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Abstract. Tree crown recognition using high spatial resolution remotely sensed imagery provides useful information
relating the number and distribution of trees in a landscape. A common technique used to identify tree locations uses a local
maximum (LM) filter with a static-sized moving window. LM techniques operate on the assumption that high local radiance
values represent the centroid of a tree crown. Although success has been found using LM techniques, various authors have
noted the introduction of error through the inclusion of falsely identified trees. Missing trees, or omission error, are
primarily the result of too coarse an image spatial resolution in relation to the size of the trees present. Falsely indicated
trees (commission error) may be removed through image processing post-LM filtering. In this paper, using 1-m spatial
resolution multi-detector electro-optical imaging sensor (MEIS-II) imagery of a study location on Vancouver Island, British
Columbia, we present a variety of techniques for addressing commission error when applying an LM technique. Methods
exploiting spatial and spectral information are applied. As a benchmark, LM generated within a 3 × 3 window with no
commission error reduction resulted in a 67% overall accuracy, with a 22% commission error. The results of the commission
error reduction must be considered against resultant overall accuracy. Using variable window sizes, as suggested by image
spatial structure, for the generation of LM provided for the maintenance of similar overall accuracy (62%) with a decrease
in commission error (to 11%).

Résumé. La reconnaissance de la couronne des arbres à l’aide d’images de télédétection à haute résolution spatiale apporte
une information utile quant au nombre et à la distribution des arbres dans le paysage. Une des techniques utilisées
couramment pour déterminer la localisation des arbres utilise un filtre de maximum local (ML) avec une fenêtre mobile à
dimension statique. Les techniques de ML opèrent sur la prémisse que les valeurs élevées de radiance locale représentent le
centroïde de la couronne d’un arbre. Quoique les techniques de ML aient connu du succès, divers auteurs ont observé que
cette procédure introduit des erreurs qui se manifestent par l’inclusion d’arbres identifiés faussement. Les arbres manquants,
ou erreur d’omission, sont principalement le résultat d’une résolution spatiale trop grossière par rapport à la dimension
des arbres en présence. Les arbres identifiés faussement (erreur de commission) peuvent être éliminés au moyen d’un
traitement d’image basé sur le filtrage post-ML. Dans ce texte, basé sur l’utilisation d’images MEIS-II à une résolution
spatiale de 1 m d’un site d’étude situé sur l’île de Vancouver, en Colombie britannique, nous présentons diverses techniques
visant la réduction de l’erreur de commission par le biais de l’application de la technique de ML. On applique des méthodes
qui exploitent l’information spatiale et spectrale. À titre de référence, des ML générés à l’intérieur d’une fenêtre de 3 × 3
sans réduction d’erreur de commission ont permis d’atteindre une précision globale de 67%, avec une erreur de commission
de 22%. Les résultats de la réduction de l’erreur de commission doivent être considérés par rapport à la précision
globale résultante. L’utilisation de fenêtres de dimension variable, en fonction de la structure spatiale de l’image, pour
générer des ML a permis de conserver une précision globale semblable (62%) avec une réduction d’erreur de commission
(jusqu’à 11%).
[Traduit par la Rédaction]

628Introduction

Aerial photography is still the most commonly used method
of providing remotely sensed data for the characterization of
forests. Yet, due to increasing information requirements, a
decrease in the usefulness of aerial photographs for forest
inventory purposes has been cited (Hyyppä et al., 2000). The
commercial availability of high spatial resolution satellite data
(Tahu et al., 1998) has further spurred the development of
digital techniques for the extraction of forest information. The
full potential of high spatial resolution imagery in forestry will
only likely be approached through automation of the image
processing (Gougeon, 1995a). The information content of high
spatial resolution imagery, where there are many pixels per

object, has resulted in the development of a range of
techniques, such as valley following (Gougeon, 1995b),
threshold-based spatial clustering (Culvenor, 2002), template
matching (Pollock, 1996; Larsen and Rudemo, 1997; Larsen,
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1999), mathematical morphology (Walsworth and King, 1999),
and local maximum filtering (Pinz, 1999).

