sensing variables (Table 1), there were no
statistical differences between the 60% sample for
model fitting and the 100% sample when means
(prob >1 t I = 0.41 — 0.97) and variances (prob > F =
0.13 — 0.98) were compared. These results were
considered important because the remaining 40% of
the cells could then be used as independent data sets
to further test the models that were generated

Average biomass density was largest and most
variable for softwoods (mean (m) = 120.8, standard
deviation (s) = 65.3) compared to hardwoods (m =
97.3, s = 22.1) and mixed woods (m = 90.5, s = 29.6).
As expected, the range of biomass density was largest
for softwoods (533.2), followed by mixed woods
(204.7) and hardwoods (122.8).

Elevations (contained in the DEM) were highest and
most variable for softwood-dominated cells (m =
926, s = 365), followed by mixed woods (m = 484, s
= 243) and hardwoods (m = 543, s = 229). These
values corresponded to their ranges that were 2199,
1187, and 853 m, respectively. Similarly, PPT was
largest and most variable for softwoods (m = 708, s =
348), and smallest for hardwoods (m = 570, s = 233)
with mixed woods in between (m = 597, s = 295).
GDD was least variable for hardwoods, and most
variable for softwoods. On average, GDD was largest
for hardwoods (m = 1116, s = 91), followed by mixed
woods (m = 1110, s = 205) and softwoods (m = 848,
s = 209). There were little differences in the SD
amongst the three species. The patterns for CMI were
most similar to PPT being largest and most variable
for softwoods (m = 34.5, s = 38), followed by mixed
woods (m = 26.2, s = 26), and smallest for hardwoods
(m = 18.7, s = 23). The computed mean and variance
values were therefore largest across all environmental
variables for softwoods, followed by mixed woods
and hardwoods with the exception of GDD. We
would expect these variable characteristics to
manifest itself in the variation associated 	 with
biomass estimation.

Of greater interest was how these environmental
variables were correlated with each other (Table 2),
and which were most highly correlated with biomass
as these relationships would influence which
variables would be selected in the stepwise
regressions. Observing the largest three statistically
significant	 correlations	 among	 the	 nine
environmental and remote sensing variables showed
some remarkably high correlations despite the coarse
resolution cell size (Table 2). Of the 27 correlation
coefficients presented in Table 2 for mixed woods, 15
remote sensing variables were significantly related to
environmental and remote sensing variables
compared to only 7 and 6 variables for softwoods and
hardwoods, respectively. Softwood biomass 	 was
most highly correlated to PPT (r=0.39, p< 0.0001),
CMI (1=0.35, p<0.0001) 	 and NDVI (r=0.25,
p<0.0001). Hardwood biomass was most highly
correlated to DEM (1=0.45, p<0.0001) and GDD (r=-
0.19, p=0.05); and mixed-wood biomass was most
highly correlated to RED (r=-0.39, p<0.0001), NDVI
(r=-0.34, p<0.0001) and GDD (r=0.33, p<0.0001).
Based on these observations, coarse resolution
remote sensing may offer some particular benefits for
biomass estimation and biophysical characterization
of sites occupied by mixed woods	 relative to
softwoods and hardwoods.

Stepwise regressions resulted in selections of
variables that differed among the three species groups
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Softwoods
Environ.: CMI,
DEM, GDD,
PPT, SD
Remote
Sensing: RED,
SWIR, VGT
Combined:
CMI, DEM,
GDD, PPT, SD,
RED, SWIR

Hardwoods
Environ.: CMI,
DEM, GDD,
PPT
Remote
Sensing: NIR,
RED, SWIR,
NDVI
Combined:
CMI, DEM,
GDD, PPT,
RED, SWIR

Mixed woods
Environ.: CMI,
DEM, GDD
Remote
Sensing: RED,
NIR, SWIR,
NDVI
Combined:
CMI, DEM,
PPT, NDVI,
RED, NIR,
SWIR

0.34	 54.8

0.15	 62.4

0.36	 54.3

0.41	 18.1

0.27	 20.2

0.48	 17.3

0.35	 23.8

0.24	 25.6

0.44	 22.4

Intercept
p = 0.19

Intercept
p = 0.45

Intercept
p = 0.92

(Table 3). The use of remote sensing variables alone
resulted in the weakest models for biomass
estimation, and the strongest models were based on a
combination of environmental and remote sensing
variables, as characterized by larger adjusted R 2 and
smaller root mean square error (RMSE) values (Table
3). The combined variable set resulted in the largest
improvement in model performance for mixed
woods, which was consistent with observations from
the correlation coefficients between biomass density
and the predictor variables. The biomass regression
RMSE values were largest for softwoods that maybe
due, in part, to the relatively larger softwood species
predictor variable standard deviations.

Table 2. Largest 3 statistically significant correlation
coefficients (p < 0.05) for environmental and remote
sensing variables.

