THE ALBERTA LOGGING COST SURVEY: DATA FOR 1996-1998

D.H. Kuhnke, W.A. White, and R.A. Bohning

© Her Majesty the Queen in Right of Canada, 2002
Catalogue no. Fo46-12/375E
ISBN 0-662-
ISSN 0704-7673

This publication is available at no charge from:

Natural Resources Canada
Canadian Forest Service
Northern Forestry Centre 5320-122 Street
Edmonton, Alberta T6H 3S5

A microfiche edition of this publication may be purchased from:
Micromedia Ltd.
240 Catherine Street, Suite 305
Ottawa, Ontario K2P 2G8

National Library of Canada cataloguing in publication data

Kuhnke, D.H.
The Alberta logging cost survey: data for 1996-1998
(Information report, ISSN 0831-8247 ; NOR-X-375)
Includes an abstract in French.
Includes bibliographical references.
ISBN 0-662-33273-3
Cat. no. Fo46-12/375E

1. Logging -- Economic aspects -- Alberta.
2. Forests and forestry -- Economic aspects - Alberta.
I. White, William Alexander.
II. Bohning, R.A.
III. Northern Forestry Centre (Canada)
IV. Title.
V. Series: Information report (Northern Forestry Centre (Canada)) ; NOR-X-375.

SD538.3C3K86 $2002 \quad 634.98^{\prime} 097123$ C2002-980341-1

This report has been printed on Canadian recycled paper.

Kuhnke, D.H.; White, W.A.; Bohning, R.A. 2002. The Alberta Logging Cost Survey: data for 1996-1998. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, Alberta. Inf. Rep. NOR-X-375.

Abstract

A logging cost survey was conducted in Alberta in 1997 and 1998. The two objectives of the survey were to determine the average cost of logging in Alberta and to develop models for predicting logging productivity on the basis of forest and logging characteristics. The survey gathered information on timber harvest, characteristics of harvested areas, machine productivity, and fixed and variable costs on 239 pieces of logging and road-building machinery covering all phases of logging operations. Twenty-nine firms responded to the survey, and together they harvested 5.2 million m^{3} of timber over an area of almost 25000 ha . The average cost of logging in Alberta was $\$ 14 / \mathrm{m}^{3}$. The average productivity for the felling, skidding, and processing phases was $39.1,34.0$, and $27.6 \mathrm{~m}^{3} /$ productive machine hour, respectively.

RÉSUMÉ

Une enquête sur les coûts de l'exploitation forestière a été effectuée en Alberta en 1997 et 1998. Elle avait deux objectifs : déterminer les coûts de la récolte forestière en Alberta et construire des modèles de prévision de la productivité de la récolte à partir des caractéristiques de la forêt et de la récolte. Cette enquête a recueilli des renseignements sur la récolte de bois, les caractéristiques des superficies récoltées, la productivité de l'équipement et les coûts fixes et variables de 239 pièces d'équipement de récolte et de construction de chemins servant dans les différentes phases de l'exploitation des forêts. Vingt-neuf entreprises ont répondu à l'enquête; ensemble, elles avaient récolté 5,2 millions de mètres cubes $\left(\mathrm{m}^{3}\right)$ de bois sur une superficie atteignant près de 25000 ha. D'après leurs réponses, le coût moyen de l'exploitation forestière en Alberta s'élèverait à $14 \$ / \mathrm{m}^{3}$. La productivité moyenne pour les phases d'abattage, de débusquage/débardage par traînage et de transformation serait de 39,1 , de 34,0 et de $27,6 \mathrm{~m}^{3} /$ heure-machine productive, respectivement.

CONTENTS

INTRODUCTION 1
METHODS AND APPROACH 1
RESULTS 2
General Overview 2
Logging and Hauling Data 2
Number of cutblocks and general areas 2
Hauling 3
Conversion factors 3
Bucking of pulpwood logs and sawlogs 3
Logging method 3
Loading and loading productivity 5
Slope 5
Tree size 5
Subcontractors 5
Harvested volumes and areas by forest type and species group 6
Machine Costs and Other Costs Associated with Logging 6
Loan payments 6
Repairs and alterations 9
Insurance 9
Operator wages and benefits 10
Fuel and oil 11
Other costs 11
Summary of logging costs 12
Estimation of Machine Productivity 12
Slope index 14
Tree size indexes 14
Sorting and bucking indexes 14
Species diversification index 16
Seasonal index 16
Logging methods index 17
Felling productivity 17
Skidding productivity 19
Processing productivity 19
Road-building productivity 21
DISCUSSION 22
CONCLUSION 25
ACKNOWLEDGMENTS 25
LITERATURE CITED 26

APPENDIXES

1. Survey form used in the Logging Cost Survey 27
2. Harvest volumes, conversion factors, and harvest weights by species group. 31
3. Bucking by log type and species group 32
4. Logging phases, logging methods, forest characteristics, and descriptive logging indexes 33
5. Slope conditions under which the 29 firms conducted logging operations 35
6. Average timber sizes by timber size rating 36
7. Timber sizes classified by timber size rating 37
8. Harvest volumes and areas by forest type and species group 38
9. All logging and road-building machinery used by the 29 firms 40
10. Paired-difference tests between actual and estimated loan payments 44
11. Paired-difference tests between actual and estimated insurance payments 45
12. Paired-difference tests between actual and estimated operator wages and benefits. 46
13. Paired-difference tests between actual and estimated fuel and oil expenditures 47
14. Regression analysis of felling productivity in relation to forest, logging, and machine characteristics. 48
15. Regression analysis of skidding productivity in relation to forest, logging, and machine characteristics 56
16. Regression analysis of processing productivity in relation to forest, logging, and machine characteristics 62
17. Regression analysis of road-building productivity in relation to forest, cutblock, and machine characteristics 71
FIGURES
18. Distribution of slope index among all firms 15
19. Distribution of modified proportional timber size index among all firms 15
20. Distribution of quantitative timber size index among all firms 16
21. Summary of models predicting logging and road-building productivity 23

TABLES

1. Hauling distances, weight of timber hauled, and hauling expenditures for 11 logging firms that hauled timber 4
2. Summary of logging methods by harvesting system and machine combinations 4
3. Subcontractor activities of the 15 firms that engaged subcontractors 7
4. Summary of volume and area harvested 7
5. Annual loan expenditures for logging and road-building machinery 8
6. Annual expenditures on repairs and alterations for logging and road-building machinery 8
7. Annual expenditures on insurance for logging and road-building machinery. 10
8. Annual expenditures on operator wages and benefits for logging and road-building machinery 11
9. Annual expenditures on fuel and oil for logging and road-building machinery. 12
10. Average cost of logging in Alberta 13
11. Summary of sorting and bucking conditions used to determine sorting and bucking indexes 17
12. Summary of independent variables found to be significant in models that predict logging and road-building productivity 24

The exclusion of certain manufactured products does not necessarily imply disapproval nor does the mention of other products necessarily imply endorsement by Natural Resources Canada.

This report was completed using data collected between 1996 and 1998. Unavoidable delays, including our reluctance to release this potentially sensitive data during the recent countervail negotiations, have resulted in the results being slightly dated. Costs that impact on logging costs have increased over the period. For example, manufactured goods have increased by 7.6% since 1997. Raw energy prices have fluctuated but are up 67% over the same period. Wages and insurance costs have also increased since data was collected for this report. As this report describes, these goods and services are only a subset of materials and activities that influence logging costs, and we can not provide a definitive figure on exactly how the results should be adjusted to allow for these changes.

Forestry represents a significant component of the Canadian economy and as such strongly influences the economic welfare of the nation. The wellbeing of the forestry sector hinges on competitiveness, both locally and internationally, and on sustainable forest management practices. The Alberta Logging Cost Survey, conducted in 1997 and 1998, had two objectives. First, it allowed the determination of the average cost of logging in Alberta, thus providing a reference against which logging companies can gauge their own competitiveness. Second, the data from the survey were used to develop models for predicting logging productivity on the basis of forest and logging characteristics. These models can then be used by loggers, researchers, and forest managers alike to estimate logging productivity and the associated costs of logging areas of commercial forest. They would also provide valuable input into financial analyses of forest management practices that may be integrated into broader strategic land use planning exercises.

The survey gathered information on timber harvest, characteristics of harvested areas, machine productivity, and fixed and variable costs on 239 pieces of logging and road-building machinery covering all phases of logging operations. The survey was conducted in cooperation with an independent association of logging, trucking and equipment supply companies. The twenty-nine firms that responded to the survey harvested 5.2 million m^{3} of timber over an area of almost

25000 ha. The average cost of logging in Alberta was $\$ 14 / \mathrm{m}^{3}$.

The average productivity for the felling, skidding, and processing phases was 39.1, 34.0, and $27.6 \mathrm{~m}^{3} /$ productive machine hour, respectively. The regression models for these three phases explained a significant amount of the variation in productivity (goodness-of-fit $R^{2}=0.88,0.79$, and 0.82 , respectively). Tree size was an important factor affecting productivity in all phases of the logging operation, a result consistent with trials of logging machinery performed in Canada and elsewhere.

A model to predict productivity in constructing roads was also developed (in terms of productive machine hours per hectare). The goodness of fit was lower than for the other models ($R^{2}=0.69$), because information about the length and type of roads constructed was not collected. However, several logging characteristics, including total area harvested and sorting requirements, were reasonable proxies for road information.

Despite the limitations of the study, primarily related to the resources available on the part of both researchers and logging firms, the general strength of the models suggests their validity for predicting logging productivity in Alberta.

INTRODUCTION

Forestry is big business in Canada. The country's balance of trade in forest products in 1997 was $\$ 31.7$ billion, more than farm products, fish products, and energy combined (Statistics Canada 1998a, b). One in 16 people was employed directly or indirectly in the forestry sector in that year (Natural Resources Canada 1998). The well-being of the forestry sector, which strongly influences the economic welfare of the nation, hinges to a great extent on its competitiveness, from the local level of the logging contractor to the global market for forest products such as newsprint.

Competitiveness, however, is not the only criterion that determines the success of the forestry sector. Forest companies must demonstrate that they practice forest management within the larger framework of sustainable development. On a broad landscape scale, achieving sustainable development implies finding the right balance between the jobs and economic prosperity associated with the manufacture of forest products and the demand for nontimber benefits like clean air and habitat for wildlife.

Logging costs constitute a fundamental component in a financial analysis of forest management practices that must be conducted in any economic modeling that seeks to balance the benefits of forest management with nontimber values. At present the weak link in the financial analyses of forest management practices is the absence of models that will estimate logging costs.

Most forest product firms in Alberta contract with independent logging companies to perform most or all logging operations to supply their sawmills, pulp mills, and other wood-processing facilities. Given that these companies actually perform the logging and bear the costs of all or most aspects of logging operations, we sought their cooperation for the survey. Initially, we consulted published directories of logging companies to identify logging firms; however, we subsequently approached the Alberta Logging Association (ALA, now known as the Forest Industry Suppliers and Loggers Association), an association of independent logging companies and logging equipment supply

The purpose of the Canadian Forest Service (CFS) Alberta Logging Cost Survey (LCS) was twofold. The survey was conducted to determine the average costs of logging, and the variation in the various aspects of logging, to serve as a reference against which logging companies could gauge their competitiveness within the industry as logging companies are the first link in the chain of competitiveness leading to the global level. The LCS was also meant to serve as the basis for models developed to estimate logging productivity, given a set of forest and logging characteristics.

Performance trials of logging equipment that include cost breakdowns have been performed by other Canadian agencies. However, these have usually been restricted to specific sites for specific machines. The scope of the LCS was broader. The LCS was meant to sample firms across the province to cover the full range of logging methods, logging equipment, and site conditions.

It is anticipated that the models that estimate logging productivity can be used by loggers, researchers, and forest managers. These models should also provide valuable input into financial analyses of forest management practices, for eventual integration into broader strategic exercises for land-use planning. Because of limitations in personnel and funding, an Alberta-only focus was adopted. The LCS was conducted entirely out of the Northern Forestry Centre.

METHODS AND APPROACH

firms, for assistance in persuading its member logging firms to participate in the LCS.

The initial round of the survey was designed to obtain detailed information on a per-cutblock basis, including per-machine cost information for each cutblock. That approach was quickly abandoned because, given the large number of blocks harvested by most logging companies, the process proved too time consuming and costly for everyone involved. A much shorter survey form (Appendix 1), which struck a more appropriate balance between brevity and completeness, was developed to reflect the effort that logging company owners
could devote to the survey and the limited resources that the CFS could devote to the survey.

The design of the shorter survey form was based on comments made by member companies of the ALA during the first round of the survey and on published literature. The design of the form was finalized after a multiday interview and completion of the form by a member company of the ALA that generously contributed its time and effort.

The method of conducting the surveypersonal interviews with logging company owners, rather than mailed surveys or telephone interviews-was also based on experience garnered during the initial round of the survey. The chief reasons for adopting this method were the need to explain the purpose of the survey to the owners of the logging companies and the need to assure them about the confidentiality of their information, given the high degree of competitiveness in the logging industry.

Because of the brevity of the form, detailed information regarding the nature of all forest and site
characteristics thought pertinent to logging could not be obtained. For example, information concerning slope was obtained by asking owners to report the number of cutblocks (or the percentage of cutblocks) that fell into three general slope categories, rather than by asking for the actual percent slope of each cutblock. This classification injected a high degree of subjectivity into the determination of the slope index, but did provide an indication of the slope conditions under which each logging company conducted its operations. However, the survey form did include a section for detailed information on the fixed and variable costs of operating each of the firm's logging and road-building machines.

This report presents descriptive overviews and average data from the survey, as well as models that predict logging productivity on the basis of a number of forest characteristics. Because logging consists of distinct phases, the modeling section examines the productivity of each phase separately. Other aspects of operating a logging company that apply to many types of businesses are also discussed.

RESULTS

to interview firms in all forested regions of the province.

General Logging and Hauling Data

Number of Cutblocks and General Areas

The 29 logging firms processed timber from a total of 1206 cutblocks; the number of cutblocks per firm ranged from 10 to 171 (average 42). Cutblock size ranged from 6.2 to 42.1 ha (average 24.1 ha). Most respondents conducted logging operations for one or two mills or clients, although five respondents conducted logging for five or more mills. On average, respondents harvested 21.1 cutblocks per mill or per client. Respondents were not asked to specify the forest product companies for which they conducted logging.

On average, the cutblocks were distributed among two or three general areas. Because obtaining descriptions of the locations of all cutblocks would have been too time consuming and because maps were not always available, the interpretation
of the number of general areas in which a firm conducted logging operations was left to the discretion of the individual firms. Usually, a distance between groups of cutblocks that warranted moving logging machinery on trailers was the criterion used to identify the general areas. Large differences between general areas in terms of distance to the mill could suggest a greater dispersion of logging operations, which might in turn affect overall logging and hauling costs.

Hauling

Although the LCS was not intended to survey log hauling operations, hauling is an integral part of the operations of many logging firms, and therefore the LCS included a section on hauling. Eleven firms conducted some form of hauling. Some firms performed hauling entirely on their own, others paid subcontractors to do all of the hauling, and some used a combination of their own hauling and subcontractors. Data for the latter group had to be reviewed carefully to sort out what was hauled by each entity and at what cost. Care was also taken during interviews to account for any of the total harvest that was left behind for hauling after the logging season.

Distance to the mill or mills from general logging areas ranged from 15 to 400 km (average $111.4 \mathrm{~km})$. For the 11 firms that hauled timber, the average hauling distance was 103.2 km . The hauling cost for firms that hauled timber ranged from $\$ 0.0177$ to $\$ 0.1100 / \mathrm{t}-\mathrm{km}$ (average $\$ 0.0354 / \mathrm{t}-\mathrm{km}$). The wide range in costs is a function of distance and road quality (and therefore of total travel times from loading to unloading and the return trip). Assuming an average speed of $60 \mathrm{~km} / \mathrm{h}$ for logging trucks, the average hauling cost would be $\$ 2.12 / \mathrm{t}$-h. Hauling costs for each firm are reported in Table 1.

Conversion Factors

All logging firms interviewed were asked to provide the weight-to-volume conversion factors used for coniferous and deciduous timber for each mill. Although most firms recorded their harvest in cubic metres, some firms reported a portion of their harvest in tonnes (reporting the remainder in cubic metres), whereas others recorded their harvest entirely in tonnes. Conversion factors facilitated the conversion of the timber harvest recorded in tonnes to cubic metres to enable productivity and cost analyses across all firms. The conversion factor for coniferous timber ranged from 0.71 to $0.91 \mathrm{t} / \mathrm{m}^{3}$
(average $0.83 \mathrm{t} / \mathrm{m}^{3}$). The corresponding range for deciduous timber was 0.86 to $1.07 \mathrm{t} / \mathrm{m}^{3}$ (average $0.97 \mathrm{t} / \mathrm{m}^{3}$). Conversion factors were also necessary to convert tree sizes given in trees per tonne to the more commonly used trees per cubic metre. Conversion factors are presented in Appendix 2.

Bucking of Pulpwood Logs and Sawlogs

Respondents were asked to state the ranges of lengths into which pulpwood logs and sawlogs were bucked, if bucking was performed. Most firms that harvested sawlogs performed no bucking (i.e., they performed tree-length harvesting). Pulpwood logs of both species groups (coniferous and deciduous timber) were generally bucked to various lengths (i.e., cut-to-length harvesting), although eight firms performed tree-length harvesting for pulpwood logs. Several firms used a slasher to buck deciduous logs. Bucking characteristics by log type and species group for each logging firm are presented in Appendix 3. A bucking index was developed to measure the degree of bucking applicable to each firm for use in productivity analyses.

Logging Method

The survey included a section on the logging methods used by the firms. Eighteen firms used feller-bunchers, skidding to roadside, and delimbing at roadside (method A, roadside [AR]) as their sole logging method, whereas five others used this method in conjunction with fellerbunchers and delimbers for at-the-stump processing, and then skidded the timber to roadside (method B, roadside [BR]). Only two firms conducted significant amounts of hand felling (method C), although most firms performed some hand felling, usually for oversize trees. Only two firms skidded to landing (method A or B, landing [AL or BL]) in addition to skidding to roadside. The most notable variation in logging method occurred with the seven firms that used multipurpose harvesters or processors for cut-to-length harvesting for all or part of their logging operations (method ER). Logging methods for each firm are shown in Appendix 4, and Table 2 summarizes the many combinations of logging methods and machine types reported.