View angle, illumination angle, tree geometry, and
bidirectional reflectance combine to result in a variation of the
intensity of pixel digital numbers (DN) at different locations
within an individual tree crown (Leckie et al., 1992). The
radiance values also vary as a function of the tree crown depth,
where the intensity is greatest near the tree centre and lessens
towards the crown edges (Li and Strahler, 1992). As a result,
individual trees may be discerned as localized regions of high
DN values (Figure 1). In the case of coniferous trees, the
contrast in DN values results in a local maximum (LM) value
found at, or near, the centre of trees. In LM filtering, a window
is passed over all pixels in an image to determine if a given
pixel is of higher reflectance than all other pixels within the
window (Dralle and Rudemo, 1997). Pixels identified with the
highest DN value within the window are designated as tree
locations. When a window of a fixed size is passed over an
image it does not account for the presence of trees with
different crown sizes, i.e., static-sized windows do not take into
account the object–resolution relationship that exists between
the trees (objects) and the image spatial resolution.

Observation of changing omission and commission errors as
a function of crown radii provides an indication of the
relationship between tree size and image resolution required to
resolve individual trees with an LM filter. The distribution of
error by tree size is important, as the large trees account for a
greater proportion of the stand basal area than the smaller trees.
An investigation of the success of tree identification by tree
crown radius demonstrates the relationship between image

spatial resolution and LM filtering success. At an image spatial
resolution of 1 m, a tree crown radius of 1.5 m appears to be the
minimum size for reliable identification of tree locations using
LM filtering (Wulder et al., 2000).

At the 1-m spatial resolution, there are too few pixels within
the smallest, 3 × 3 pixel, filter size to locate smaller trees. Yet, if
the larger trees in the stand are consistently located, it may be
possible to account for most of the stand basal area. Wulder et
al. (2000) demonstrated that commission error resulted in the
overestimation of basal area. In some cases, reducing
commission error may come at the cost of increasing omission
error. The increase in omission error is rationalized, as the trees
that are “lost” with decreased commission are usually small,
accounting for a small amount of the total stand basal area. The
trade-off between total proportion of trees correct and the level
of commission error allows the user to determine which is more
important based on the intended use of the LM filter generated
tree locations. The presentation of a process to estimate basal
area from the LM filter generated tree locations demonstrated
that slightly lower proportions of successful stem identification
may be quite acceptable, as the majority of basal area is
accounted for by large trees (Wulder et al., 2000), and
achieving a minimum of commission error is more important.

Omission error with the LM technique is largely a function
of image spatial resolution. Additional detection errors may
arise from factors such as close proximity of neighbors, trees
being located under other trees, shadows, or trees having low
spectral contrast with respect to the understorey vegetation. As
a result, a primary aim when applying LM filters is to maximize
the number of legitimate trees found while also minimizing
those falsely identified.

The hypothesis of the research is that commission error can
be reduced through a variety of image-processing techniques
exploiting both image spectral and image spatial information.
The reduction of commission error may come at the expense of
overall accuracy. The user must decide, based on their
application, what is more important to avoid, the inclusion of
non-existent trees, or missing actual trees. This paper focuses
on minimizing the commission error, or false positives,
identified using an LM filter, while attempting to maintain
overall accuracy levels. To reduce commission error we apply
and present the consequences of (i) variable window sizes, (ii) a
spectral threshold and local variance within an LM window,
(iii) a spatial-dependence threshold, and (iv) LM filtering of
spatial-dependence data. The results of processing with the
error reduction methods are compared to benchmark fixed-
window LM processing with no error reduction applied.

Methods
Study area

The Greater Victoria Watershed is located at 48°23′N latitude
and 123°41′W longitude, which is northwest of Victoria,
British Columbia. Within this watershed, a 0.72-ha study area
was selected with little topographic variability, composed of a
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Figure 1. MEIS-II simulated panchromatic imagery, including
notation of plantation (top rectangle) and mature (bottom
rectangle) stands in the study area.



40-year-old plantation and a 150-year-old naturally
regenerating mature stand (Hugh Hamilton, Ltd., 1991). The
plantation (planted in 1965 and thinned in 1975) is composed
of trees ranging in height from 8.6 to 25 m and is a mixture of
Douglas-fir (Pseudotsuga menziesii) and western red cedar
(Thuja plicata). The mature stand contains trees from 140 to
250 years of age ranging in height from 20 to 70 m and is
dominated by Douglas-fir. Also present in the study site is a
dense layer of understorey consisting of hemlock (Tsuga
heterophylla), some red alder (Alnus rubra), salal (Gaultheria
shallon), sword fern (Polystichum munitum), Oregon grape
(Mahonia nervosa), and Oregon beaked moss (Kindbergia
oregana).