Predictor	 3 most significantly correlated variables
variable 
Softwoods

DEM	 GDD(-0.49)	 CMI (-0.46)	 PPT (-0.39)
PPT	 CMI (0.97)	 NDVI(0.43)	 DEM (-0.39)
GDD	 NIR (0.59)	 DEM (0.49)	 NDVI(0.46)

SD	 PPT (0.24)	 CMI (0.23)	 SWIR(-0.09)
CMI	 PPT (0.97)	 DEM (-0.46)	 NDVI(0.37)
RED	 SWIR(0.45)	 DEM (0.32)	 GDD (0.59)
NIR	 GDD (0.59)	 NDVI (0.59)	 SWIR(0.42)

SWIR	 NDVI(0.47)	 RED (0.45)	 NIR (0.42)
NDVI	 NIR (0.59)	 SWIR(0.47)	 GDD (0.59)

Hardwoods
DEM	 GDD (-0.67)	 CMI (-0.29)	 PPT (-0.21)
PPT	 CMI (0.99)	 NDVI(0.49)	 NIR (0.66)
GDD	 DEM (-0.67)	 NDVI(0.49)	 PPT'(0.48)

SD	 PPT (0.63)	 CMI (0.61)	 NIR (0.66)
CMI	 PPT (0.99)	 NDVI(0.65)	 NIR (0.63)
RED	 NDVI(-0.76)	 PPT (-0.59)	 CMI (-0.59)
NIR	 SWIR(0.67)	 PPT (0.66)	 CMI (0.61)

SWIR	 NIR (0.67)	 RED (0.58)	 - -
NDVI	 RED (-0.76)	 PPT (0.67)	 CMI (0.61)

Mixed woods
DEM	 GDD(-0.32)	 SWIR(-0.30)	 CMI (-0.26)
PPT	 CMI (0.98)	 NIR (0.82)	 RED (-0.74)
GDD	 NIR (0.78)	 NDVI(0.73)	 PPT (-0.74)

SD	 NDVI(-0.31)	 SWIR (0.29)	 CMI (0.21)
CMI	 PPT (0.98)	 NIR (0.75)	 RED (-0.66)
RED	 NDVI(-0.84)	 PPT (-0.74)	 NIR (-0.72)
NIR	 NDVI(0.86)	 PPT (-0.74)	 GDD (0.78)

SWIR	 NDVI(-0.62)	 RED (0.58)	 DEM (-0.30)
NDVI	 NIR (0.86)	 RED (-0.84)	 PPT (0.66)

Based on Paired T-tests for biomass estimation using
the validation sample data set, there were no
significant differences between biomass densities
estimated using the regression model(s) (Table 3),
and the Penner et al. (1997) biomass data for

softwood (p = 0.43 - 0.77), hardwood (p = 0.07 -
0.12) and mixed-wood (p = 0.80 - 0.99) species.
Notably, the probability level indicating no statistical
difference was highest for mixed woods and smallest
for hardwoods. The relative small sample size and
small frequency of predominant hardwoods reported
at the 10 km cell size likely influenced the latter
result. Nevertheless, these initial models reflected the
biomass values they were designed to predict, and
suggest promise for further modeling of forest
biomass at coarse resolution scales from a
combination of environmental and remote sensing
variables.

Table 3. Summary stepwise regression model
statistics.

Selected	 Adjusted	 RMSE
	

Non-
variables
	

R2	 (tonnes/ha)	 significant
variables

The biomass data used in this study, derived from
those estimated by Penner et al. (1997), were of low
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spatial resolution, and likely contain many
inaccuracies. Nevertheless these are at present the
only national ground-based forest biomass dataset
available. This study represents the first iteration for
producing the Canadian biomass prediction model.
The next iteration will model the variations in
biomass densities by adding to the environmental and
remote sensing predictors, the disturbance effects on
forest age-class structure for better discriminating
between regions of high and low biomass. The
second iteration will be realised from the ongoing
development of a new Canadian national biomass
database (Gillis and Ung 2001) as the methods
developed in this study can be replicated when the
new biomass data set is available.

Conclusions and Future Work

In this study we attempted to estimate the spatial
distribution of forest biomass, within broad species
groupings, at the national level based on a model
developed from environmental and remote sensing
variables. The results demonstrate that such models
can estimate biomass with a precision statistically
comparable to the source data, and that the
combination of these variables is better than either
used alone, particularly for the mixed-wood cover
type. Further stratification at the national level, e.g.
by terrestrial ecozones and using narrower species
groups, incorporation of disturbance data for fire and
forest pests, and the use of a new, national biomass
data set now under construction would likely improve
upon the models and results obtained in this study.

Future reporting will focus on biomass estimation
based on forest types mapped from AVHRR and
SPOT VEGETATION sensors, and determining
whether the independent variables used to estimate
biomass will change as a function of the remote
sensing data source. This work at the national level is
intended to complement ongoing biomass modeling
and mapping research with Landsat TM data, and
will facilitate investigation of problems that may
arise when scaling from regional to national levels.
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