At-the-stump processing is well suited to large timber or difficult terrain where mechanized felling equipment is unable to operate; such terrain is therefore often associated with hand felling (MacDonald 1999). Two of the firms that conducted at-the-stump processing also conducted significant

Table 1. Hauling distances, weight of timber hauled, and hauling expenditures for 11 logging firms that hauled timber

Firm	No. of general areas	Total one-way distance to milla (km)	Total weight hauled (t)	Total hauling expenditure	Average hauling cost $^{\mathrm{c}}$
$(\$)$					

a Sum of the distances from each general area to the mill.
${ }^{\mathrm{b}}$ Includes payments to subcontractors.
${ }^{\text {c }}$ Based on total one-way distance.
${ }^{\mathrm{d}}$ Mean of the average hauling costs.

Table 2. Summary of logging methods by harvesting system and machine combinations

Harvesting system	Machine combinations	Method designation in the LCS	No. of firms ${ }^{\text {a }}$
Full-tree or tree-length harvesting	Feller-buncher with delimber at roadside	AR, AL	25
At-the-stump processing	Feller-buncher with delimber at the stump	BR, BL	$6^{\text {b }}$
Hand felling	Hand felling with hand delimbing (Method C) or with a delimber (Method D)	CR, CL, DR, DL	2
Cut-to-length harvesting	Harvester (also called harvesterprocessor or feller-processor), or feller-buncher in tandem with processor	ER	7
${ }^{\text {a }}$ The sum of the number of firms exceeds the number of firms in the LCS because many firms performed more than one logging method. See Appendix 4 for details on logging method by firm.			
${ }^{\mathrm{b}}$ Includes one firm that performed felling, delimbing, and topping using a harvester but did not cut to length.			
Note: LCS $=$ Logging Cost Survey, $\mathrm{AR}=$ method A at roadside, $\mathrm{AL}=$ method A at landing, $\mathrm{BR}=$ method B at roadside, $\mathrm{BL}=$ method B at landing, $\mathrm{CR}=$ method C at roadside, $\mathrm{CL}=$ method C at landing, $\mathrm{DR}=$ method D at roadside, $\mathrm{DL}=$ method D at landing, $\mathrm{ER}=$ use of multipurpose harvesters.			

hand felling and hand delimbing. At-the-stump processing is also employed for silvicultural reasons, including improvement of regeneration success, or for other considerations such as reducing the cost of managing debris that would otherwise accumulate at the roadside or on landings.

Cut-to-length harvesting can take two forms. Usually, a harvester (also called a harvesterprocessor or feller-processor) fells and processes the trees (delimbs, tops, and cuts to length); however, a cut-to-length operation might employ fellerbunchers for felling and processors working at the stump to process the felled trees. Two firms responding to the LCS used the latter form of cut-tolength harvesting. Firms that used processors to process all timber at roadside (in which case full trees were skidded to roadside) were not considered to have conducted cut-to-length harvesting.

Loading and Loading Productivity

Only six firms conducted their own loading (two of which also hired subcontractors to perform some of their loading), with a total of eight machines. Another firm hired subcontractors for all loading. For the other 22 respondents, loading was conducted by forest products firms or their subcontractors. Loading productivity averaged 95 $\mathrm{m}^{3} / \mathrm{PMH}$. Downtime for each machine was calculated as PMH divided by total operator hours; this variable averaged 0.86 . Most firms conducted loading at roadside with a boom-type loader (method BR). The number of firms that conducted their own loading operations was too low to develop a sound model based on independent variables to predict loading productivity.

Slope

Slope conditions should ideally be given as measured percent slope or degrees of incline for each cutblock, to allow an overall assessment of the slope conditions with which each logging firm had to contend. However, this level of detail was beyond the resources available. Instead, each firm was asked to estimate the number of cutblocks (or the percentage of cutblocks) that fell into three general slope categories. The actual percent slope applicable to each category depended on the interpretation of the slope categories by each firm. Sixtyone percent of the cutblocks harvested across the LCS were considered generally flat, 26% were considered moderately steep, and only 13% were considered steeper than usual. Slope conditions per firm are presented in Appendix 5. A slope index
was developed to provide a single measure of the overall slope conditions applicable to each firm; this index was used in the productivity analyses.

Tree Size

Tree size, or piece size, is a crucial variable in determining the productivity of logging machines. Tree size (in cubic metres per tree) is the variable usually used to determine productivity baselines or reference points from which to develop relationships that quantify deviations from the baseline under different, nonideal conditions (Mellgren 1990). Larger trees mean more volume processed for any particular machine function (e.g., felling, processing), which translates into higher productivity and lower cost per PMH. Logging firms were asked to specify the average piece size of their deciduous and coniferous harvest in terms of volume or weight per tree and to rate the average piece size as smaller than usual, about normal, or larger than usual. Some firms gave piece size in terms of trees per tonne, but most used trees per cubic metre; in the former situation the values had to be converted to trees per cubic metre using the conversion factors (Appendix 2). Several firms reported a range of piece sizes, in which case the midpoint of the range was used in analyses involving the effect of piece size on productivity. Average piece sizes in trees per cubic metre are summarized in Appendix 6. Piece sizes varied from 2.0 trees $/ \mathrm{m}^{3}$ to 7.5 trees $/ \mathrm{m}^{3}$ for coniferous species and from 1.7 trees $/ \mathrm{m}^{3}$ to 6.0 trees $/ \mathrm{m}^{3}$ for deciduous species (Appendix 6; Appendix 7 has the same figures in cubic metres per tree). Some overlap in the subjective rating of piece sizes occurred such as one firm's smaller than usual piece size was another firm's about-normal piece size. Average survey piece sizes were 3.57 and 2.78 trees $/ \mathrm{m}^{3}$ for coniferous and deciduous tree species, respectively. Two tree size indexes were developed to measure the overall piece size applicable to each firm in the LCS for use in productivity analyses.

Subcontractors

Fifteen firms hired a total of 39 subcontractors for logging operations, and 5 of these firms also hired 32 subcontractors to conduct all or part of their hauling operations. Payments to subcontractors totaled almost $\$ 13.2$ million. Some firms hired as many as four subcontractors for their logging operations. Subcontractors usually owned their own machines, but sometimes operated some of the logging firm's machines under a leasing arrangement.
(Cost information for these machines was recorded because they were owned by the logging firms; therefore, they were considered part of the firm's operations and were included in all cost analyses.) Most subcontractors' operations seemed well integrated with the firm's overall operations (according to comments made during interviews), and the subcontractors relied on the logging firms for services such as fuel provision and delivery and machine repairs. Knowledge about subcontractor activities (i.e., what they did, their production, and payments made to them) was essential to determine the productivity and cost of the logging firm's own operations in relation to their harvest, given that, because of time and funding limitations, characteristics of machines used by subcontractors could not be determined to the same level of detail as for machines used by the logging firms. Subcontractor production and services were an essential component of the operations of the firms that hired them, and their contribution could not be ignored in developing overall estimates of the cost of logging. Subcontractor activities are summarized in Table 3.

Harvested Volumes and Areas by Forest Type and Species Group

Information on harvested volumes and areas by forest type (predominantly softwood, predominantly mixed wood, or predominantly hardwood) and by species group was requested of each firm. Forest type in particular was thought to be a factor in logging productivity. Harvested volumes in the predominantly mixed wood forest type were separated into spruce and aspen, as these are the species most often associated with commercial harvesting of mixed wood forests in Alberta. The total harvest processed by the 29 firms was $5226871 \mathrm{~m}^{3}$ over an area of 24989 ha, equally divided between coniferous and deciduous species. Volumes per area harvested averaged $209 \mathrm{~m}^{3} /$ ha (both species groups and all forest types combined), and the mixedwood forest type had the highest volume per area, $238 \mathrm{~m}^{3} / \mathrm{ha}$. Harvested volumes and area of harvest are summarized in Table 4, and detailed harvest information is presented in Appendix 8.

Machine Costs and Other Costs Associated with Logging

Detailed information concerning the operating costs and productivity of all logging machines was requested from the firms. Operating costs included fixed costs (insurance and loan payments) and variable costs (repairs and alterations, operator wages
and benefits, and fuel and oil). Productivity was captured through total PMHs. Downtime, calculated as PMHs divided by total operator hours, was obtained for all machines as well. Every firm was able to report or estimate total productive times (in PMHs) for each machine during their logging season; however, for each cost category, only fifteen of the firms were able to provide cost information for each machine. All firms provided totals for all machines in all of the fixed and variable cost categories. Fixed and variable costs per machine for those firms that were able to provide only totals for all machines were estimated by means of several methods. The validity of these methods was tested by comparing estimated costs per machine with actual costs per machine for the firms that were able to provide per-machine costs. Fixed costs were necessarily based on each firm's fiscal year (encompassing the logging season), whereas operating costs were based on the logging season when the machinery was active. All firms provided the purchase prices (before taxes) of their machines. A total of 184 pieces of logging machinery and 55 pieces of road-building machinery were recorded in the LCS (Appendix 9).

The various machine cost factors are discussed below, and descriptive statistics are presented for each factor. The remaining cost factors obtained in the survey (camp costs, depreciation, and overhead) are also discussed.

Loan Payments

Loan payments represented the annual payments made to service outstanding debt on logging machinery. Because of limited resources, no effort was made to separate the proportions of annual loan payments attributable to principal and interest. Loan payments by the 29 logging firms totaled $\$ 11.8$ million for 167 pieces of machinery (Table 5). Twenty firms, representing 58% of all machinery, were able to provide per-machine loan payments. Seventy percent of the machines in this group that were over 4 years of age had no loan payments, i.e., the machines had been paid off. Loan payments averaged $\$ 0.22$ per dollar of purchase price. Loan payments were the second-highest machine cost factor in the LCS (operator wages and benefits represented the highest machine cost factor).

Per-machine loan payments for firms that were able to provide only total loan payments were estimated by prorating the total amount spent to service loans among all machines (for both logging

Table 3. Subcontractor activities of the 15 firms that engaged subcontractors

Logging phase	No. of subcontractors ${ }^{\text {a }}$	Production $\left(\mathrm{m}^{3}\right)$	Total payments to subcontractors (\$)	$\begin{aligned} & \text { Average cost } \\ & \quad\left(\$ / \mathrm{m}^{3}\right) \end{aligned}$
Felling	8	438410	1453999	3.32
Skidding	9	580450	1584076	2.73
Delimbing or processing	11	524855	1621583	3.09
Loading	9	386519	655379	1.70
Slashing	2	202981	568000	2.80
Hauling	32	$734496{ }^{\text {b }}$	7294127	9.93
Total	71	NA	13177164	NA
${ }^{\text {a }}$ Three subcontractors performed more than one phase; however, breakdowns of production and cost by phase were not available. Production and cost were divided among the applicable phases according to volumes processed in the firm's own operations in each phase.				
b Equivalent to 702795 t.				
Note: $\mathrm{NA}=$ not applicable .				

Table 4. Summary of volume and area harvested

Forest type and species group	Harvest volume (m^{3})	Area harvested (ha)
Predominantly softwoods		
Coniferous species	$1914745\}$	8488
Deciduous species	85135	8488
Predominantly mixed woods		
Coniferous species	$508161\}$	6180
Deciduous species	962807	6180
Predominantly hardwoods		
Coniferous species	195972 \}	10321
Deciduous species	1560051	10321
All forest types		
Coniferous species	2618878	
Deciduous species	2607993	
Both species groups	5226871	24989

Table 5. Annual loan expenditures for logging and road-building machinery

Type of machine	No. of machines ${ }^{a}$	Sum of all purchase prices (\$)	Loan expenditures (\$)				
			Total	Average ${ }^{\text {b }}$	Minimum ${ }^{\text {b }}$	Maximum ${ }^{\text {b }}$	Standard deviation ${ }^{\text {b }}$
Feller-bunchers, harvesters, and processors	43 (57)	17773642	3884420	0.22	0.02	0.54	0.09
Skidders and forwarders	49 (61)	11229812	2550907	0.23	0.02	0.70	0.13
Delimbers	48 (58)	18394146	4000077	0.22	0.02	0.54	0.08
Loaders	7 (8)	1910000	467405	0.24	0.09	0.37	0.11
All logging machines	147 (184)	49307600	10902809	0.22	0.02	0.70	0.11
Road-building machines	20 (55)	3391200	904433	0.27	0.04	0.65	0.16
All machinery	167 (239)	52698800	11807242	NA	NA	NA	NA
${ }^{\text {a }}$ The first figure represents the number of machines with nonzero loan payments. These machines form the basis for all other figures in the table. The figures in parentheses represent the total number of machines in the Logging Cost Survey.							
${ }^{\mathrm{b}}$ Figures in this column are expressed per dollar of purchase price.							
Notes: NA $=$ not applicable.							

Table 6. Annual expenditures on repairs and alterations for logging and road-building machinery

| | | | $\begin{array}{c}\text { Expenditure for } \\ \text { No. of } \\ \text { machines }^{\mathrm{a}}\end{array}$ | |
| :--- | :---: | :---: | ---: | ---: | \(\left.\begin{array}{c}repairs and alterations (\$)

Type of machine

purchase price (\$)\end{array}\right)\)
${ }^{\text {a }}$ Machines owned by firms that were able to provide per-machine costs for repairs and alterations, except in the last row. Includes machines with zero costs for repairs and alterations during the logging season.
Note: NA = not applicable.
and road-building machines) according to the proportion that each machine's purchase price represented of the total of all purchases. This method assumes that loan payments are a function of purchase price alone. The amount of any down payments, arising from the sale or trade-in of an older machine or a cash lump sum, was not requested in the survey and therefore could not be factored directly into the estimation of loan payments for specific machines. A further assumption of this prorating method was that machines over 4 years of age had no loan payments.

Actual and estimated per-machine loan payments were compared on the basis of this prorating method for the 138 machines for which per-machine loan payment expenditures were available. A paired-difference t-test and a nonparametric Wilcoxon signed-rank test showed that there was no significant difference at the 95% level of confidence between the actual and estimated per-machine loan payments (Appendix 10). The prorating method was therefore adopted for the firms that were able to provide only total figures for loan payments.

Repairs and Alterations

Expenditures for repairs and alterations totaled just over $\$ 7.2$ million for all firms (Table 6). These expenditures averaged 10.8% of the purchase price of all logging and road-building machines, 9.4% for logging machines only (based on the 106 logging machines for which per-machine costs for repairs and alterations were available), and 13.5\% for roadbuilding machines (based on 34 machines). Of the 140 logging and road-building machines for which individual data were available, 131 had nonzero costs for repairs and alterations. On the basis of repair and alteration costs incurred by firms that were able to provide per-machine costs, a number of methods were attempted to estimate permachine costs for repairs and alterations for the remaining firms. However, no method resulted in nonsignificant differences between estimated and actual per-machine costs, probably because repairs and alterations occur randomly. Therefore, the LCS's single-season snapshot of logging costs was insufficient to support conclusions about the cost of repairs and alterations based on parameters such as machine type and manufacturer. With a longer time series of data tracking the cost of repairs and alterations, it might be possible to draw such conclusions. It was noted, however, that expenditures for repairs and alterations rose substantially for machines over 2 years of age, which reflects the
existence of warranties which typically cover the first 3000 to 5000 h of operation on new machines. The average cost of repairs and alterations for all machines up to 2 years of age was \$20 521 (or 6.0\% of the purchase price); the average cost rose to \$30 193 (or 13.4% of the purchase price) for machines over 2 years of age. Repair costs for logging machines, expressed as a percentage of the purchase price, averaged 6.2% for machines up to 2 years of age (48 machines) and 12.7% for machines over 2 years of age (58 machines). The average cost of repairs and alterations for the 38 logging machines over 3 years of age, expressed as a percentage of purchase price, was 13.8%. This percentage rose to 15.4% for the 27 machines over 4 years of age.

Figures for road-building machines were an average of $\$ 5755$ (or 2.3% of the purchase price) for machines up to 2 years of age (4 machines) and $\$ 20172$ (or 16.5% of the purchase price) for machines over 2 years of age (30 machines). There was little change in this percentage for machines between 3 and 9 years of age. The percentage rose to 18.8% for the 23 machines that were more than 8 years of age.

Insurance

Insurance rates incorporate many factors, starting with the base rate, which depends on the claims history of the logging industry in general and factors in the cost of the insurance firm's overhead. The base rate is then adjusted to reflect a number of considerations pertinent to the insured firm, including the age, use, and condition of the equipment being insured, the past claims history of the firm, and the experience of the firm's owners. Expenditures for insurance totaled $\$ 921677$ for all firms (Table 7) and averaged $\$ 3.11$ per $\$ 100$ of residual value. Fourteen firms were able to provide permachine insurance costs for a total of 104 pieces of machinery. Per-machine insurance payments for the remaining firms were estimated by prorating the total amount spent on insurance for all logging and road-building machines according to the proportion that each machine's residual value represented of the total of all residual values. Residual values were determined using rates of depreciation and the age of the machine. The mathematics of depreciation result in a residual value that approaches zero as the age of a machine increases. However, in reality, residual value levels off at some market-determined level based on salvage value. The Forest Engineering Research Institute of Canada (FERIC) sets salvage value at 20% of

Table 7. Annual expenditures on insurance for logging and road-building machinery

Type of machine	No. of machines	Insurance expenditure (\$)				
		Total	Average	Minimum	Maximum	Standard deviation
Feller-bunchers, harvesters, and processors	57	312393	5481	$435{ }^{\text {a }}$	11446	3330
Skidders and forwarders	61	193887	3178	$610^{\text {a }}$	13282	2569
Delimbers	58	296776	5117	478	14117	3437
Loaders	8	23007	2876	1989	5875	1198
All logging machines	184	826063	4489	435	14116	3243
Road-building machines	55	95614	$1000^{\text {a }}$	0	14077	420-1825 ${ }^{\text {b }}$
All machinery	239	921677	NA	NA	NA	NA
${ }^{\text {a }}$ This figure represents the median expenditure. Several machines had zero insurance costs.						
${ }^{\mathrm{b}}$ Because of the skewed distribution, the interquartile range ($25-75 \%$) is presented.						
Note: $\mathrm{NA}=$ not applicable.						

the purchase price, a value based on empirical observations over time. Salvage values were not specifically discussed during the course of interviews for the LCS (although some interviewees expressed their estimates of the salvage value or worth of some of their older machines); therefore, 20% of the purchase price was used for machines of sufficient age that their calculated residual value was below 20% of the purchase price. This usually occurred for machines 10 or more years old. Thirtyeight machines were at least 10 years old, and 29 of these were road-building machines.