Field data

The 0.72-ha study area was partitioned into 72 grid cells of
10 by 10 m within which all trees were measured and located to
0.1 m of precision to allow for the creation of a stem map. In
total, 209 trees were located, with 159 trees in the plantation
stand and 50 trees in the mature stand. As part of the fieldwork
for Hay and Niemann (1994), crown radius, diameter at breast
height (DBH), species type, tree height at crown apex, and
height at maximum crown radius were measured.

Image data

The second-generation multi-detector electro-optical
imaging sensor (MEIS-II) (Till et al., 1983) was flown at an
altitude of 1428 m over the study site at 11:30 hours PST on
2 September 1993, with a resulting ground pixel size of 1 m (all
images resampled to 720 pixels across track). The raw data
were geometrically corrected using British Columbia Ministry
of Environment Terrain Resource Information Management
(TRIM) digital elevation data with a horizontal accuracy of
±20 m. Solar altitude and azimuth angles at the time of the
flight were 52° and 133°, respectively.

The MEIS-II is a pushbroom scanner with a temperature-
stabilized, charge-coupled device (CCD) linear array and a
spectral range from 380 to 1100 nm. Within the 720-nm
spectral range, six user-defined, nadir-looking channels may be
selected by mounting filters in front of the lens. A
panchromatic channel was simulated by averaging the six
available channels to summarize the spectral response found
over the MEIS-II range from 432.85 to 847.65 nm (Figure 1).
This enables a comparison with the 1-m panchromatic image
data available on the IKONOS satellite (Mangold, 1999) (with
a 450–900 nm panchromatic channel). Additionally, in
previous work it was evident that there was no statistically
significant difference between the results the LM generated
from differing spectral channels (Wulder et al., 2000).

LM filtering procedure

Individual trees can be discerned, in medium to dense
forested areas, in high spatial resolution imagery as regions of
high reflectance. The spatial structure of this reflectance, for

conifers, results in an LM value found at, or near, the centre of
trees. In LM filtering, a window is passed over all pixels in an
image to determine if a given pixel is of higher reflectance than
all other pixels within the window (Dralle and Rudemo, 1997).
Pixels identified as the largest DN value within the window are
noted as tree locations.

Variable window sizes

Semivariance
Semivariance is a well-understood and frequently applied

image-processing technique in remote sensing (Curran and
Atkinson, 1998). Semivariograms provide a means of
measuring the spatial dependency of continuously varying
phenomena. Variable window sizes are suggested for each pixel
location based on an average semivariance range value
computed from transects in the eight cardinal directions around
each pixel in the image (Franklin et al., 1996). If there is spatial
structure in a given data set, a semivariogram will reveal that
semivariance rises until reaching the sill, which indicates the
maximum variability between pixels. The range is the number
of lags, or distance, to the sill (Curran and Atkinson, 1998).
Therefore, within the range spatial dependence between pixel
values is indicated. To minimize the potential effects of image
anisotropy, image semivariance is computed for all eight
cardinal directions from the central pixel, with the average of
the eight results stored in a new image channel. Computing an
average range value for each pixel in the image reduces
problems that arise when attempting to select a representative
single transect origin and angle (Wulder et al., 1998).

The conversion of semivariance ranges to window sizes
requires user intervention (Wulder et al., 2000). The inter-pixel
variability is limited at a 1-m spatial resolution, particularly in
dense homogenous stands, which results in ranges that
characterize the stand spatial dependency rather than that of
individual trees. As a result, semivariance range values are
consistently scaled to an appropriate window size.

Slope breaks
To overcome the need for user intervention in the

determination of optimal window size, “slope breaks” were
calculated. Slope breaks are a simple means of measuring a
region of dependence around a pixel and are based on the
assumption that every tree in an image may be a local
maximum. For each pixel in the imagery, an omni-directional
set of transects is analyzed from the central pixel to count the
number of pixels until a minimum radiance value is reached.
The slope break can also be described as the first inflection
point in the gradient of reflectance around the tree. The mean
value of the number of pixels to the slope reversal for all eight
cardinal directions is used as a custom window size for that
pixel (Figure 2). If the radiance of a pixel is lower than that of
all surrounding pixels, a value of zero is assigned for the
window size. The conversion from slope break value for a pixel
to customized window size requires no user intervention.
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Spectral threshold and local variance within the LM
window

One of the characteristics of the imagery is the occurrence of
a random LM. To address selection of a random LM, we
developed a filter that eliminates candidate LMs that fall below
a user-specified minimum DN threshold and have a difference
between minimum and maximum DN that is lower than a user-
specified value. User investigation of a series of maximum grey
level and minimum difference values is used to determine the
most appropriate combination for a particular study location.

Spatial dependence (Getis statistic)

In contrast to semivariance, the Getis statistic (Gi
*) generates

values that relate variations within patterns of spatial
dependence. Thus, it has the potential to uncover discrete
spatial-dependence characteristics that might be overlooked by
existing techniques. Semivariance and Gi

* values are
complementary techniques, with semivariance computing an
indication of a region of pixel similarity and Gi

* results
indicating the strength of pixel association within this region of
spatial dependence.

Wulder and Boots (1998) have adapted the Getis statistic for
processing remotely sensed imagery. Formulation and example
calculation of Gi

* can be found in Wulder and Boots (1998;
2001). The Getis statistic, Gi

*, yields a standardized value that

indicates both the degree of autocorrelation in the DN values
centred on a given pixel and the magnitude of these values in
relation to those of the entire image. In consideration of
remotely sensed imagery, the Gi

* values measure the extent to
which a pixel is surrounded by a cluster of high or low values of
the image DN values. Large positive Gi

* values denote a cluster
of high DN values, and large negative Gi

* values a cluster of low
DN values. In a high spatial resolution forestry context, Gi

*

values indicate the spatial dependence within a tree crown or
between shadow elements. High positive values generated
from panchromatic image data indicate the presence of a tree
object, whereas high negative values correspond to a non-tree
feature (Figure 3). Accordingly, Gi

* values computed for near-
infrared image data can be applied to assist in the screening for
false positives generated from the radiance peak filtering
routine. Further, as the Gi

* values are sensitive to the presence
of tree objects, tree locations may be accentuated by the
transformation of radiance values to Gi

* values. Processing the
transformed Gi

* values for local maxima may allow for
improved tree recognition. The ability to extract tree locations
from radiance values transformed to Gi

* values is likely highly
dependent on image spatial resolution, as the Gi

* values tend to
form clusters from the radiance values (Wulder, 1999). As a
result, processing Gi

*-transformed radiance values for LM may
only be appropriate in high-resolution imagery where many
pixels make up an individual tree crown.
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Figure 2. Image illustrating slope breaks computed on the MEIS-II
simulated panchromatic imagery. The top rectangle is the
plantation stand, and the bottom rectangle the mature stand.

Figure 3. Image illustrating the inter-pixel spatial dependence (as
computed with Gi

* on the MEIS-II simulated panchromatic
imagery). The top rectangle is the plantation stand, and the bottom
rectangle the mature stand.



Spatial data threshold

The spatial-dependence threshold is based on an application
of values of the Getis statistic as a threshold filter. Low Gi

*

values indicate a cluster of low DN values, whereas high Gi
*

values relate clusters of higher DNs. For each pixel that is
identified as a potential LM, the Gi

* value at that location must
be above zero for the LM to pass the threshold filter.

LM filtering of spatial-dependence data

Passing the LM filter directly over the spatial-dependence
data automatically applies the spatial-dependence threshold, as
LMs are inherently greater then the defined threshold value.
Additionally, the Gi

* will have a maxima value at the tree centre
while also being surrounded by transformed values extending
to the region of local dependence. The extent of the local spatial
dependence indicated is variable and related to the size of the
tree crowns present. High local Gi

* values will indicate
centroids of local regions of spatial autocorrelation. The
centroids indicated are representative of high panchromatic DN
values over a region of local dependence.

Results and discussion
Fixed-sized LM filters with no error reduction applied

Prior to comparison of error reduction methods, a
performance benchmark is required. In Table 1 we present the
proportion of correct, omitted (missed), and committed (falsely
identified) trees for fixed-window LM filtering of image
spectral data. (Omission is not noted in Table 1 because
omission level is simply the total number of trees minus the
number of trees found.) The 3 × 3 LM filter represents a super-
set of all possible LMs that can be isolated using a local
maximum technique. The 3 × 3 LM filter finds all local
maxima, without regard to any image spatial structure and, as a
result, the commission error is generally high. In an operational
application, the detailed field data would likely not be present;

in that situation, there would be no way to detect false
positives, resulting in an overestimation of stems. In this case
the 67% accuracy overall must be taken in the context of 22%
commission error; without the stem map developed for this
study a 89% accuracy could be erroneously interpreted, as all
trees “found” may be assumed to be correct. As a result, it is
important to consider commission reduction in conjunction
with the overall numbers of trees correctly identified.