Most firms were able to provide the rate of depreciation used in their accounting practices. The rates of depreciation ranged from 20% to 30%; some firms adopted a 15% rate of depreciation for a machine's first year of operation, using a higher rate of depreciation in all subsequent years. Depreciation rates averaged 23.5%, and this rate was used for firms that did not provide per-machine insurance breakdowns or a rate of depreciation.

Actual and estimated per-machine insurance payments were compared using the above prorating method for the 104 machines from firms that were able to provide per-machine insurance expenditures. A paired difference t-test and a nonparametric Wilcoxon signed-rank test showed that there was no significant difference at the 95% level of confidence between the actual and estimated per-machine insurance costs (Appendix 11). This prorating method was therefore adopted for the
firms that were able to provide only total insurance payment expenditures.

Operator Wages and Benefits

Expenditures for operator wages and benefits (including Canada Pension Plan, Workers' Compensation, Unemployment Insurance [now known as Employment Insurance], medical benefits, and vacation pay) totaled $\$ 14.2$ million, the highest machine cost factor in the LCS (Table 8). For the firms that were unable to provide per-machine costs for operator wages and benefits, total expenditure for this item was prorated among the firm's individual machines according to the percentage of total PMHs represented by each machine. The validity of this approach was tested by comparing actual permachine operator wages and benefits from firms that were able to provide the data in this form with wages and benefits estimated in this manner. A paired-difference t-test and a nonparametric Wilcoxon signed-rank test showed that there was no significant difference at the 95% level of confidence between the actual and estimated permachine operator wages and benefits (Appendix 12). This prorating method was therefore adopted for the firms that were able to provide only total expenditures for operator wages and benefits. Information on whether operators were paid on a piece-rate basis or on an hourly basis was not recorded; however, comments made during the course of interviews indicated that most firms paid their operators on an hourly basis.

Table 8. Annual expenditures on operator wages and benefits for logging and road-building machinery

Type of machine	No. of machines	Total no. of PMHs	Total no. of SMHs	Total expenditure (\$)	Expenditure (\$/PMH)			
					Average	Minimum	Maximum	Standard deviation
Feller-bunchers	46	106805	127822	3099435	29.02	13.54	51.23	8.11
Harvesters and processors	11	19576	25877	601281	30.72	13.25	40.00	6.48
Skidders and forwarders	61	127141	147512	3579114	28.15	13.53	51.23	10.04
Delimbers	$57^{\text {a }}$	157324	191153	4697138	29.86	13.53	52.67	8.76
Loaders	8	13931	16870	408295	29.31	22.87	35.24	4.50
All logging machines	183	424777	509234	12385263	29.16	13.25	52.67	8.76
Road-building machines	$54^{\text {b }}$	61086	72605	1791579	29.33	13.53	51.23	6.43
All machinery	237	485863	581839	14176842	NA	NA	NA	NA
${ }^{\text {a }}$ One delimber was idle for the logging season and was not included in the analysis.								
${ }^{\text {b }}$ One crawler had negligible productive machine hours and was not included in the analysis.								
Note: $\mathrm{PMH}=$ productive machine hours, SMH = scheduled machine hours, NA = not applicable.								

Fuel and Oil

Expenditures for fuel and oil totaled $\$ 4.6$ million for the survey total of almost 486000 PMHs (Table 9). For firms that were unable to provide permachine estimates of fuel and oil costs, total expenditure for fuel and oil was prorated among individual machines according to the percentage of total PMHs represented by each machine. The validity of this approach was tested by comparing actual per-machine fuel and oil costs from firms that were able to provide the data in this form with fuel and oil costs estimated in this manner. A paired difference t-test and a nonparametric Wilcoxon signedrank test showed that there was no significant difference at the 95% level of confidence between actual and estimated per-machine fuel and oil costs (Appendix 13). This prorating method was therefore adopted for the firms that were able to provide only total expenditures for fuel and oil. However, for some of these firms, the total expenditure for fuel and oil included the cost of fuel and oil for various service and support vehicles; in these cases, it was not possible to separate the costs for logging machinery from those for service and support vehicles.

Other Costs

The survey form also requested information concerning other costs incurred by the firm, including hauling costs incurred by the firm's own hauling operations (i.e., independent of subcontractors), costs of operating a logging camp or costs incurred for the use of another firm's camp, total depreciation of logging machines over the fiscal year,
and overhead. Hauling costs have already been discussed.

Twenty-one firms operated a logging camp, with an average total cost of $\$ 67250$ for the logging season. The costs of operating a logging camp ranged from $\$ 0.06$ to $\$ 1.16 / \mathrm{m}^{3}$ (average $\$ 0.37 / \mathrm{m}^{3}$). No correlations existed between the use or cost of operating a logging camp and the total volume harvested or the number of general areas in use during the logging season; because employment data were not collected, they cannot be used to predict logging camp usage or cost. This finding suggests that the use of a logging camp depends to a great extent on the proximity of logging operations to the residences of the firm's equipment operators and onsite supervisors.

Each firm was asked to report the annual depreciation of its logging machinery during the fiscal year in which the logging season occurred. However, most firms provided an overall figure for the depreciation of all assets (including buildings and service vehicles) because the overall figure was most readily at hand. Nonetheless, because of their high purchase costs, logging and road-building machinery would account for the bulk of a logging firm's total depreciation (based on the depreciation of logging and road-building machinery determined during calculation of residual value for insurance estimation procedures). The average rate of depreciation was 23.5%.

Depreciation totaled \$10 322 482. The larger firms generally incurred higher depreciation because they owned more machinery, although this

Table 9. Annual expenditures on fuel and oil for logging and road-building machinery

Type of machine	No. of machines	Total no. of PMHs	Total expenditure (\$)	Expenditure (\$/PMH)			
				Average	Minimum	Maximum	Standard deviation
Feller-bunchers	46	106805	1063464	9.96	4.55	27.78	4.67
Harvesters and processors	11	19576	171186	8.74	4.55	16.89	3.30
Skidders and forwarders	61	127141	1055544	8.30	4.55	27.78	4.53
Delimbers	$57^{\text {a }}$	157324	1514462	9.63	4.44	27.78	5.13
Loaders	8	13931	142958	10.26	5.50	27.78	6.63
All logging machines	183	424777	3947614	9.29	4.44	27.78	4.83
Road-building machines	$54^{\text {b }}$	61086	686009	11.23	4.55	27.78	4.91
All machinery	237	485863	4633623	NA	NA	NA	NA
${ }^{\text {a }}$ One delimber was idle for the logging season and was not included in the analysis.							
${ }^{\mathrm{b}}$ One crawler had negligible productive machine hours and was not included in the analysis.							
Note: $\mathrm{PMH}=$ productive machine hours, NA = not applicable.							

relationship was influenced by the mix of ages and purchase prices of each firm's complement of machinery. Depreciation certainly has to be factored into the cost of doing business to lessen the cost of future purchases because depreciation can be used to lower taxable corporate income. Depreciation averaged $\$ 0.58 / \mathrm{m}^{3}$. This figure was calculated as the total depreciation of all firms divided by the sum of volumes processed in all logging phases and the volume felled by firms that built roads.

Overhead was determined by subtracting all costs, including depreciation, from the firm's total revenue from logging. The total revenue earned by all firms sampled was $\$ 82735$ 699. In the LCS overhead represents a catchall figure for any other costs incurred that could not be itemized. It thus includes a myriad of items, such as the costs of running an office or operating a shop for the repair and maintenance of logging and other equipment, the costs associated with building roads that are not reflected in the cost of operating road-building equipment (such as the purchase of culverts), the costs of operating a fleet of service vehicles such as trucks for transporting fuel and heavy equipment and pick-up trucks, on-site supervisory costs, and, of course, taxes. Overhead also includes any profit the firm generated. Nine firms had negative overhead. Overhead ranged from $\$ 0.16$ to $\$ 10.2 / \mathrm{m}^{3}$ (average $\$ 2.35 / \mathrm{m}^{3}$).

Summary of Logging Costs

Table 10 summarizes the average costs of operating logging machinery and operating a logging firm in general. The average cost of logging in

Alberta by the 29 firms was $\$ 14.00 / \mathrm{m}^{3}$ and the average cost of hauling was $\$ 0.0354 / \mathrm{t}-\mathrm{km}$ (Table 1).

Estimation of Machine Productivity

Whether a researcher is investigating the potential financial return of an intensive forest-management regime over a large land area or a logger is contemplating rate negotiations with a forest products firm for the coming season, advance estimates of the potential productivity of logging operations, based on the nature of the forest to be logged, are valuable. One of the objectives of the LCS was to investigate the development of models that could, with reasonable accuracy, predict the productivity of logging operations on the basis of forest and machine characteristics. The cost of logging the forest would flow from these productivity estimates, according to the cost averages outlined earlier in this report (in the case of the researcher) or from indepth knowledge of the hourly costs of operating the machinery and the overhead costs of operating the business (in the case of the logger).

In the analysis of the LCS data, regression equations were developed to predict the productivity of each phase of logging in terms of cubic metres of harvest per PMH (the dependent variable) in relation to a number of forest and machine characteristics (the independent variables). Before regression models could be developed, however, a number of forest and logging characteristics had to be quantified in a manner that permitted their incorporation into a multiple-regression analysis.

Table 10. Average cost of logging in Alberta ${ }^{\text {a }}$

Cost factor	Average logging cost (\$/m ${ }^{3}$)				Average roadbuilding	Total average cost ${ }^{e}$ (\$/m³)
	Felling ${ }^{\text {b }}$	Skidding ${ }^{\text {c }}$	Processing ${ }^{\text {d }}$	Loading	costs (\$/m3)	
Fixed machine costs						
Insurance	0.07	0.05	0.06	0.03	0.02	0.23
Loan payments	0.86	0.62	0.85	0.73	0.22	3.28
Subtotal	0.93	0.67	0.91	0.76	0.24	3.51
Variable machine costs						
Repairs and alterations	$0.48{ }^{\text {f }}$	0.368	$0.42{ }^{\text {h }}$	$0.23{ }^{\text {i }}$	0.29j	1.78
Operator wages and benefits	0.82	0.86	0.99	0.63	0.44	3.74
Fuel and oil	0.27	0.25	0.32	0.22	0.17	1.23
Subtotal	1.57	1.47	1.73	1.08	0.90	6.75
Total machine costs	2.50	2.14	2.64	1.84	1.14	10.26
Subcontractors ${ }^{\text {k }}$	3.32	2.73	3.00^{1}	1.69	$N A^{m}$	$1.12^{\text {n }}$
Camps	NA	NA	NA	NA	NA	$0.27{ }^{\circ}$
Overhead	NA	NA	NA	NA	NA	2.35p
Total	NA	NA	NA	NA	NA	14.00
${ }^{\text {a }}$ Average hauling cost for the 11 logging firms that hauled timber was $\$ 0.0354 / \mathrm{t}-\mathrm{km}$ (see Table 1).						
${ }^{\mathrm{b}}$ Feller-bunchers and harvesters. All harvester costs were attributed to felling.						
c Skidders and forwarders.						
${ }^{\text {d }}$ Delimbers and processors.						
e Sum of average cost for each logging phase plus average road-building costs.						
${ }^{f}$ Based on the volume felled by the 31 machines for which repair and alteration costs were available. Includes machines that had zero costs for repairs and alterations.						
g Based on the volume skidded and forwarded by the 35 machines for which repair and alteration costs were available. Includes machines that had zero costs for repairs and alterations.						
${ }^{h}$ Based on the volume processed by the 33 machines for which repair and alteration costs were available. Includes machines that had zero costs for repairs and alterations.						
${ }^{\text {i }}$ Based on the 7 machines for which repair and alteration costs were available.						
j Based on the 34 machines for which repair and alteration costs were available. Includes machines that had zero costs for repairs and alterations. Volume based on the total volume felled, including felling by subcontractors, by the firms that owned these 34 machines.						
${ }^{\mathrm{k}}$ All costs, except the total average cost, are based on the volumes processed by subcontractors in each logging phase.						
${ }^{1}$ Includes slashing.						
${ }^{\mathrm{m}}$ No subcontractors built roads.						
${ }^{n}$ Represents the average costs of subcontractors (per cubic metre) over the whole survey, including firms that did not employ subcontractors. Figure is based on total volume of timber felled.						
${ }^{\text {o }}$ Includes firms with zero camp costs. Based on total volume felled, including felling by subcontractors.						
p Negative overheads were treated as positive, because they represent legitimate costs that firms must meet.						
Note: NA = not applicable.						

Slope Index

Indexes are generally used to indicate changes in the status or quantity of several measurable items, that have some degree of commonality among them, with respect to a reference level or reference date. The Consumer Price Index is a wellknown example. In the LCS, the reference level for slope is a logging area with no slope or generally flat conditions. An index can assume any numerical denomination; the important characteristic is that changes in the value of the index must be consistent with the denomination if the index is to be used in statistical analyses that incorporate the variance or distribution of the variables being analyzed.

The slope index was determined by multiplying the percentage of the total number of cutblocks within each slope class by an arbitrarily assigned point score for that slope class. The generally flat slope class was assigned two points, the moderately steep slope class was assigned four points, and the steeper-than-usual slope class was assigned six points. In this type of index, the interval between consecutive pairs of classes must be consistent (in this case, the interval was two points). Inconsistent intervals falsely skew the distribution of the indexes; for example, assigning a value of seven to the steeper-than-usual slope class would skew the distribution toward steeper slopes than actually existed.

The higher the slope index, the steeper the conditions in which the firm had to operate. A firm with 50% of cutblocks rated as generally flat and 50% of cutblocks rated as moderately steep would be assigned an index of 300 . The average slope index for firms in the LCS was 285 (Fig. 1), only four firms had an overall slope index greater than 400, i.e., moderately steep (Appendix 4).

Tree Size Indexes

Two tree size indexes were developed to reflect a firm's average piece size. One index, termed the modified proportional timber size index, integrated subjective piece size ratings with numeric tree sizes, whereas the other index, the quantitative timber size index, was based on numeric tree sizes only.

The modified proportional timber size index can be determined in one or more steps. The first step is to multiply the percentage of total volume harvested in any timber size rating by its points score times the actual timber size (in trees per cubic
metre) for that timber size rating. This is repeated for all timber size ratings (usually no more than two corresponding to the coniferous and deciduous harvest), with the resultant indexes summed to come up with the overall index for that firm. The larger-than-normal rating was arbitrarily assigned two points, the about-normal rating was assigned four points, and the smaller-than-usual rating was assigned six points. The larger the index, the smaller the timber harvested, and therefore the higher the cost of harvesting. For example, a firm with 15% of its total harvest from coniferous forests rated smaller than usual with 4.5 trees $/ \mathrm{m}^{3}$, and 85% of its total harvest from deciduous forests rated about normal in size, with 2.75 trees $/ \mathrm{m}^{3}$, would have an index of $1340(15 \times 6 \times 4.5)+(85 \times 4 \times$ 2.75).

The quantitative timber size index was determined by multiplying the percentage of total volume represented by each species group by the respective timber size (in trees per cubic metre) and summing each species group's index to arrive at the overall quantitative timber size index for a firm. This index differs from the modified proportional timber size index because it omits the subjective rating of timber sizes made by the firms' owners. Again, the larger the index, the smaller the timber harvested, and therefore the higher the cost of harvesting. For example, a firm with a 15% coniferous harvest with 4.5 trees $/ \mathrm{m}^{3}$ and an 85% deciduous harvest with 2.75 trees $/ \mathrm{m}^{3}$ would have an index of $301.25(15 \times 4.5)+(85 \times 2.75)$. The maximum possible value of this index was 650 .

The modified proportional timber size index ranged from 485 to 3276 (average 1473) (Fig. 2). The quantitative timber size index ranged from 202 to 650 (average 348) (Fig. 3 and Appendix 4).

Sorting and Bucking Indexes

Sorting and bucking are significant cost factors in logging operations. Logging contractors often harvest for different forest product firms that require different species or log lengths. Timber is commonly sorted by species group. Another common requirement is sorting by log type (pulpwood logs and sawlogs) for various kinds of forest products. Deciduous logs are largely used in pulp mills and oriented strand-board plants. A species group may also be sorted by species (balsam fir, for example, is sometimes separated from other coniferous species); however, species-level information was not collected in the LCS. Logging operations

Figure 1. Distribution of slope index among all firms (minimum possible value $=200$, maximum possible value $=600$).

Figure 2. Distribution of modified proportional timber size index among all firms.

Figure 3. Distribution of quantitative timber size index among all firms.
conducted in mixed-wood forests were not considered to involve any sorting if a coniferous harvest was performed in one area and a deciduous harvest in another area.

Although some firms claimed an additional sort for oversize timber, comments made during the interviews indicated that many firms contended with oversize timber in their operations but did not view this as a distinct sorting procedure. Therefore, for consistency, sorts based on oversize timber were not used in the sort index. The types of all sorts were summed to determine the total number of sorts performed (Table 11). Appendix 4 presents the sorting indexes for the LCS.

The bucking index was assigned a value of 0 if tree-length harvesting was performed and a value of 1 if cut-to-length harvesting was performed. Shortwood harvesting was also assigned a value of 1 because it can be considered a form of cut-to-length harvesting. Although some firms supplied the distribution of harvest volume among the various lengths generated in their cut-to-length operations, other firms did not. Therefore, it was not possible to assign a value to the bucking index to reflect this distribution. The bucking index simply indicates whether bucking was performed. However, this index also reflects whether bucking was done for one or both species groups for pulpwood logs. The index was incremented to a maximum value of 3 if
sawlogs and both species groups for pulpwood logs were bucked (Table 11).

Slashing was not assumed to be equivalent to bucking. Slashing is a separate function from felling and cutting-to-length (using delimbers or processors) for which the bucking index was developed. Appendix 4 displays the values of the bucking index for all firms.