The increase in window size from 3 × 3 through 5 × 5 to 7 × 7
results in increasing omission errors for the plantation stand
with less of an effect on the mature stand, indicating that data
with resolution higher than 1 m are required for the detection of
small trees. With a minimum of 33% of the plantation trees
being missed with LM techniques in this study, it appears that
1-m imagery is too coarse for individual tree crown recognition
in a Douglas-fir stand with crown radii less that 1.5 m. The
mature stand, with an omission level of 20%, appears to have a
stand structure that is more appropriate for LM filtering of 1-m
spatial resolution imagery. The omission error may be
interpreted as being largely a function of the image spatial
resolution, whereas the commission error is related to the
occurrence of spurious local maxima unrelated to elements of
the crown canopy.

Variable window sizes

Variable window sizes were applied to the LM filtering
process in an attempt to reduce the level of commission error, or
false positives, by integrating scene spatial structural
information. Semivariance range and slope breaks are
computed for each pixel and applied as a unique window size
for that location. LM filtering with a variable window size
determined by the semivariance method correctly located 64%
of the trees in the entire stand and resulted in a commission
error of 19% (Table 1). The lack of a consistent improvement
in comparison to the fixed-window LM filtering is likely due to
the selection of small window sizes from the same image
spatial features that results in local maxima being found where
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Window size

Fixed window size

Variable-
sized
windows

Local
variance test
and threshold
value

Variable window
size with spatial-
dependence (Gi

*)
threshold filter

Fixed window size
processing of
spatial-dependence
(Gi

*) data

Variable window
size processing of
spatial-dependence
(Gi

*) data

3 5 7 SVR SB 3×3 SVR SB 3 5 7 SVR SB

All (n = 209)
Correct 0.67 0.50 0.30 0.64 0.62 0.59 0.47 0.46 0.16 0.30 0.25 0.35 0.34
Commission 0.22 0.04 0.02 0.19 0.11 0.13 0.03 0.03 0.00 0.00 0.00 0.01 0.00

Plantation (n = 159)
Correct 0.62 0.43 0.21 0.60 0.56 0.55 0.40 0.38 0.25 0.19 0.14 0.25 0.24
Commission 0.05 0.02 0.01 0.05 0.03 0.07 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Mature (n = 50)
Correct 0.80 0.72 0.60 0.76 0.80 0.70 0.70 0.74 0.66 0.64 0.60 0.66 0.66
Commission 0.78 0.10 0.08 0.64 0.38 0.32 0.08 0.10 0.00 0.00 0.00 0.00 0.00

Note: n, number of trees; SB, slope break dictated variable window size; SVR, semivariance range suggested variable window size.

Table 1. Summary table of LM filtering results, including the benchmark in three static window sizes, and five spectral and spatial
techniques.



no trees are present. Instead of a poorly fit window identifying
spurious local maxima and resulting in a high commission
level, variable-sized windows are being generated for the false
positives. The LMs generated from slope breaks have fewer
false positives than those from the semivariance range. The
measurement of slope breaks from the imagery appears more
sensitive to the actual extent of the crown. The semivariance
range values, at the study image spatial resolution of 1 m, have
a greater likelihood of generating stand-level information than
individual crown information and thus are less locally adaptive.

The slope break suggested window-sized LM filter results
illustrate a good relationship between number of trees correctly
identified and commission level. For example, the commission
for the mature stand is down from 78% with the fixed 3 × 3 LM
filter to 38% with the same number of trees correctly identified.

Spectral threshold and local variance within the LM
window

The application of a spectral threshold and local variance
within the LM window resulted in an overall commission error
level of 13% (Table 1). The low commission error of 7% for the
plantation is expected, as the density of the stand, in
conjunction with the spatial resolution, results in many LM
hits. More importantly, for the mature stand, where the
opportunity for commission is greater because of the tree size
and large spaces between the trees, a false positive rate of 32%
is found. The 32% level of false positives for the LM filter with
a threshold and local variance test is an improvement over the
use of a fixed 3 × 3 window with no additional screening, yet
the level correct is less than that found for the fixed-window
analysis. For the mature stand, using the spectral threshold with
the local variance test, the commission level is better than that
for the variable window size dictated from slope breaks. Yet the
level correct for the mature stand with the spectral threshold
and local variance method (at 70%) is lower than that with the
80% correct computed for the variable window sizes from slope
breaks.