Species Diversification Index

Sorting becomes an increasingly significant cost factor as the proportion of total volume processed that requires sorting increases. The species diversification index (SDI) was therefore developed to complement and enhance the sorting index. The SDI was simply the percentage of the firm's total harvest volume (in cubic metres) represented by the more common species group. The smaller the SDI, the greater the effort devoted to sorting. Values of the SDI ranged from 50 to 100. Species diversification index values are presented in Appendix 4.

It was not possible to create another sorting index to indicate the amount of sorting required by species group for each log type, because the firms were not asked to provide this level of detail. However, in Alberta generally, pulpwood logs can be either deciduous or coniferous timber, whereas sawlogs are almost entirely coniferous timber.

Table 11. Summary of sorting and bucking conditions used to determine sorting and bucking indexes

Conditions
Index value ${ }^{\text {a }}$

Sorting
$\left.\begin{array}{l}\begin{array}{l}\text { No sorting } \\ \text { Sorting by log type } \\ \text { Sorting by species group for pulpwood logs }\end{array}\end{array}\right\} \quad 0-2$

Bucking
Tree-length harvesting for both log types and species groups Cut-to-length harvesting for coniferous pulpwood logs Cut-to-length harvesting for deciduous pulpwood logs Cut-to-length harvesting for sawlogs
${ }^{\mathrm{a}}$ Index is determined on the basis of the number of conditions met (e.g., if one condition met, index $=0$).

Seasonal Index

Sixteen firms conducted a portion of their operations in the summer months; however, the proportion of their timber volume processed during summer was not requested. The seasonal index therefore merely indicates whether logging occurred in both summer and winter (index =2) or in winter only (index = 1) (Appendix 4).

Logging Methods Index

This index was used to indicate whether a portion of a firm's operations involved cut-to-length harvesting or at-the-stump processing. Ten of the firms surveyed performed at-the-stump processing (method BR) or cut-to-length harvesting (method $E R$) and two of these firms performed both at-thestump processing and cut-to-length harvesting (Appendix 4). However, the proportion of total volume processed that was cut to length or processed at the stump was not requested. This index was coded 1 if tree-length harvesting only was performed and 2 if some cut-to-length harvesting or at-the-stump processing was performed (Appendix 4).

Felling Productivity

Information on 54 pieces of felling machinery from the 27 firms that conducted felling operations were sampled in the LCS. Forty-six of these machines were feller-bunchers, and the remainder were multifunction harvesters. Unlike fellerbunchers, harvesters perform felling and cut-tolength or processing functions at the stump. Processing consists of delimbing, topping, and
bucking or cutting to length. Cut to length logs are cut into shorter, more precise lengths than when they are bucked, a similar term. Bucking is usually performed by a delimber or, on occasion, with a chainsaw. Bucking can also be performed by cut-tolength machinery. Processors usually perform cut-to-length functions at the stump or at roadside. Processed logs are picked up by a forwarder to be carried to roadside, although a number of firms used skidders (including clam-bunk skidders) for this purpose. Therefore, before a model could be developed to predict felling productivity according to forest and machine characteristics, the total productive time of harvesters had to be weighted by a factor estimating the number of PMHs actually devoted to felling. Felling includes the selection or picking of the next tree following the one just felled or processed, and may involve moving the whole machine, positioning the cutting head on the tree and cutting it, and finally piling the trees in a bunch on the ground (feller-bunchers) or re-positioning the tree for take-up by the processing unit (for harvesters).

Weighting factors were not collected in the LCS; consequently, general weighting factors were derived from Sauder (1992), which reported on conventional logging equipment and Scandinavian cut-to-length harvesters and forwarders as they harvested two-story mixed-wood stands in central Alberta. The study was conducted at three sites, and at two of these sites, harvesters were used. Weighting factors used in the present report are based on the average percentages of total productive time devoted to felling and processing (Tables

11 and 17 in Sauder [1992]). The resulting average weighting factors were 38.85% for felling and 47.05% for processing. The factors included move-to-cut and move-to-process machine functions. The remaining 14.1% was devoted to general brushing functions and delays of less than 15 min because of operational and mechanical reasons. The total productive time (in PMHs) for each harvester in the LCS was first multiplied by 38.85% to estimate the number of PMHs devoted to felling before the overall felling productivity was determined for the firm.

The variation in felling rates among firms was considerable, ranging from 22.5 to $56.7 \mathrm{~m}^{3} / \mathrm{PMH}$ (average $39.1 \mathrm{~m}^{3} / \mathrm{PMH}$). Downtime for all felling machines ranged from 0.55 to 0.95 (average 0.83). Downtime for feller-bunchers only ranged from 0.63 to 0.95 (average 0.84). Felling rates were compared against data for forest and site variables, as well as against data for logging operation variables such as average age of the felling machines and sorting index, to determine how much of the variation in felling rates could be explained by the independent variables. Ordinary least-squares multiple regression was used for these comparisons, with the aim of developing a model to predict felling productivity.

The independent variables that were significant in explaining the variation in felling rates (at the 0.05% level of significance) are presented below. The quantitative timber size index explained more of the variation than the modified proportional timber size index, which suggests that firms' subjective ratings of timber size are less important to logging productivity than actual tree sizes. This result may have been due in part to some overlap in numerical tree sizes between subjective size ratings.

Forest types in the regression analyses were initially coded as 1 for the predominantly coniferous forest type, 2 for the predominantly mixed-wood forest type, and 3 for the predominantly hardwood forest type. Coding for firms that conducted operations in more than one forest type were assigned on the basis of the forest type in which the majority of the firm's total volume was harvested. Subsequently, firms that conducted the bulk of their operations in the predominantly mixed-wood forest type were assigned to either the softwood or hardwood forest type, according to which species group represented the larger portion of the total harvest because this resulted in a better model (higher R^{2}).

In this situation, the hardwood forest type was coded as 2 .

The goodness-of-fit statistic (R^{2}) was high, at 0.88. Goodness-of-fit statistics were even better when separate regression analyses were performed for each forest type; however, the numbers and types of significant independent variables were somewhat different in each model, because of the lower number of observations (lower number of firms) for each forest type.

The resulting regression-based model for felling productivity is presented below, and the complete analysis, including confidence limits for predicted productivities, is presented in Appendix 14.

For the regression model predicting felling productivity (in cubic metres per PMH), $n=26, R^{2}=$ 0.88 , and level of significance $=0.05 \%$. Initial regression models developed with data for the 27 firms that conducted felling revealed that one firm had a productivity that was highly improbable in relation to the values of the independent variables, as evidenced by high values of Student residuals and Cook's D. This outlier firm was dropped from the final analysis shown in Appendix 14.

```
Felling rate = !102.663 + (0.199 × QUANT) ! (0.246 ×
    Q2)!(7.925 \times VQ) ! (0.0549 × SLOPE2) ! (6.748 ×
    AVAGE) + (0.483 × AV2) + (13.428 × FTYPE) +
    (2.559 \times SDI) ! (14.082 × SDI2) + (4.839 ×
    SUMWIN) + (2.529 × SOBUCK) ! (6.447 ×
    STUCK) + (7.531 × STUMP)
```

where
QUANT = quantitative timber size index;
$\mathrm{Q} 2=$ quantitative timber size index squared divided by 1000;
$\mathrm{VQ}=$ quantitative timber size index divided by average volume (in cubic metres per hectare);
SLOPE2 $=$ square of slope index divided by 1000;
AVAGE = average age (in years) of all felling machines owned by the firm;
AV2 $=$ average age (in years) of all felling machines owned by the firm squared;
FTYPE = forest type;
SDI = species diversification index;
SDI2 $=$ species diversification index squared divided by 1000;
SUMWIN = seasonal index;
SOBUCK = sort index + bucking index;
STUCK = logging methods index + bucking index; and

STUMP $=$ logging methods index.

In addition to a high value of R^{2} and the inclusion of independent variables, at the 0.05% level of significance, that were expected to influence felling rates, the soundness of the model is reinforced by the sign of most of the variables. The coefficient of the VQ variable is negative, for example, which is consistent with the expectation that, for a derived variable involving piece size, smaller piece sizes (i.e., higher values of the index for a given volume per hectare) are associated with lower felling productivity. The QUANT, Q2, and VQ variables were collectively more powerful predictors of felling productivity than was the quantitative timber size index alone (overall R^{2} dropped to 0.79 when the quantitative timber size index was used alone), which highlights the interrelatedness of volume per area and tree size. Similarly, the net coefficient of the AVAGE and AV2 variables is negative, which indicates that productivity declines as machines age. The average age of a firm's felling machines ranged from 1.0 year to 11.0 years (overall mean 3.35 years). The influence of at-the-stump processing or cut-to-length harvesting on felling productivity was best captured by the logging methods index (STUMP) in combination with the derived SOBUCK and STUCK variables. Ten firms employed at-the-stump processing and/or cut-to-length harvesting for all or part of their operations.

Data for many sources of variation could not be collected, which limits the accuracy and predictive power of this model. The missing factors include tree size ranges (the midpoint of the range was used in all analyses), actual productive time for each machine (these data were often approximate or estimated), harvester weighting factors (which varied from one firm to the next), operator experience, ground roughness or stoniness, and ecological concerns such as the degree of understory protection practiced during felling and the degree of partial harvesting.

Skidding Productivity

Data for the 23 firms that performed skidding operations represented information for 56 skidders and 5 forwarders. Because forwarders are singlepurpose machines that work in conjunction with feller-bunchers or harvesters, no weighting factors were applied to them. Richardson and Makkonen (1994) noted that forwarders are generally used for longer extraction distances than skidders, and that forwarder productivity is strongly affected by the
duration of loading and unloading. Productivity for skidders and forwarders ranged from 15.0 to $65.5 \mathrm{~m}^{3} / \mathrm{PMH}$ (average $34.0 \mathrm{~m}^{3} / \mathrm{PMH}$). The average age of a firm's skidders and forwarders ranged from 1.0 to 12.5 years (overall mean 3.60 years). The distribution of age was highly skewed, with 16 of 20 firms used in the analysis possessing an average machine age less than the survey average. Downtime for skidders ranged from 0.70 to 0.98 (average 0.87), whereas downtime for forwarders ranged from 0.55 to 0.95 (average 0.80).

Skidding rates were compared against data for forest and site variables, as well as against data for logging operation variables such as average age of the skidders and sorting index, to determine how much of the variation in skidding rates could be explained by the independent variables. Ordinary least-squares multiple regression was used for these comparisons, with the aim of developing a model to predict skidding productivity.

The independent variables that were significant in explaining the variation in skidding rates (at the 0.05% level of significance) are presented below. A derived variable, VQ, determined by dividing the quantitative timber size index by volume (in cubic metres per hectare), explained more of the variation in skidding productivity than either of these variables alone. The quantitative timber size index was also significant in explaining variation in skidding productivity. Another derived variable, AV2 (square of average machine age), was also significant. Although it was not possible to determine total or average per-firm skidding distances or average skidder speeds, average cutblock size was anticipated to be a proxy for skidding distance, on the assumption that larger average cutblock sizes would be associated with longer skidding distances. Average cutblock size (AVCUT) was significant in explaining variation in skidding productivity. However, the positive value of the coefficient of the AVCUT variable suggests that larger cutblocks result in higher productivity. This may be because larger cutblocks result in more repeated use of skid trails that equate to higher skidder or forwarder speeds that more than offset longer skidding distances. The total volume harvested by each firm (VOLUME) and the total number of cutblocks that underwent cutting during the logging season (TOTB) were also significant in explaining variation in skidding productivity. There was a trend towards larger average cutblock sizes as the volume harvested increased among the firms in the LCS. The negative coefficient of the TOTB variable may
indicate that roadside conditions in some cutblocks were unsuitable for logging operations, which would necessitate the transport of logs to other cutblocks. These three variables (average cutblock size, total number of cutblocks, and total volume harvested) served as a better proxy for skidding speeds and distances than average cutblock size alone. Slope was also significant in explaining skidder productivity, which suggests that overall skidder speed and productivity are sensitive to slope.

The goodness-of-fit statistic $\left(R^{2}\right)$ was moderately high, at 0.79 . The resulting regression-based model for skidding productivity is presented below, and the complete analysis, including confidence limits for predicted productivities, is presented in Appendix 15.

For the regression model predicting skidding productivity (in cubic metres per PMH), $n=20, R^{2}=$ 0.79 , and level of significance $=0.05 \%$. Initial regression models developed with data for the 23 firms that conducted skidding revealed that 3 firms had productivities that were highly improbable in relation to the values of the independent variables, as evidenced by high values of Student residuals and Cook's D. These outlier firms were dropped from the final analysis shown in Appendix 15.

Skidding rate $=$! $13.243+(0.151 \times$ QUANT $)!(0.0516$
\times SLOPE $)+(6.749 \times$ AVAGE $)+(0.41 \times$ SDI $)+$
$(0.277 \times$ AVCUT $)!(0.33 \times$ TOTB $)!(15.842 \times$
STUMP)! (0.497 \times AV2 $)!(18.821 \times$ VQ $)+$ (0.000154 \times VOLUME)
where
QUANT = quantitative timber size index;
SLOPE = slope index;
AVAGE = average age of machines in years;
SDI = species diversification index;
AVCUT = average cutblock size in hectares;
TOTB = total number of cutblocks;
STUMP = logging methods index;
AV2 = square of average age of all skidding machines owned by the firm;
$\mathrm{VQ}=$ quantitative timber size index divided by average volume (in cubic metres per hectare); and
VOLUME $=$ total volume harvested in cubic metres.

Data for many sources of variation could not be collected, which limits the accuracy and predictive power of this model. The missing factors include
tree size ranges (the midpoint of the range was used in all analyses), actual productive time for each machine (these data were often approximate or estimated), operator experience, ground roughness or stoniness, whether skid trails were used repeatedly to increase average skidder speeds and minimize the area of soil compaction and rutting (to address silvicultural concerns), and, in particular, average skidding distance.

Processing Productivity

Information was obtained for 68 pieces of processing machinery owned by 28 firms. Fifty-seven of these machines were dedicated delimbers, and the remainder were multifunction harvesters or processors. Therefore, before a model could be developed to predict processing productivity according to forest and machine characteristics, the total productive time of harvesters had to be weighted by a factor estimating the number of PMHs actually devoted to processing. (Processing at this stage consists of delimbing, topping, cutting to length, and depositing the processed \log in bunches at the stump or onto a log deck at roadside. Dedicated delimbers perform the same functions except for cutting to length. Delimbers may also perform bucking.) The weighting factor used was 47.05% (see earlier discussion on weighting factors in the section on felling productivity). Actual weighting factors probably vary widely, depending to a great degree on the number of different lengths called for in a cut-to-length operation. The total productive time (in PMHs) for each harvester in the LCS was first multiplied by 47.05% to estimate the number of PMHs devoted to processing before the overall processing productivity was determined for the firm.

Rates of productivity ranged from 14.1 to 49.3 $\mathrm{m}^{3} / \mathrm{PMH}$ (average $27.6 \mathrm{~m}^{3} / \mathrm{PMH}$). Downtime ranged from 0.55 to 0.95 (average 0.82). Downtime for delimbers only ranged from 0.70 to 0.98 (average 0.88). The average age of processing machines ranged from 1.5 to 9.0 years (mean 3.70 years). Processing rates were compared against data for forest and site variables, as well as against data for logging operation variables such as average age of processing machines and sorting index, to determine how much of the variation in processing rates could be explained by the independent variables.

Various forest and machine characteristics were regressed against processing productivity to determine which factors were significant in explaining
variation in productivity. The strength of the model-the degree to which the significant independent variables explain the variation in rates of productivity-was quite high $\left(R^{2}=0.82\right)$. The resulting regression-based model for processing productivity is presented below, and the complete analysis, including confidence limits for predicted productivities, is presented in Appendix 16.

For the regression equation predicting processing productivity (in cubic metres per PMH), $n=27$, $R^{2}=0.82$, and level of significance $=0.05 \%$. Initial regression models developed with data for the 28 firms that conducted processing revealed that 1 firm had a productivity that was highly improbable in relation to the values of the independent variables, as evidenced by high values of the Student residual and Cook's D. This outlier firm was dropped from the final analysis shown in Appendix 16.

Processing rate $=!156.05+(0.173 \times$ QUANT $)+$ $(0.527 \times$ SLOPE $)!(4.732 \times$ AVAGE $)!(2.027 \times$
SORT) ! (0.05 \times VOLHA $)+(3.027 \times$ SDI $)!(4.626$
\times SUMWIN $)!(12.105 \times$ STUMP $)+(0.365 \times$
AV2) ! (0.0008 \times SLOPE2) ! (7.837 \times VQ $)!(0.0002$
\times Q2 $)+(0.261 \times$ SB2 $)!(0.017 \times$ SDI2 $)$
where
QUANT = quantitative timber size index;
SLOPE = slope index;
AVAGE = average age (in years) of all processing machines owned by the firm;
SORT = sorting index;
VOLHA = average volume (in cubic metres per hectare);
SDI = species diversification index;
SUMWIN = seasonal index;
STUMP = logging methods index;
AV2 = square of average age of all processing machines owned by the firm;
SLOPE2 = square of slope index;
$\mathrm{VQ}=$ quantitative timber size index divided by average volume (in cubic metres per hectare);
Q 2 = square of quantitative timber size index;
SB2 $=$ square of sorting index + bucking index; and
SDI2 $=$ square of species diversification index.
The derived variable STUCK, the sum of the logging methods index and the bucking index, was not significant in explaining variation in the model. Its inclusion in the felling model suggests that the weighting factor attributed to the felling portion of a harvester's work cycle may have included a
higher component attributed to processing. The logging methods index, STUMP, was significant, suggesting cut-to-length harvesting and at-thestump processing have lower productivity than tree-length harvesting. The strength of the model was higher $\left(R^{2}=0.87\right)$ when the significant factors listed above were regressed against the productivity of delimbers only. Twenty firms used delimbers only for their delimbing and bucking operations (total 44 machines), including firms that conducted at-the-stump processing as well as tree-length harvesting. However, the logging methods index was not significant in that model.

The processing model was another model in which the derived variable Q2, the square of the quantitative timber size index, explained a significant proportion of the variation in processing productivity. This reflects the sensitivity of processing machinery to tree sizes (Richardson and Makkonen 1994; Gingras 1994). Harvested volume per area (VOLHA) was significant in this analysis, although it was not significant in the felling model. Clearly, tree size and harvested volume per area are related, as evidenced by the inclusion of the derived VQ variable.

The model for processing productivity has the highest total number of variables and the highest number of independent variables for any of the logging-phase models. Other factors not examined in the LCS, including the distribution of a harvester's work cycle among various functions, clearly have major roles in determining processing productivity. In particular, the number of log lengths and the associated distribution of volume per length class, as well as branchiness, live crown ratio, and the degree of defects and rot in the bole, may be major factors in determining productivity, in conjunction with the higher complexity of delimbers and harvesters or processors relative to other types of logging machines, which places even greater emphasis on the skill of the operator.

Road-Building Productivity

The construction of logging roads to provide access for logging trucks and equipment is an essential complement to logging. Twenty of the firms constructed access roads to connect cutblocks with one another or to connect cutblocks to the nearest haul road. Some firms also built roads for other logging firms or as lease work; in this case, the firms were asked to estimate the degree to which road-building was associated with their own log-
ging operations. Information was obtained for 55 pieces of road-building equipment, including bulldozers, crawlers, excavators, graders, and backhoes. Road-building equipment tended to be older than logging machinery (average age 12.0 and 3.5 years, respectively). Road-building costs varied widely, depending not only on soil conditions, season, the nature of the terrain, and the class of road being built (the five classes of logging roads in Alberta are based on degree of permanence, season of use, and expected term of life), but also on the number and type of bridges and culverts that must be put in place. The number of firms that were able to provide data on length of roads built was insufficient to develop sound estimates of roadbuilding costs on a per-kilometre basis. However, a number of variables related to the logging operation, such as the total area harvested and average cutblock size, were anticipated to be reasonable proxies for length of roads built, based on an assumed correlation between average cutblock size, for example, and the number of PMHs required to build the roads. Slope, quantified by the slope index, was thought to be a rough indication of the slope conditions under which road-building machinery would be operated, given that the slope of roads would be similar to the slope of the cutblocks to be accessed. The resulting regression-based model for road-building productivity is presented below, and the complete analysis is presented in Appendix 17.

For the regression model predicting roadbuilding productivity (in PMH per hectare), $n=20$, $R^{2}=0.69$, and level of significance $=0.05 \%$.

Number of PMHs per hectare $=$! $17618.389+$ $(140.419 \times$ SLOPE $)!(2335.342 \times$ FTYPE $)+(1.5 \times$ HA) ! $(1455.4 \times$ SORT $)+(1115.081 \times$ SUMWIN $)!$ ($0.205 \times$ SLOPE2)
where

> SLOPE = slope index;
> FTYPE = forest type;
> HA = total area harvested (in hectares);
> SORT = sorting index;
> SUMWIN = seasonal index; and
> SLOPE2 = square of slope index.

The model was reasonably strong ($R^{2}=0.69$) and verified that cutblock and forest characteristics are reasonable predictors of the productive machine time required for the construction of roads associated with logging. In contrast to the models for logging phases, the average age of road-building machinery was not a factor. As expected, average cutblock size was not significant in explaining variation in the model; however, the significance of total area harvested verifies that longer roads are required as the area harvested increases. The inclusion of the sorting index in the model was unexpected. This suggests that more roads are required as sorting requirements increase, probably because of the need for more space, in the form of wider roads or more clearings adjacent to roads, for logging machinery to maneuver.

DISCUSSION

and another are most valid when all systems operate under essentially similar conditions. For the seven firms that conducted cut-to-length harvesting the average quantitative timber size index was 411, whereas the overall average was 348 (Fig. 3). Any cost comparisons would be influenced by the negative effect on productivity resulting from the smaller timber handled by firms employing cut-tolength systems rather than by any inherent cost differences between harvesting systems. Costs may also fluctuate because of market conditions and a firm's financial situation at a given time.

An approach to isolate costs may be to use the models developed for the various phases of logging, which predict productivity (in terms of cubic

Felling rate in m^{3} per $\mathrm{PMH}=!102.663+(0.199 \times$ QUANT $)!(0.246 \times$ Q2 $)!(7.925 \times \mathrm{VQ})!(0.0549 \times$ SLOPE2) ! (6.748 \times AVAGE $)+(0.483 \times$ AV2 $)+(13.428 \times$ FTYPE $)+(2.559 \times$ SDI $)!(14.082 \times$ SDI2 $)+(4.839 \times$ SUMWIN $)+(2.529 \times$ SOBUCK $)!(6.447 \times$ STUCK $)+(7.531 \times$ STUMP $)[n=26$, $\left.R^{2}=0.88\right]$

Skidding rate in m^{3} per $\mathrm{PMH}=-13.243+(0.151 \times$ QUANT $)!(0.516 \times$ SLOPE $)+(6.749 \times$ AVAGE $)+(0.41$ \times SDI $)+(0.277 \times$ AVCUT $)-(0.33 \times$ TOTB $)-(15.842 \times$ STUMP $)!(0.497 \times$ AV2 $)!(18.821 \times$ VQ $)+$ (0.000154 \times VOLUME) $\left[n=20, R^{2}=0.79\right.$]

Processing rate in m^{3} per $\mathrm{PMH}=!156.05+(0.173 \times$ QUANT $)+(0.527 \times$ SLOPE $)!(4.732 \times$ AVAGE $)!$ $(2.027 \times$ SORT $)!(0.05 \times$ VOLHA $)+(3.027 \times$ SDI $)!(4.626 \times$ SUMWIN $)!(12.105 \times$ STUMP $)+(0.365 \times$ AV2 $)!(0.0008 \times$ SLOPE2 $)!(7.837 \times$ VQ $)!(0.0002 \times$ Q2 $)+(0.261 \times$ SB2 $)!(0.017 \times$ SDI2 $) \quad\left[n=27, R^{2}=\right.$ 0.82]

Number of PMHs per ha for road-building $=!17618.389+(140.419 \times$ SLOPE $)!(2335.342 \times$ FTYPE $)+$ $(1.5 \times \mathrm{HA})!1455.4 \times$ SORT $)+(1115.081 \times$ SUMWIN $)!(0.205 \times$ SLOPE2 $)\left[n=20, R^{2}=0.69\right]$

Figure 4. Summary of models predicting logging and road-building productivity. Variables are defined in Table 12.
metres per PMH) on the basis of forest and logging characteristics, as well as machine characteristics. Actual PMHs were available for all machines in the survey and were not affected by variation in the fixed costs of operating logging equipment. The models developed for the logging phases and for building roads are summarized in Figure 4, with all but the road-building model featuring strong goodness-of-fit statistics. A summary of the independent variables that were significant in explaining variation in productivity in each model is presented in Table 12. The road-building model, with an R^{2} of 0.69 , can be characterized as only moderately strong. The productivities predicted by the models, once the various characteristics of the forest to be harvested and the intended logging operation have been determined, represent the mean of a confidence interval of upper and lower estimates, within which there is a 95% chance that the actual productivity will fall. Models with higher R^{2} values will have narrower confidence intervals, whereas those with lower R^{2} values will have wider confidence intervals, given the same level of significance.

Roughly half of the firms in the LCS were unable to provide fixed and variable costs for their logging equipment on a per-machine basis. These quantities, namely the fixed costs of insurance and loan payments and the variable costs of operator wages and benefits, and fuel and oil, were esti-
mated from totals of these quantities by means of various prorating methods, which were tested for validity with data from the firms that were able to provide per-machine cost information. However, total costs for repairs and alterations could not be prorated among individual machines, presumably because of the random nature of repairs and alterations. Estimation or prediction of costs of repairs and alterations would require a longer time frame than one season.

Once the estimated productive machine time required to harvest a given area of forest has been determined from the models, the cost of logging the area can be predicted on the basis of the logger's knowledge of the costs of operating his or her machinery. Using the LCS for strategic planning purposes implies using average costs of operating logging machinery or selecting costs within the known cost range on the basis of justifiable reasons pertinent to the planning exercise. Forest managers or researchers using the LCS may also wish to use a subset of the various types of costs in their endeavors. Table 10 summarizes the average costs of logging in Alberta as determined in the LCS. Past studies of logging machinery in Canada have used a fixed set of assumptions concerning the cost of operating logging machinery as a means of comparing different logging machinery and comparing such machinery between operating sites. The

Table 12. Summary of independent variables found to be significant in models that predict logging and road-building productivity

Variable name	Logging phase			Road-building
	Felling	Skidding	Processing	
AVAGE	T	T	T	
AVCUT		T		
FTYPE	T			T
HA				T
QUANT	T	T	T	
SDI	T	T	T	
SLOPE		T	T	T
SORT			T	T
STUMP	T	T	T	
SUMWIN	T		T	T
TOTB		T		
VOLHA			T	
VOLUME		T		
AV2 ${ }^{\text {a }}$	T	T	T	
Q2	T		T	
SB2			T	
SDI2	T		T	
SLOPE2	T		T	T
SOBUCK	T			
STUCK	T			
VQ	T	T	T	
${ }^{\text {a }}$ Variables in italics denote derived variables.				
Variable definitions:				
AVAGE = Average age in years of logging machines				
AVCUT = Average cutblock size in hectares				
FTYPE = Forest type (softwood or hardwood)				
HA = Total area harvested				
QUANT = Quantitative timber size index				
SDI $=$ Species diversification index				
SLOPE $=$ Slope index				
SORT = Sorting index				
STUMP = Logging methods index				
SUMWIN = Seasonal index				
TOTB = Total number of cutblocks accessed during the logging season				
VOLHA = Average volume in cubic metres per hectare				
VOLUME = Total volume harvested in cubic metres				
$A V 2=$ Average age in years of logging machines squared				
Q2 = Quantitative timber size index squared				
$S B 2=$ Square of sorting index + bucking index				
SDI2 $=$ Species diversification index squared				
SLOPE2 $=$ Slope index squared				
SOBUCK $=$ Sorting index + bucking index				
STUCK = Logging methods index + bucking index				
$V Q=$ Quantitative timber size index divided by average volume per hectare				

Forest Engineering Research Institute of Canada (Mellgren 1990), for example, assumes that salvage value is 20% of the purchase price of machinery (an assumption also used in this report to calculate minimum residual value of machinery for permachine determinations of insurance cost) and that insurance and licensing costs are 5\% per year of the purchase price.

No model can predict logging productivity exactly, because it is not possible to account for all sources of variability that influence productivity. The LCS was hindered, in the number and level of detail of forest and site characteristics that could be examined and the number of firms that could be interviewed, by the limitations in resources that the CFS could devote to the survey and, to some extent, by the time and effort that logging company owners could reasonably be expected to volunteer, given the demands of running their businesses in a highly competitive industry. Forest and site characteristics that have been included in trials of logging machinery in Canada that were not covered in the LCS include ground roughness, the ratio of unmerchantable to merchantable stems, and the density of underbrush. In addition, the forest and site characteristics used in the LCS are general estimates or averages of these quantities, which introduces a degree of imprecision. The quantitative timber size index, for example, was based on the average tree size of one

The goal of the LCS was to determine the range and average costs of logging in Alberta to serve as a reference against which logging companies can gauge their competitiveness within their industry and, secondarily, to develop models to predict logging productivity according to forest and site conditions in Alberta. It is anticipated that these models will provide valuable information for input into financial analyses of forest management practices for eventual integration into broader strategic land use-planning essential to finding the right balance between the economic prosperity associated
or two species groups. A measure that reflects the range of tree sizes, in addition to the average, might be a better factor for modeling productivity.

One of the most significant factors in logging productivity is difficult to quantify or measure: the skill and motivation of the equipment operators and logging crews. The importance of skilled operators to the success and profitability of a firm, particularly in light of increasingly stringent demands arising from environmental concerns and the adoption of cut-to-length processing methods, was a common theme voiced by many of the owners interviewed. One study found that operator experience can account for a 35% difference in total cut-tolength harvesting costs (Favreau and Gingras 1998). Logging company owners often mentioned the increasing time and effort required for supervision of field operations to ensure that they meet stringent demands by forest products companies or the provincial government to minimize damage to advanced regeneration or to stand understories and to retain biodiversity. Another factor that could not be assessed in the LCS is the degree to which machine productivity was affected by organizational delays. The machines in a logging system must be chosen to complement one another's capacity and productivity, because overall productivity is usually determined by the capacity of one phase (MacDonald 1990).

CONCLUSION

with the manufacture of forest products and the demand for nontimber benefits.

In spite of the LCS's limitations, the general strength of the models, as reflected by the goodness-of-fit measures, suggests that they are reasonable predictors of average logging productivity under forest and site conditions in Alberta. Cost predictions can be made by loggers, researchers, and forest managers alike, given the costs of operating logging machinery, and running a logging business in general, that this survey has determined.

ACKNOWLEDGM ENTS

nonmember logging companies, for their cooperation and support in conducting this survey. Special mention and thanks must be extended to Les Kerik of Kerik Brothers Enterprises Ltd., who generously
contributed his time and effort toward the design and completion of the survey form that was subsequently used for all interviews. The authors also express their gratitude to the reviewers of this manuscript: Earl Marsh, TREES Consulting (for-
merly with an ALA logging company); Bonnie McFarlane (review chair), Canadian Forest Service; Derek Sidders, Canadian Forest Service; and Sen Wang, Canadian Forest Service.

LITERATURE CITED

Natural Resources Canada. 1998. The state of Canada's forests 1997-1998: the people's forests. Nat. Resour. Can., Can. For. Serv., Ottawa, ON.

Richardson, R.; Makkonen, I. 1994. The performance of cut-tolength systems in eastern Canada. For. Eng. Res. Inst. Can., Pointe-Claire, QC. Tech. Rep. TR-109.

Sauder, E.A. 1992. Timber harvesting techniques that protect conifer understory in mixedwood stands: case studies. For. Can., Edmonton, AB and For. Lands Wildl., Edmonton, AB. Canada-Alberta Partnership Agreement No. 101.

Statistics Canada. 1998a. Exports by commodities/Exportations par marchandises. Stats. Can., Ottawa, ON. CS65-202.

Statistics Canada. 1998b. Imports, merchandise trade/Importations, commerce de marchandises. Stats. Can., Ottawa, ON. CS65-203.

APPENDIX 1 Survey form used in the Logging Cost Survey

1. Please define your past logging season (for example October 1996 to April 1997).
2. What was the total number of cutblocks you harvested per mill in the past logging season?
\qquad
3. How many general areas were the cutblocks you harvested in the past logging season grouped into?

Alberta Logging Association \&
 Canadian Forest Service

Logging Cost Survey

ALEERTA
LOGGING ASSODATION

CONFIDENTIAL

4. What was the average distance to the mill for each of the above general areas of cutblocks you harvested over the past logging season?
\qquad km \qquad km \qquad km \qquad km
5. Please fill in the weight to volume conversion factor for coniferous and deciduous trees for each mill if measures of weight were used at the scale.

> Coniferous

Deciduous
6. If logs were bucked, what were the ranges of lengths they were bucked into (for example, $15-40 \mathrm{ft}$. for pulpwood logs)?

Pulpwood logs \qquad $\mathrm{m}(\mathrm{T})$ \qquad or ft. (T) \qquad Sawlogs \qquad $\mathrm{m}(\mathrm{T})$ \qquad or ft. (T) \qquad
7. What logging methods did your firm use in the past logging season? Please check (T)all that apply.
A. Falling with feller-buncher, skid to landing \qquad or roadside \qquad , delimb at landing
\qquad or roadside \qquad
B. Falling with feller-buncher, delimb at stump, skid to landing \qquad or roadside \qquad
C. Hand falling, skid to landing \qquad or roadside \qquad , delimb at landing \qquad or roadside
\qquad by hand \qquad or with a delimber
\qquad
D. Hand falling, delimb by hand \qquad or with a delimber \qquad , skid to landing \qquad or roadside \qquad
E. Falling, delimbing, and transport to landing \qquad or roadside \qquad with processor-forwarder
F.Other harvest equipment combination (please specify): \qquad
8. What was the breakdown of the average slope of the cutblocks you harvested in the past logging season (for example, 10 of the 30 cutblocks I harvested in the past logging season were steeper than usual, the remaining 20 cutblocks were generally flat)?

Generally flat \qquad Moderately steep \qquad Steeper than usual \qquad
9. What loading methods, if any, did your firm use in the past logging season? Please check (T) all that apply.
A. Loading at landing with front-end loader \qquad
B. Loading at roadside with boom-type loader \qquad
C. Loading at roadside with self-loading or picker truck \qquad
D. Other loading equipment combination - (please specify) \qquad
10. What were the average timber sizes of the wood you harvested in the past logging season, and your subjective rating of these timber sizes? For example, say your average tree size for one mill was 2.5 deciduous trees per cubic metre that you considered smaller than usual, and you harvested 3.0 coniferous trees per tonne for a nother mill that you con sidered about normal, the table would be filled out like the following example.

Example table

Timber size	Trees per tonne		Trees per cubic metre		Trees per ton	
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
Smaller than usual				2.5		
About normal	3.0					
Larger than usual						

Timber size	Trees per tonne		Trees per cubic metre		Trees per ton	
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
Smaller than usual						
About normal						
Larger than usual						

11. Please complete the following table on subcontractors you employed in the past logging season, including hauling subcontractors. Use the reverse side of the page if more space is required.
12. Please complete the following table for all of your logging and road-building equipment used over the past logging season. Use the reverse side of the page if more space is required.

[^0] Expressed as a ratio of Productive Machine Hoursdivided by total operator hours.
13. Please complete the following table on volume harvested and area harvested by species group in the past logging season

Species group harvested Volume (or weight) harvested Area harvested (hectares)
Predominantly softwoods

Predominantly mixedwood Aspen harvested forests

Spruce harvested

Predominantly hardwoods
14. If you hauled logs to a mill(s) in the past logging season, what was the total cost of hauling the weight or volume you harvested (from Step 13)?
\$ \qquad
15. If you ran a camp in the past logging season, what was the cost of running it, including wages?
\$ \qquad
16. Please estimate the yearly depreciation of your logging machines. (If you do not have a figure for depreciation, a rule of thumb across the industry is logging machinery depreciates 20% per year of the original purchase price over a 4 year period).
\$ \qquad
17. What was your total overhead for the past logging season? Total overhead cost is your company's total revenue minus:
a) the sum of all TOTALS in Step 12 (repairs and alterations+ insurance+ loan or rental payments+ estimated total operator wages+estimated fuel and oil) \$ \qquad
b) hauling costs (from Step 14); \$ \qquad
c) camp costs (from Step 15); \$ \qquad
d) total depreciation of logging machinery (from Step 16);
\$ \qquad
e) total payments to subcontractors (from Step 11).