Spatial-dependence threshold

The spatial-dependence filtering results in a reduction in
commission error in relation to the unfiltered results (Table 1).
A good relationship between number of trees correctly
identified is evident for the mature stand, where correct levels
are high and commission is low. Yet, the overall correct level is
low, too low to make up for the low commission level.

The stratification of the results based on the tree age and size
distribution demonstrates superior results for the larger mature
trees compared with those for the smaller plantation trees. Up
to 74% of the larger mature trees are accounted for, whereas the
maximum success rate is 40% for the smaller plantation trees.
The desired use of the resultant tree locations from the LM
filtering will dictate what are acceptable levels of success. For
example, this high omission rate may be acceptable if the use of
the tree locations is for subsequent signature extraction or basal
area estimation. The success of the LM filter based on Gi

*

values to decrease the commission error indicates a potential
for directly processing the Gi

* values for local maxima.

LM filtering of spatial-dependence data

The application of Gi
* values as a threshold filter in

conjunction with an LM filter indicated the potential for direct
processing of the spatial-dependency values with an LM filter
to isolate individual trees to aid in the reduction of commission
error. The result of processing the spatial-dependence values
with fixed-sized LM filters is presented in Table 1. The success
rates vary by window size and stand age. The tendency of Gi

*

values to represent clusters of similar DN values (Wulder and
Boots, 1998; Wulder, 1999) results in a loss of individual tree
location detail, especially in the dense plantation stand. The
clustering effect is clearly demonstrated for a 3 × 3 LM filter on
the panchromatic data, illustrated with the results over all age
classes with a success level of 16%. An increase in window size
results in an improvement in the number of trees correctly
identified, which relates to the size of the domain of the spatial
process. The variable-sized windows when applied to the
spatial-dependence data result in more consistent levels of
success (Table 1), with successful identification of trees
occurring at a rate of approximately 35%. Successful
identification of trees increases as the sizes of the trees
increase. The relatively low rate of tree identification is aided
by the low amount of commission error. Locations that are
identified with the LM filtering of the spatial-dependence
values are almost invariably trees.

The low, to absent, commission error is related to the manner
in which the radiance values are transformed into Gi

* values,
with the clusters of high DN values becoming high Gi

* values.
The high Gi

* values, accordingly, when processed with an LM
filter, act similarly to the Gi

* thresholded results. As with the
results for the LM filter suite processed with a Gi

* threshold
filter, the desired use of the digitally isolated trees will dictate
the success of the LM isolation. The low commission error is of
concern if the identified trees are to be utilized for further
analysis. For example, the LM-located trees may be appropriate
for signature development for multispectral classification of the
trees. Further, at the 1-m spatial resolution the large trees are
being found with the LM filtering method. An analysis of the
distribution of the error by the size of the tree is presented in
Wulder et al. (2000).

Conclusions
The efficacy of a given error reduction method must be

considered in the context of the number of trees that are
correctly identified. When considering the number of trees
correctly identified, the size of the trees found must be
considered in relation to the image spatial resolution. Small
trees, below the range of detection given the spatial resolution
available, are beyond the scope of these error reduction
methods. Yet, for large trees, which are more readily detectable,
omission and commission are more significant. Our creation of
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a detailed stem map allowed for the reporting of omission and
commission error; without a detailed stem map, the committed
trees may be incorrectly assumed to be legitimate.

The comparison of error reduction methods must be kept in
reference to the comments made earlier. The success, or failure,
of a given method is not indicated from commission level
alone; the proportion correct must also be considered. The goal
of the particular LM analysis, that is, what are the stems
required for, must also be kept in mind. The error rates found
for the plantation stand are largely a function of the image
spatial resolution, and little can be done to recover sub-pixel
trees. The limits to the plantation results are also an issue when
interpreting the results over both stands combined. When
considering the entire stand, favorable results are found for the
variable window size techniques and the threshold–within-
window variance filters. For the mature stand, with large crown
sizes, application-appropriate results are found for the spatial-
dependence filtering of LM generated within windows of sizes
suggested by local slope breaks, where the correct proportion is
high (74%) and the false positive level is low (10%). The results
related to the mature stand indicate that when many pixels
make up an individual crown, LM detection is possible, as are
several means for reducing the number of falsely indicated
trees.
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