Total overhead \$ \qquad

APPENDIX 2
 Harvest volumes, conversion factors, and harvest weights by species group

Firm	Harvest volume (m^{3})		Conversion factors ($\mathrm{t} / \mathrm{m}^{3}$)		Harvest weight (t)		Total harvest	
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous	In m^{3}	In t
1	134000	0	0.8017	NA	107428	0	134000	107428
2	$108912^{\text {a }}$	62475	0.817	1.0665	88980	66630	171387	155610
3	$23529{ }^{\text {a }}$	$36496{ }^{\text {a }}$	0.85	0.959	20000	35000	60025	55000
4	80000	228000	0.9064	1.011	72512	230508	308000	303020
5	$86717^{\text {a }}$	$94346^{\text {a }}$	0.878	0.95	76138	89629	181063	165767
6	$174375^{\text {a }}$	$7273^{\text {a }}$	0.8	1.1	139500	8000	181648	147500
7	$18072^{\text {a }}$	$178976^{\text {a }}$	0.83	0.9498	15000	170000	197048	185000
8	400	71600	0.83	1.1	$332{ }^{\text {b }}$	78760	72000	79092
9	72000	8000	0.85	0.97	61200	$7760^{\text {c }}$	80000	68880
10	$170625^{\text {a }}$	$9474{ }^{\text {a }}$	0.8	0.95	136500	9000	180099	145500
11	100000	0	0.8125	NA	81250	NA	100000	81250
12	260000	0	0.795	NA	206700	0	260000	206700
13	275000	0	0.86	NA	236500	0	275000	236500
14	$52087^{\text {a }}$	$35943{ }^{\text {a }}$	0.8197	0.9009	42694	32381	88030	75075
15	165000	0	0.803	NA	132495	0	165000	132495
16	69849	400407	0.8795	1.0	61432	400407	470256	461839
17	0	$90722^{\text {d }}$	NA	0.97	0	88000	90722	88000
18	55000	10000	0.7135	0.888	39243	8880	65000	48123
19	80000	220000	0.85	0.9	68000	198000	300000	266000
20	226000	14000	0.81	1.0	183060	14000	240000	197060
21	80000	130000	0.867	0.97	69360	126100	210000	195460
22	200000	60000	0.825	1.0	165000	60000	260000	225000
23	190000	30000	0.8	1.0	152000	30000	220000	182000
24	30000	130000	0.85	0.925	25500	120250	160000	145750
25	61958	157635	0.83	0.925	51425	145812	219593	197237
26	0	170000	NA	0.86	0	146200	170000	146200
27	262000	6000	0.7825	1.0	205015	6000	268000	211015
28	18000	0	0.83	NA	14940	0	18000	14940
29	80000	2000	0.848	0.98	67840	1960	82000	69800
Total	3073524	2153347	NA	NA	2520045	2073277	5226871	4593242

${ }^{\text {a }}$ Volume determined by conversion from weight (in tonnes) using contractor-supplied conversion factors.
b Volume converted to weight using the survey average for coniferous timber of $0.83 \mathrm{t} / \mathrm{m}^{3}$, because contractor was unable to supply a conversion factor.
${ }^{c}$ Volume converted to weight using the survey average for deciduous timber of $0.97 \mathrm{t} / \mathrm{m}^{3}$, because contractor was unable to supply a conversion factor.
${ }^{d}$ Volume determined by conversion using the survey average for deciduous timber of $0.97 \mathrm{t} / \mathrm{m}^{3}$, because contractor was unable to supply a conversion factor (all timber from private land).
Note: NA = not applicable.

APPENDIX 3
 Bucking by log type and species group

Firm	Pulpwood logs		Sawlogs
	Coniferous timber	Deciduous timber	(coniferous timber)
1	NA	NA	Tree length
2	15-40 ft.	15-40 ft.	NA
3	NA	$101 \mathrm{in} .{ }^{\text {a }}$	Tree length
4	Tree length	Tree length	NA
5	NA	Tree length	5 lengths, all <27 ft.
6	20-40 ft.	20-40 ft.	12 ft . to tree length
7	NA	102 in. ${ }^{\text {a }}$	Tree length
8	NA	$8-30 \mathrm{ft}$. 90% at 30 ft . ${ }^{\text {a }}$	Tree length
9	NA	Tree length	Tree length
10	$15-25 \mathrm{ft}$.	$15-25 \mathrm{ft}{ }^{\text {a }}$	Tree length
11	$8-24 \mathrm{ft}$.	NA	16-24 ft.
12	NA	NA	Tree length
13	NA	NA	Tree length
14	<20-40 ft.	8 ft . to tree length	20 ft . to tree length
15	40 ft .	NA	Tree length
16	NA	8 ft .	Cut to length
17	NA	100 in .	NA
18	$12-16 \mathrm{ft}$.	$12-16 \mathrm{ft}$.	12, 14, 16 ft .
19	30 ft .	30 ft .	34 ft .
20	10-16 ft.	10-16 ft.	10-16 ft. and tree length
21	NA	30 ft .	Tree length
22	NA	Tree length	Tree length
23	NA	Tree length	Tree length
24	30 ft .	NA	Tree length
25	NA	30 ft .	Tree length
26	NA	30 ft .	NA
27	12-40 ft.	Tree length	12 ft . to tree length
28	10, 12, 14, 16 ft .	NA	10, 12, 14, 16 ft .
29	Tree length	Tree length	Tree length

	ONOOrmOrornoomrnrmm
	-rooonrrr
殸	

	刃心 t 	$\begin{aligned} & 8 . \\ & \dot{O} \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$
		ざさ

${ }^{\text {a }} \mathrm{F}=$ falling； $\mathrm{S}=$ skidding； $\mathrm{D}=$ delimbing； $\mathrm{L}=$ loading．Logging phases performed by subcontractors are not included． ${ }^{\mathrm{b}}$ Method $\mathrm{A}=$ use of feller－bunchers，skidding to roadside（ R ）or landing（ L ），and delimbing at roadside or landing； Method $B=$ use of feller－bunchers，at－the－stump processing，and skidding to roadside (R) or landing (L) ；
Method $C=$ hand felling，skid to roadside (R) or landing (L) ，delimbing at roadside or landing；
Method $C=$ hand felling，skid to roadside (R) or landing (L) ，delimbing at roadside or landing；
Method $D=$ hand felling and hand delimbing，skidding to roadside (R) or landing (L) ；
Method $\mathrm{E}=$ cut－to－length harvesting using multipurpose harvesters or feller－bunchers in tandem with processors，forwarding to roadside（R）or landing（L）； Method $\mathrm{F}=$ other harvest equipment combinations．
${ }^{c}$ Felling，delimbing and topping with harvesters；no cutting to length．
d Based on average volume per hectare for coniferous timber in predon
${ }^{d}$ Based on average volume per hectare for coniferous timber in predominantly softwood forests．

APPENDIX 5 Slope conditions under which the 29 firms conducted logging operations

Firm	No. of cutblocks	\% of cutblocks considered generally flat	$\%$ of cutblocks considered moderately steep	$\%$ of cutblocks considered steeper than usual
1	75	45.33	0.00	54.67
2	39	89.74	0.00	10.26
3	21	61.90	38.10	0.00
4	60	75.00	25.00	0.00
5	44	9.09	68.18	22.73
6	43	34.88	32.56	32.56
7	64	45.31	45.31	9.38
8	15	86.67	13.33	0.00
9	10	80.00	20.00	0.00
10	40	0.00	75.00	25.00
11	12	83.33	0.00	16.67
12	40	70.00	0.00	30.00
13	41	51.22	48.78	0.00
14	23	100.00	0.00	0.00
15	21	0.00	100.00	0.00
16	171	29.82	53.22	16.96
17	16	100.00	0.00	0.00
18	13	100.00	0.00	0.00
19	55	100.00	0.00	0.00
20	125	88.00	12.00	0.00
21	48	81.25	14.58	4.17
22	34	76.47	11.76	11.77
23	25	92.00	4.00	4.00
24	33	93.94	6.06	0.00
25	34	70.59	5.88	23.53
26	39	100.00	0.00	0.00
27	42	14.29	47.61	38.10
28	10	100.00	0.00	0.00
29	13	90.00	10.00	0.00
Total or average ${ }^{\text {a }}$	1206	60.78	26.04	13.18

APPENDIX 6 Average timber sizes by timber size rating

Firm	Timber size (trees/m ${ }^{3}$)					
	Timber smaller than normal		Timber about normal in size		Timber larger than normal	
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
1	- ${ }^{\text {a }}$	-	3.50	-	2.50	-
2	-	2.71	2.70	-	-	-
3	-	-	2.50	2.00	-	-
4	-	-	2.38	1.96	-	-
5	-	-	2.81	3.30	-	-
6	-	-	3.24	1.90	-	-
7	-	-	-	-	2.20	2.50
8	-	5.46	-	-	-	-
9	-	-	6.00	3.50	-	-
10	-	-	2.00	2.37	-	-
11	-	-	6.50	-	-	-
12	7.50	-	5.50	-	2.50	-
13	-	-	2.60	-	-	-
14	-	-	2.23	-	-	1.89
15	-	-	3.50	-	-	-
16	4.50	-	-	2.75	-	-
17	-	-	-	2.18	-	-
18	-	-	-	-	2.50	2.00
19	-	-	3.50	3.50	-	-
20	-	-	3.75	1.80	-	-
21	-	-	2.50	4.00	-	-
22	-	-	2.50	1.70	-	-
23	-	-	3.00	2.00	-	-
24	-	6.0	4.00	-	-	-
25	-	-	2.91	3.24	-	-
26	-	-	-	-	-	2.80
27	4.02	-	-	2.50	-	-
28	-	-	6.00	-	-	-
29	4.30	-	-	2.00	-	-
Average	5.08	4.72	3.51	2.54	2.42	2.30

APPENDIX 7 Timber sizes classified by timber size rating

Firm	Timber size ($\mathrm{m}^{3} /$ tree $)$					
	Timber smaller than normal		Timber about normal in size		Timber larger than normal	
	Coniferous	Deciduous	Coniferous	Deciduous	Coniferous	Deciduous
1	$\sim^{\text {a }}$	-	0.29	-	0.40	-
2	-	0.37	0.37	-	-	-
3	-	-	0.40	0.50	-	-
4	-	-	0.42	0.51	-	-
5	-	-	0.36	0.30	-	-
6	-	-	0.31	0.53	-	-
7	-	-	-	-	0.45	0.40
8	-	0.18	-	-	-	-
9	-	-	0.17	0.29	-	-
10	-	-	0.50	0.42	-	-
11	-	-	0.15	-	-	-
12	0.13	-	0.18	-	0.40	-
13	-	-	0.38	-	-	-
14	-	-	0.45	-	-	0.53
15	-	-	0.29	-	-	-
16	0.22	-	-	0.36	-	-
17	-	-	-	0.46	-	-
18	-	-	-	-	0.40	0.50
19	-	-	0.29	0.29	-	-
20	-	-	0.27	0.56	-	-
21	-	-	0.40	0.25	-	-
22	-	-	0.40	0.59	-	-
23	-	-	0.33	0.50	-	-
24	-	0.17	0.25	-	-	-
25	-	-	0.34	0.31	-	-
26	-	-	-	-	-	0.36
27	0.25	-	-	0.40	-	-
28	-	-	0.17	-	-	-
29	0.23	-	-	0.50	-	-
Average	0.21	0.24	0.32	0.42	0.41	0.45

APPENDIX 8
Harvest volumes and areas by
forest type and species group

$\begin{array}{rr}\begin{array}{c}\text { Total } \\ \text { harvest } \\ \left(\mathrm{m}^{3}\right)\end{array} & \begin{array}{c}\text { Total area } \\ \text { harvested } \\ \text { (ha) }\end{array} \\ 240000 & 780 \\ 210000 & 1460 \\ 260000 & 1082 \\ 220000 & 1000 \\ 160000 & 1390 \\ 219593 & 1197 \\ 170000 & 920 \\ 268000 & 1306 \\ 18000 & 76 \\ 82000 & 304 \\ 5226871 & 24989\end{array}$

 \begin{tabular}{ccc}
\multicolumn{4}{c}{$\begin{array}{c}\text { Predominantly mixedwoods } \\
\text { Spruce } \\
\text { harvest } \\
\left(\mathrm{m}^{3}\right)\end{array}$} \& $\begin{array}{c}\text { Aspen } \\
\text { harvest } \\
\left(\mathrm{m}^{3}\right)\end{array}$ \& $\begin{array}{c}\text { Area } \\
\text { harvested } \\
(\mathrm{ha})\end{array}$

- \& - \& -

- \& - \& -

200000 \& 60000 \& 1082

- \& - \& -

30000 \& 30000 \& 390

- \& - \& -

962807 \& 508161 \& 6180

\multicolumn{3}{c}{ Predominantly softwoods }

$\begin{array}{c}\text { Coniferous } \\
\text { timber } \\
\left(\mathrm{m}^{3}\right)\end{array}$ \& $\begin{array}{c}\text { Deciduous } \\
\text { timber } \\
\left(\mathrm{m}^{3}\right)\end{array}$ \& $\begin{array}{c}\text { Area } \\
\text { harvested } \\
(\text { ha) }\end{array}$

226000 \& 14000 \& 780

30000 \& - \& 160

- \& - \& -

190000 \& 30000 \& 1000

- \& - \& -

14458 \& 15135 \& 80

- \& - \& -

262000 \& 6000 \& 1306

18000 \& - \& 76^{i}

80000 \& 2000 \& 304

1914745 \& 85135 \& 8488
\end{tabular}

${ }^{\text {a }}$ Dashes indicate that the firm did not harvest timber of that species group from the particular forest type. ${ }^{\mathrm{b}}$ Volumes determined by conversion from weight (in tonnes) using contractor-supplied conversion factors. c Consisting of 133 ha for $20854 \mathrm{~m}^{3}$ of spruce and 205 ha for $41176 \mathrm{~m}^{3}$ of aspen. ${ }^{\mathrm{d}}$ Consisting of 380 ha of spruce harvest and 1085 ha of aspen harvest. e Consisting of 275 ha for $86717 \mathrm{~m}^{3}$ of spruce and 525 ha for $94346 \mathrm{~m}^{3}$ of aspen. ${ }^{\text {f }}$ Consisting of 910 ha for $170625 \mathrm{~m}^{3}$ of spruce and 35 ha for $9474 \mathrm{~m}^{3}$ of aspen. g Consisting of 192 ha for $69848.75 \mathrm{~m}^{3}$ of spruce and 59 ha for $6629 \mathrm{~m}^{3}$ of aspen. h^{h} Weight converted to volume using the survey average for deciduous timber of $0.96 \mathrm{t} / \mathrm{m}^{3}$, because owner was unable to supply a conversion factor (all timber from private land). ${ }^{\text {i }}$ Area estimated from the survey average of $237.7 \mathrm{~m}^{3} /$ ha for coniferous timber in predominantly softwood forests. Area not available from this firm because some cutblocks were only partially harvested.

APPENDIX 9
 All logging and road-building machinery used by the 29 firms

Feller-bunchers

Vintage Manufacturer and model

1986	693D (manufacturer not available)
1989	Koehring (model not available)
1990	Caterpillar 227
1991	Koehring 600
1991	Timbco T435
1992	Caterpillar FB300
1992	Timberjack 618
1993	Caterpillar 325
1993	Timberjack 618 $(n=2)$
$1994^{\text {a }}$	Koehring 628 $(n=2)$
$1994^{\text {a }}$	Koehring (model not available)
1994	Komatsu carrier with Denarco 3000 head
1994	Timbco (model not available)
1994	Timberjack 608
1994	Timberjack 618 $(n=4)$

Vintage Manufacturer and model

1994 Timberjack $628(n=2)$
1994 Morbark Wolverine
1995 Timbco T445 ($n=2$)
1995 Timberjack $618(n=8)$
1996 Koehring $618(n=2)$
1996 Prentice 630A $(n=2)$
1996 Tigercat 845
1996 Timbco T455
1996 Timberjack 628
1996 Timberjack 923
1997 Koehring 618
1997 Tigercat 853
1997 Timbco T435C
1997 Timberjack 618
1997 Timberjack 850

Skidders

Vintage Manufacturer and model
1985 Caterpillar 528

1 Caterpillar 518
1994 ${ }^{\text {a }}$ Timberjack 480C $(n=2)$
1995 Caterpillar $525(n=2)$
1995 John Deere 648E
1989 Caterpillar 528
1995
1990 John Deere 648D

1991 John Deere 648E
1995
1991
199
199
199
199
1993 John Deere 748E ($n=2$)
1993 Timberjack 450C
1994 John Deere 548E
1994 John Deere 648E $(n=3)$
1994 John Deere $748(n=4)$
1994 John Deere 748E
1994a Timberjack (model not available)
1994 ${ }^{\text {a }}$ Timberjack SK206
1995
John Deere 748E
1995
Timberjack 450
1995
John Deere 648E
1995
Timberjack 480B
1996
1996
1996
1996
John Deere 648G $(n=2)$
John Deere 748
John Deere 7486A
John Deere 748E
Timberjack 450
Timberjack 450C
Caterpillar D5H TSK
John Deere 648
John Deere 648E
John Deere $748(n=2)$
1996 Timberjack 460
1996 Timberjack 560
1996 Timberjack 660
1997 John Deere 648G
1997 John Deere $748(n=4)$
1994 Timberjack 450
1994 Timberjack 450C
Vintage Manufacturer and model

[^1]
Harvesters and processors

Vintage Manufacturer, model, and machine type

1987	Rottne 860 2-grip processor
1988	Rottne 860 2-grip processor
1988	Rottne harvester-processor
1989	Linkbelt CS2800 with Lako 60 processor
1993	Hyundai 200 with Ultimate processor 1995
Caterpillar-Denarco 550 single-grip harvester	

Vintage Manufacturer, model, and machine type
1995 Timberjack 1270 harvester-processor
1996 Caterpillar-Koehring 762 single-grip harvester
Timberjack 608 with Keto harvesterprocessor
Valmet 500T harvester
Kochum 8535 single-grip harvester

Vintage Manufacturer and model
1995 Timberjack 1010
1996 Valmet 543F

Delimbers

Vintage Manufacturer, model, and machine type
1986 Hitachi UH83 carrier with Denis delimber
1988 John Deere 790D carrier with Limmit 2200 delimber
1989 Komatsu-Denis delimber (model not available) $(n=2)$
1989 Komatsu PC200 carrier with 1989 Denis delimber
Caterpillar EL200 delimber
John Deere 790 delimber ${ }^{\text {a }}$
John Deere 790D carrier with Hurricana delimber
Caterpillar 225 carrier with Limmit 2200
Komatsu 200 carrier with Limmit delimber
Caterpillar DL200B with Limmit delimber
1992 Caterpillar EL200 delimber
1992 Caterpillar EL300/7200 delimber
1992 John Deere 790D delimber
1992 Komatsu 220 delimber carrier with Denarco head
1992 Komatsu carrier with Limmit 2000 delimber
1993 Hyundai 200 carrier with Limmit 2100 delimber

John Deere 892D carrier with Target processing head
Komatsu 200 delimber
Komatsu 200 carrier with Limmit delimber
1993 Komatsu DC200-5 delimber

Caterpillar 320 delimber
Caterpillar B30/2300 delimber
Hyundai 200 carrier with Limmit delimber
John Deere 690E carrier with Limmit 2100 delimber
John Deere 892 delimber
John Deere 892E carrier with Limmit 2200 delimber
Komatsu 200 carrier with Limmit delimber
Komatsu 220 delimber
Komatsu PC200 carrier with Limmit delimber
Komatsu PC220 carrier with Limmit 2100 delimber
Komatsu delimber (model not available) ($n=2$)
Caterpillar 320 delimber
Caterpillar 320 carrier with Limmit 2000
${ }^{\text {a }}$ Machine was idle for logging season and therefore was not included in any analyses.
${ }^{\mathrm{b}}$ Vintage not available. Vintage estimated based on average age of logging machines in the Logging Cost Survey.

Delimbers continued

Vintage	Manufacturer, model, and machine type	Vintage	Manufacturer, model, and machine type
1995	Caterpillar 392 carrier with Limmit 2000	1996	Caterpillar 322 carrier
1995	Hitache carrier with Limmit delimber (model not available)	1996	delimber Hyundai 290 carrier with Limmit 2300
1995	Hyundai 200 carrier with Limmit 2000 delimber	1996	delimber Komatsu 220 delimber
1995	John Deere 792A delimber	1996	Komatsu PC200 carrier with Denarco
1995	John Deere 892 delimber		2000 delimber
1995	Komatsu 200 delimber	1996	Komatsu PC200 carrier with Limmit
1995	Komatsu 220 carrier with Target processing head	1996	delimber Komatsu PC220 carrier with Limmit
1995	Komatsu carrier with Denarco 3500 delimber	1997	2100 delimber John Deere delimber (model not available)
1995	Komatsu PC200 carrier with Denarco 2000 delimber	$\begin{aligned} & 1997 \\ & 1997 \end{aligned}$	Komatsu 200 delimber Komatsu 220 carrier with Limmit 2200
1995	Komatsu PC200 carrier with Limmit delimber	1997	delimber Komatsu carrier with Limmit 2000
1995	Komatsu PC220 carrier with Limmit 2100 delimber $(n=2)$		delimber
1995	Timberjack 618 carrier with Limmit 2100 delimber		

Loaders

Vintage Manufacturer and mode
1986 Caterpillar 235B \log loader

1991 Caterpillar 300 log loader
1993 Caterpillar 325 loader
1993 John Deere 892D loader

Road-building machinery

Vintage Manufacturer, model, and machine type
1965 Caterpillar D7E bulldozer
1972 Caterpillar D8H bulldozer
1975 Caterpillar D8K crawler
1978 Caterpillar 976 crawler
1978 Caterpillar D8K bulldozer
1978 Caterpillar 140 grader
1979 Caterpillar D6D bulldozer
1979 Caterpillar D8K bulldozer
1979 Caterpillar 140 grader
1979 Komatsu D85E-18 crawler-bulldozer
1980 Caterpillar D7G crawler
1980 Caterpillar D8K bulldozer $(n=2)$
1980 Caterpillar D8K crawler-bulldozer
1980 Komatsu D85E-18 crawler-bulldozer

Vintage Manufacturer, model, and machine type
1996 Caterpillar 322 carrier with Limmit delimber
Hyundai 290 carrier with Limmit 2300 delimber
Komatsu 220 delimber
Komatsu PC200 carrier with Denarco 2000 delimber
Komatsu PC200 carrier with Limmit delimber
Komatsu PC220 carrier with Limmit 2100 delimber
John Deere delimber (model not available)
Komatsu 200 delimber
omatsu 220 carrier with Limmit 2200 delimber

Komatsu carrier with Limmit 200 delimber

Vintage Manufacturer and mode
1993 Komatsu loader (model not available)
1994 Komatsu PC300HD Button Top
1995 Caterpillar 330 log loader
1996 Caterpillar 330 log loader

Vintage Manufacturer, model, and machine type
1981 Caterpillar D7G bulldozer ($n=2$)
1981 Caterpillar D8K bulldozer $(n=2)$
1981 Champion 740 grader
1982 Caterpillar D7G crawler
1984 Komatsu D85E crawler-bulldozer
1985 Caterpillar D7G crawler
1985 ${ }^{\text {a }}$ Caterpillar D7E bulldozer
1985 Champion 740 grader
1985a Gilbert tractor 5220-1031
1985 John Deere 850 bulldozer
1985 ${ }^{\text {a }}$ Komatsu D65E-18 bulldozer
1985 ${ }^{\text {a }}$ Komatsu D65P-6 bulldozer
1985 ${ }^{\text {a }}$ Komatsu 585E TRAK 35365
1986 Caterpillar D65E bulldozer
${ }^{\text {a }}$ Vintage not available. Vintage estimated based on average age of road-building machines in the Logging Cost Survey.

Road-building machinery continued

Vintage Manufacturer, model, and machine type

1986
1986
1987

1989
1989
1989
1989

1987 Caterpillar D7H bulldozer
1989 Caterpillar EL200 backhoe

1989 Komatsu D83-1 crawler-bulldozer
1990 Caterpillar D65 crawler
1990 Champion grader 20749
1990 Komatsu D65 bulldozer
John Deere 850 crawler
Komatsu D65E-8 crawler-bulldozer
Caterpillar D4 bulldozer

John Deere 790 excavator
John Deere 790D backhoe
John Deere 850B crawler
John Deere 850D bulldozer

Vintage Manufacturer, model, and machine type

1991
1994
1994

Hyundai 280 excavator
Caterpillar EL322 backhoe
Komatsu D85 bulldozer
Excavator (manufacturer and model not available)
Champion grader
Komatsu D85 bulldozer
Caterpillar 322L excavator
Champion 780 grader
Excavator (manufacturer and model not available)
John Deere 690E excavator
Komatsu crawler (model not available)

APPENDIX 10
 Paired-difference tests betw een actual and estimated loan payments
 0.05 level of significance, univariate procedure

Moments

n	138	Sum weights	138
Mean	479.2427	Sum	66135.49
SD	33038.94	Variance	1.091 6E9
Skewness	-0.846 8	Kurtosis	3.782117
USS	1.496 E 11	CSS	1.495 E11
CV	6893.989	Std mean	2812.461
T :mean $=0$	0.1704	$\operatorname{Pr}>\|T\|$	0.8649
Num ${ }^{\wedge}=0$	96	Num > 0	55
M (sign)	7	$\operatorname{Pr} \geq\|M\|$	0.1843
Sgn rank	275	$\operatorname{Pr} \geq\|S\|$	0.3175
Quantiles ($\mathrm{DF}=5$)			
100\% (maximum)	105000	99\%	80468.8
75\% (Q3)	10573.4	95\%	54600
50\% (medium)	0	90\%	36837.47
25\% (Q1)	-3 916.97	10\%	-35 169.9
0\% (minimum)	-	5\%	-80 468.8
	1340	1\%	-103 805
Range	239008.7		
Q3-Q1	14490.37		
Mode	0		

Extremes

Lowest (no. of observations)	Highest (no. of observations)
$-134009(1)$	$63679 \quad(50)$
$-103805(5)$	$66000 \quad(137)$
$-96177.8(134)$	$73673.1(120)$
$-94626.7(90)$	$80468.8(103)$
$-87503.4(110)$	$105000 \quad(56)$

Note: SD = standard deviation, USS = uncorrected sum of squares, CSS = corrected sum of squares, $\mathrm{CV}=$ coefficient of variation, Std mean $=$ standard error of the mean, $T:$ mean $=$ the Student's t value for testing the hypothesis that the population mean is zero, $\operatorname{Pr}>$ $|T|=$ the probability of a greater absolute value for this t-value, Num ${ }^{\wedge}=$ the number of nonzero observations, Num = the number of positive observations, M (sign) = the sign statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|M|=$ the probability of a greater absolute value for the mean under the hypothesis that the population mean is zero, Sgn rank = the centered (the expected value is subtracted) Wilcoxon signed rank statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|S|$ $=$ the probability of a greater absolute value for this statistic under the hypothesis that the population mean is zero, $\mathrm{DF}=$ degrees of freedom, $\mathrm{Q} 3=$ quantile $3, \mathrm{Q} 1=$ quantile 1 .

APPENDIX 11
 Paired-difference tests betw een actual and estimated insurance payments
 0.05 level of significance, univariate procedure

Moments

n	104	Sum weights	104
Mean	0	Sum	0
SD	1490.857	Variance	2222654
Skewness	0.263146	Kurtosis	2.987841
USS	$2.2893 E 8$	CSS	$2.2893 E 8$
CV	-	Std mean	146.1906
$T:$ mean $=0$	0	Pr $>\|T\|$	1.0000
Num $\wedge=0$	102	Num >0	52
$M($ sign $)$	1	$\operatorname{Pr} \geq\|M\|$	0.9212
Sgn rank	91	$P r \geq\|S\|$	0.7630

	Quantiles (DF = 5)		
100% (maximum)	5396.55	99%	4780.66
			2073.8
75% (Q3)	503.63	95%	1408.1
50% (medium)	1.9	90%	-1585.45
25% (Q1)	-385.565	10%	-2806.32
0% (minimum)	-4062.13	5%	-3827.81
		1%	
Range	9458.68		
Q3-Q1	889.195		
Mode	-379.23		

Extremes

Lowest (no. of observations)	Highest (no. of observations)
$-4062.13(30)$	$2839.08(35)$
$-3827.81(5)$	$3571.63(98)$
$-3676.93(31)$	$3571.63(99)$
$-3263.74(92)$	$4780.66(89)$
$-2826.72(101)$	$5396.55(100)$

Note: SD = standard deviation, USS = uncorrected sum of squares, CSS = corrected sum of squares, $C V=$ coefficient of variation, Std mean $=$ standard error of the mean, T:mean $=$ the Student's t value for testing the hypothesis that the population mean is zero, $\operatorname{Pr}>$ $|T|=$ the probability of a greater absolute value for this t-value, $\mathrm{Num}^{\wedge}=$ the number of nonzero observations, Num = the number of positive observations, M (sign) = the sign statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|M|=$ the probability of a greater absolute value for the mean under the hypothesis that the population mean is zero, Sgn rank = the centered (the expected value is subtracted) Wilcoxon signed rank statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|S|$ $=$ the probability of a greater absolute value for this statistic under the hypothesis that the population mean is zero, $\mathrm{DF}=$ degrees of freedom, $\mathrm{Q} 3=$ quantile $3, \mathrm{Q} 1=$ quantile 1 .

APPENDIX 12
 Paired-difference tests betw een actual and estimated operator wages and benefits

0.05 level of significance, univariate procedure

Moments

n	113	Sum weights	113
Mean	-0.004 07	Sum	-0.46
SD	10255.57	Variance	1.051 8E8
Skewness	0.372922	Kurtosis	4.496942
USS	1.178 E10	CSS	1.178 E10
CV	-2.519 E8	Std mean	964.7624
T:mean $=0$	-4.22E-6	$\operatorname{Pr}>\|T\|$	1.0000
Num ${ }^{\wedge}=0$	111	Num > 0	53
M (sign)	-2.5	$\operatorname{Pr} \geq\|M\|$	0.7044
Sgn rank	-41.5	$\operatorname{Pr} \geq\|S\|$	0.9035
Quantiles ($\mathrm{DF}=5$)			
100\% (maximum)	35848.38	99\%	33136.71
75\% (Q3)	2905.83	95\%	12168.75
50\% (medium)	-116.67	90\%	7797.83
25\% (Q1)	-3 387.5	10\%	-8997.29
0\% (minimum)	-33 446.6	5\%	-19 151.6
		1\%	-33 404.3
Range	69295		
Q3-Q1	6293.33		
Mode	-19 151.6		

Extremes

Lowest (no. of observations)	Highest (no. of observations)
$-33446.6(105)$	$16884.62(10)$
$-33404.3(104)$	$33135.71(107)$
$-21423.3(110)$	$33135.71(108)$
$-19736.3(56)$	$33136.71(109)$
$-19151.6(97)$	$35848.38(101)$

Note: SD = standard deviation, USS = uncorrected sum of squares, CSS = corrected sum of squares, $\mathrm{CV}=$ coefficient of variation, Std mean $=$ standard error of the mean, $T:$ mean $=$ the Student's t value for testing the hypothesis that the population mean is zero, $\operatorname{Pr}>$ $|T|=$ the probability of a greater absolute value for this t-value, $\mathrm{Num}^{\wedge}=$ the number of nonzero observations, Num = the number of positive observations, M (sign) = the sign statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|M|=$ the probability of a greater absolute value for the mean under the hypothesis that the population mean is zero, Sgn rank = the centered (the expected value is subtracted) Wilcoxon signed rank statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|S|$ $=$ the probability of a greater absolute value for this statistic under the hypothesis that the population mean is zero, $\mathrm{DF}=$ degrees of freedom, $\mathrm{Q} 3=$ quantile $3, \mathrm{Q} 1=$ quantile 1 .

APPENDIX 13
 Paired-difference tests betw een actual and estimated fuel and oil expenditures
 0.05 level of significance, univariate procedure

Moments			
n	86	Sum weights	86
Mean	-0.001 86	Sum	-0.16
SD	4048.567	Variance	16390897
Skewness	-0.207 7	Kurtosis	3.535129
USS	1.393 2E9	CSS	1.393 2E9
CV	-2.176 E8	Std mean	436.5682
T :mean $=0$	-4.26E-6	$\operatorname{Pr}>\|T\|$	1.0000
Num ${ }^{\wedge}=0$	84	Num > 0	33
M (sign)	-9	$\operatorname{Pr} \geq\|M\|$	0.0630
Sgn rank	-83.5	$\operatorname{Pr} \geq\|S\|$	0.7120
Quantiles ($\mathrm{DF}=5$)			
100\% (maximum)	12363.87	99\%	12363.87
75\% (Q3)	836.11	95\%	8499.82
50\% (medium)	-4.75	90\%	4891.89
25\% (Q1)	-1 195.81	10\%	-3 386.11
0\% (minimum)	-13 460	5\%	-7 009.57
		1\%	-13 460
Range	25823.88		
Q3-Q1	2031.92		
Mode	-2 557.04		

Extremes

Lowest (no. of observations)
$-13460 \quad(79)$
$-13448.2(78)$
-9783.78

Highest (no. of observations) 8499.82 (44)
9684.69 (81)
9684.69 (82)
9685.69 (83)
-7 009.57 (6)
12363.87 (34)

Note: $\mathrm{SD}=$ standard deviation, USS = uncorrected sum of squares, CSS = corrected sum of squares, $\mathrm{CV}=$ coefficient of variation, Std mean $=$ standard error of the mean, $T:$ mean $=$ the Student's t value for testing the hypothesis that the population mean is zero, $\operatorname{Pr}>$ $|T|=$ the probability of a greater absolute value for this t-value, $\mathrm{Num}^{\wedge}=$ the number of nonzero observations, Num = the number of positive observations, M (sign) = the sign statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|M|=$ the probability of a greater absolute value for the mean under the hypothesis that the population mean is zero, Sgn rank = the centered (the expected value is subtracted) Wilcoxon signed rank statistic for testing the hypothesis that the population mean is zero, $\operatorname{Pr} \geq|S|$ $=$ the probability of a greater absolute value for this statistic under the hypothesis that the population mean is zero, $\mathrm{DF}=$ degrees of freedom, $\mathrm{Q} 3=$ quantile $3, \mathrm{Q} 1=$ quantile 1 .

Step 1 Variable FTYPE entered, $\mathrm{R}^{2}=0.20, \mathrm{C}(\mathrm{p})=30.077$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	1	614.35662	614.35662	6.20	0.0201
Error	24	2379.97989	99.16583		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	23.17091	5.95477	1501.47491	15.14	0.0007
FTYPE	9.83909	3.95299	614.35662	6.20	0.0201

Bounds on condition number: 1,1 .

Step 2 Variable Q2 entered, $R^{2}=0.32, C(p)=31.385$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	2	958.71124	479.35562	5.42	0.0118
Error	23	2035.62528	88.50545		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	29.38418	6.44744	1838.32408	20.77	0.0001
FTYPE	8.80579	3.77104	482.59737	5.45	0.0286
Q2	-0.033 24	0.01685	344.35461	3.89	0.0607

Bounds on condition number: $1.0197,4.0787$.

Step 3 Variable SDI entered, $\mathrm{R}^{2}=0.52, \mathrm{C}(\mathrm{p})=18.476$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	3	1549.34426	516.44809	7.86	0.0010
Error	22	1444.99225	65.68147		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-3.41576	12.26733	5.09208	0.08	0.7833
FTYPE	11.97078	3.41576	806.70162	12.28	0.0020
SDI	0.35834	0.11950	590.63303	8.99	0.0066
Q2	-0.051 43	0.01573	701.74652	10.68	0.0035

Bounds on condition number: $1.324,10.947$.

Step 4 Variable SDI2 entered, $R^{2}=0.57, C(p)=16.500$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	4	1707.64220	426.91055	6.97	0.0010
Error	21	1286.69431	61.27116		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-86.596 27	53.08927	163.02000	2.66	0.1178
FTYPE	11.45334	3.31476	731.50369	11.94	0.0024
SDI	2.54091	1.36277	213.00612	3.48	0.0763
Q2	-0.046 45	0.01551	549.73522	8.97	0.0069
SDI2	-13.690 06	8.51718	158.29793	2.58	0.1229

Bounds on condition number: 187.72, 1498.8 .

Step 5 Variable AVAGE entered, $\mathrm{R}^{2}=0.60, \mathrm{C}(\mathrm{p})=16.527$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	5	1784.97686	356.99537	5.90	0.0017
Error	20	1209.35965	60.46798		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-76.060 49	53.54118	122.35526	2.02	0.1703
AVAGE	-0.838 50	0.74145	77.33466	1.38	0.2715
FTYPE	12.19991	3.35848	797.90827	13.20	0.0017
SDI	2.26739	1.37524	164.36934	2.72	0.1148
Q2	-0.049 76	0.01568	608.85175	10.07	0.0048
SDI2	-11.688 33	8.64433	108.55226	1.83	0.1914

Bounds on condition number: 195.94, 1950.3 .

Step 6 Variable AV2 entered, $R^{2}=0.67, C(p)=12.551$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	6	2021.72005	336.95334	6.58	0.0007
Error	19	972.61646	51.19034		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-62.919 61	49.64616	82.22214	1.61	0.2203
AVAGE	-6.026 65	2.50710	295.79861	5.78	0.0266
FTYPE	11.60797	3.10235	716.67113	14.00	0.0014
SDI	2.22753	1.26548	158.60612	3.10	0.0945
AV2	0.45889	0.21339	236.74319	4.62	0.0446
Q2	-0.052 50	0.01448	672.66440	13.14	0.0018
SDI2	-11.514 37	7.95399	107.27994	2.10	0.1640

Bounds on condition number: 195.96, 2524.

Step 7 Variable STUMP entered, $R^{2}=0.72, C(p)=11.362$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	7	2148.07519	306.86788	6.53	0.0006
Error	18	846.26132	47.01452		
Total	25	2994.33651			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-70.69726	47.81411	102.78387	2.19	0.1565
AVAGE	-6.88865	2.44722	361.78882	7.70	0.0125
FTYPE	12.50473	3.02302	804.44824	17.11	0.0006
SDI	2.42711	1.21887	186.42245	3.97	0.0618
STUMP	1.13564	0.69272	126.35514	2.69	0.1185
AV2	0.53006	0.20905	302.24262	6.43	0.0207
Q2	-0.05269	0.01392	602.88343	13.25	0.0019
SDI2	-13.03188	7.67867	125.41740	2.88	0.1069

Bounds on condition number: 198.85, 2 996.4.

Step 8 Variable QUANT entered, $R^{2}=0.74, C(p)=11.773$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	8	2211.03127	276.37890	6.00	0.0010
Error	17	783.30534	46.07678		
Total	25	2994.33651			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-90.89350	50.38967	149.92182	3.25	0.0890
QUANT	0.10171	0.08702	62.95598	1.37	0.2586
AVAGE	-7.30241	2.46223	405.28096	8.80	0.0087
FTYPE	11.44995	3.12580	618.25276	13.42	0.0019
SDI	2.55183	1.21136	204.47528	4.44	0.0503
STUMP	0.92358	0.70937	78.10597	1.70	0.2103
AV2	0.59465	0.21421	355.07881	7.71	0.0129
Q2	-0.17084	0.10371	125.02336	2.71	0.1179
SDI2	-13.92344	7.63987	153.03923	3.32	0.0860

Bounds on condition number: 200.85, 4650.1 .

Step 9 Variable VQ entered, $\mathrm{R}^{2}=0.77, \mathrm{C}(\mathrm{p})=11.462$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	9	2302.56564	255.84063	5.92	0.0011
Error	16	691.77088	43.25368		
Total	25	2994.33651			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-123.36593	53.67143	228.42647	5.28	0.0353
QUANT	0.13850	0.08800	107.08975	2.48	0.1351
AVAGE	-7.47294	2.38799	423.40892	9.79	0.0065
FTYPE	14.29231	3.60337	680.19027	15.73	0.0011
SDI	3.22970	1.26252	282.93778	6.54	0.0211
STUMP	0.60156	0.72191	30.02117	0.69	0.4170
AV2	0.58694	0.20757	345.70565	8.00	0.0121
VQ	-5.13147	3.52672	91.53447	2.12	0.1650
Q2	-0.17425	0.10049	129.98826	3.01	0.1022
SDI2	-18.10733	7.93959	224.88225	5.20	0.0366

Bounds on condition number: 231.17, 5911.

Step 10 Variable STUCK entered, $R^{2}=0.81, C(p)=10.085$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	10	2436.36704	243.63470	6.55	0.0007
Error	15	557.98947	37.19930		
Total	25	2994.33651			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-141.86378	50.73052	290.89691	7.82	0.0136
QUANT	0.18848	0.08578	179.60806	4.83	0.0441
AVAGE	-7.80645	2.22200	459.15090	12.34	0.0031
FTYPE	14.63075	3.34713	710.75889	19.11	0.0005
SDI	3.65549	1.19240	349.60661	9.40	0.0078
STUMP	3.02317	1.44187	163.53305	4.40	0.0534
AV2	0.60649	0.19281	368.06412	9.89	0.0067
VQ	-7.85029	3.57165	179.70890	4.83	0.0441
Q2	-0.21504	0.09566	187.95969	5.05	0.0401
SDI2	-20.95221	7.51575	289.10110	7.77	0.0138
STUCK	-2.42371	1.27806	133.78140	3.60	0.0773

Bounds on condition number: 240.76, 7 013.7.

Step 11 Variable SLOPE2 entered, $R^{2}=0.83, C(p)=10.469$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	11	2500.38645	227.30786	6.44	0.0009
Error	14	493.95006	35.28205		
Total	25	2994.33651			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-119.48277	52.12412	185.39078	5.25	0.0379
QUANT	0.19893	0.08390	198.37186	5.62	0.0326
AVAGE	-7.98506	2.16804	478.60508	13.57	0.0025
FTYPE	14.21521	3.27430	665.00498	18.85	0.0007
SDI	3.12069	1.22724	228.13652	6.47	0.0234
STUMP	3.37668	1.42853	197.13124	5.59	0.0331
AV2	0.59509	0.18797	353.63998	10.02	0.0069
SLOPE2	-0.03595	0.02668	64.03941	1.82	0.1993
VQ	-7.54069	3.48597	162.09291	4.68	0.0483
Q2	-0.23776	0.09468	22.49059	6.31	0.0249
SDI2	-17.38667	7.78329	176.06032	4.99	0.0423
STUCK	-2.63085	1.25415	155.25588	4.40	0.0546

Bounds on condition number: 272.34, 8 420.1.

Step 12 Variable SUM WIN entered, $\mathrm{R}^{2}=0.86, C(p)=10.293$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	12	2586.56253	205.54688	6.87	0.0008
Error	13	407.77398	31.36723		
Total	25	2994.33651			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-122.372 99	49.17818	194.22375	6.19	0.0272
QUANT	0.20607	0.07922	212.23808	6.77	0.0220
AVAGE	-7.139 61	2.10690	360.19530	11.48	0.0048
FTYPE	12.93910	3.18185	518.71111	16.54	0.0013
SDI	3.14605	1.15725	231.81966	7.39	0.0176
SUMWIN	4.13712	2.49599	86.17609	2.75	0.1213
STUMP	4.10564	1.41693	263.35604	8.40	0.0125
AV2	0.51677	0.18342	248.98303	7.94	0.0145
SLOPE2	-0.050 94	0.02673	113.87613	3.63	0.0791
VQ	-8.656 99	3.35518	208.82358	6.66	0.0228
Q2	-0.243 89	0.08935	233.70524	7.45	0.0172
SDI2	-17.78759	7.34226	184.07351	5.87	0.0308
STUCK	-3.159 47	1.22478	208.73316	6.65	0.0229

Bounds on condition number: $272.54,9$ 266.5.

Step 13 Variable SOBUCK entered, $R^{2}=0.88, C(p)=11.391$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	13	2622.29013			
Error	12	372.04638	201.70463	6.51	0.0013
Total	25	2994.33651			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-102.66309	52.22638		119.80216	3.86
QUANT	0.19919	0.07902	197.00294	6.35	0.0729
AVAGE	-6.74837	2.12613	312.34463	10.07	0.0269
FTYPE	13.42776	3.19595	547.29721	17.65	0.0012
SDI	2.55895	1.27391	125.10265	4.04	0.0676
SUMWIN	4.83946	2.56629	110.25460	3.56	0.0838
STUMP	7.53130	3.48826	144.52311	4.66	0.0518
AV2	0.48337	0.18499	211.67305	6.83	0.0227
SLOPE2	-0.05488	0.02683	129.70787	4.18	0.0634
VQ	-7.92484	3.40470	167.97281	5.42	0.0382
Q2	-0.24620	0.08886	238.01903	7.68	0.0169
SOBUCK	2.52903	2.35591	35.72759	1.15	0.3042
SDI2	-14.08200	8.07511	94.28611	3.04	0.1067
STUCK	-6.44708	3.29577	118.63961	3.83	0.0741

Bounds on condition number: 333.48, 12955.

Summary of forward-selection procedure for dependent variable FRATE

Step	Variable entered	Number in	Partial R^{2}	Model R^{2}	$C(p)$	F	$p>F$
1	FTYPE	1	0.2052	0.2052	38.0771	6.20	0.0201
2	Q2	2	0.150	0.3202	31.3847	3.89	0.0607
3	SDI	3	0.1573	0.5174	18.4755	8.99	0.0066
4	SDI2	5	0.0529	0.5703	16.4797	2.58	0.1229
5	AVAGE	6	0.0258	0.5961	16.5275	1.28	0.2715
6	AV2	7	0.0791	0.6752	12.5515	4.62	0.0446
7	STUMP	8	0.0422	0.7174	11.3619	2.69	0.1185
8	QUANT	9	0.0210	0.7384	11.7728	1.37	0.2586
9	VQ	0	0.0306	0.7690	11.4622	2.12	0.1650
10	STUCK	SLOPE2	11	0.0447	0.8137	10.0852	3.60
11	SUMWIN	12	0.0214	0.8350	10.4686	1.82	0.0773
12	SOBUCK	13	0.0288	0.8638	10.2933	2.75	0.1993
13			0.0119	0.8757	11.3915	1.15	0.3042

Obs	Dep var FRATE	Predict value	SE predict	Lower 95\% mean	Upper 95\% mean	Lower 95\% predict	Upper 95\% predict	Residual	$\begin{aligned} & \mathrm{SE} \\ & \text { residual } \end{aligned}$	Student residual	-2-1-0 12	Cook's D
	26.0500	31.9736	3.6837	23.9475	39.9996	17.4271	46.5200	-5.9236	4.175	-1.419		. 112
2	32.2900	26.9850	3.1756	20.0661	33.9040	13.0188	40.9512	5.3050	4.574	1.160	**	. 046
3	41.3500	39.6292	3.3399	32.3521	46.9063	25.4822	53.7762	1.7208	4.455	0.386		0.000
4	22.5400	22.5848	4.8805	11.9510	33.2185	6.4522	38.7173	-0.0448	2.680	-0.0167		0.112
5	39.6400	31.9348	3.2871	24.7729	39.0967	17.8466	46.0229	7.7052	4.494	1.714	***	0.015
6	49.2600	51.7031	3.4945	44.0892	59.3171	37.3799	66.0264	-2.4431	4.335	-0.560	*	0.042
7	30.0000	33.3967	3.7838	25.1525	41.6409	18.7287	48.0647	-3.3967	4.085	-0.832	*	0.049
8	42.9000	38.3729	3.4767	30.7978	45.9480	24.0703	52.6755	4.5271	4.349	1.041	\|**	0.105
9	40.0200	37.8199	4.7325	27.5087	48.1311	21.8981	53.7417	2.2001	2.934	0.750		0.008
10	18.5000	19.0874	4.7513	8.7353	29.4395	3.1391	35.0357	-0.5874	2.903	-0.202		. 000
11	29.9800	30.398	3.2361	23.3475	37.4492	16.3664	44.4303	-0.4184	4.531	-0.0923		. 000
12	24.2500	26.4660	4.1000	17.5329	35.3991	11.4000	41.5319	-2.2160	3.767	-0.588	*	0.029
13	44.0000	44.1689	5.5328	32.1140	56.2239	27.0662	61.2717	-0.1689	0.626	-0.270		0.406
14	44.4800	48.6806	3.5004	41.0539	56.3074	34.3506	63.0106	-4.2006	4.330	-0.970	*	0.044
15	53.9200	52.5844	5.2902	41.0580	64.1107	35.8500	69.3187	1.3356	1.737	0.769	\|*	. 382
16	21.9200	25.0971	4.2136	15.9165	34.2777	9.8831	40.3111	-3.1771	3.640	-0.873	*	0.073
17	53.8400	57.4140	4.1700	48.3284	66.4996	42.2572	72.5709	-3.5740	3.690	-0.969	*	0.086
18	32.1000	33.7531	3.8035	25.4660	42.0403	19.0610	48.4453	-1.6531	4.067	-0.407		0.010
19	35.0000	39.2613	3.5711	31.4806	47.0420	24.8487	53.6738	-4.2613	4.272	-0.997	*	0.050
20	37.1400	42.4378	3.2737	35.3050	49.5706	28.3645	56.5111	-5.2978	4.504	-1.176		0.052
21	44.0000	41.3624	3.9450	32.7669	49.9578	26.4902	56.2306	2.6376	3.929	0.671	*	0.032
22	32.0000	29.9071	4.8490	19.3421	40.4722	13.8198	45.9945	2.0929	2.737	0.765	*	0.131
23	52.2800	43.6926	3.6525	35.7344	51.6507	29.1834	58.2017	8.5874	4.203	2.043	****	0.225
24	56.6700	52.4863	4.1355	43.4757	61.4968	37.3743	67.5983	4.1837	3.728	1.122	**	1.111
25	39.1900	40.5141	4.1405	31.4927	49.5355	25.3956	55.6325	-1.3241	3.723	-0.356		0.011
26	23.1700	24.7787	4.8122	14.2938	35.2637	8.7439	40.8136	-1.6087	2.801	-0.574	*	0.070

Sum of residuals $=0$.
Sum of squared residuals $=372.04638$.
Sum of squares of predicted residual errors (press) $=1653.13907$.
Note: $\mathrm{FRATE}=$ felling rate, $\mathrm{C}(\mathrm{p})=$ total squared error, $\mathrm{DF}=$ degrees of freedom, $\mathrm{FTYPE}=$ forest type, $\mathrm{Q} 2=$ square of quantitative timber size index divided by 1000, SDI = species diversification index, SDI2 = square of species diversification index divided by 1000, AVAGE = average age of all felling machines owned by the firm, AV2 = square of average age of felling machines owned by the firm, AV2 =square of average age of felling machines owned by the firm, STUMP = logging methods index, QUANT = quantitative timber size index, $\mathrm{VQ}=$ quantitative timber size index divided by average volume (in cubic metres per hectare), STUCK = logging methods index + bucking index, SLOPE2 $=$ square of slope index divded by 1000,SUMWIN $=$ seasonal index, SOBUCK $=$ sorting index + bucking index, $\mathrm{SE}=$ standard error, Cook's $\mathrm{D}=$ Cook's D influence statistic.

Step 1 Variable AVCUT entered, $\mathrm{R}^{2}=0.15, \mathrm{C}(\mathrm{p})=9.365$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	1	499.56084	499.56084	3.21	0.0899
Error	18	2799.28633	155.51591		
Total	19	3298.84717			
	Parameter	Standard	Type II		
Variable	estimate		sum of squares		
				1694.23850	10.89
INTERCEP	22.75638	0.49589	0.27668	499.56084	3.21

Bounds on condition number: 1,1 .

Step 2 Variable VQ entered, $\mathrm{R}^{2}=0.33, C(p)=5.951$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	2	1097.09915	548.54958	4.24	0.0322
Error	17	2201.74802	129.51459		
Total	19	3298.84717			
	Parameter	Standard	Type II		
Variable	estimate				
INTERCEP	25.51119	0.86670	0.42119	2044.31976	15.78
AVCUT	-7.46358	3.47475	1039.88339	8.03	0.0010
VQ			597.53831	4.61	0.0464

Bounds on condition number: 1.467 5, 5.8698.

Step 3 Variable AV2 entered, $R^{2}=0.41, C(p)=5.550$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	3	1362.07872			
Error	16	1936.76845	121.04803	3.75	0.0325
Total	19	3298.84717			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	29.36943	6.73324	2303.03291	19.03	0.0005
AVCUT	0.80124	0.29899	869.27229	7.18	0.0164
AV2	-0.10551	0.07131	264.97957	2.19	0.1584
VQ	-7.59607	3.36045	618.50070	5.11	0.0381

Bounds on condition number: $1.5003,12.028$.

Step 4 Variable AVAGE entered, $\mathrm{R}^{2}=0.52, \mathrm{C}(\mathrm{p})=4.502$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	4	1698.43488	424.60872	3.98	0.0214
Error	15	1600.41229	106.69415		
Total	19	3298.84717			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	15.31229	10.13121	243.72368	2.28	0.1515
AVAGE	5.97183	3.36339	336.35616	3.15	0.0961
AVCUT	0.98340	0.29887	1155.15683	10.83	0.0050
AV2	-0.547 67	0.25787	481.25452	4.51	0.0507
VQ	-9.33144	3.30285	851.64737	7.98	0.0128

Bounds on condition number: 15.834, 138.32.

Step 5 Variable SDI entered, $R^{2}=0.58, C(p)=4.494$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	5	1920.02123		384.00425	3.90
Error	14	1378.82594	98.48757	0.0201	
Total	19	3298.84717			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-2.42999	15.31860		2.47830	0.03
AVAGE	5.92748	3.23159	331.35091	0.8762	
SDI	0.22078	0.14719	221.58635	2.35	0.0880
AVCUT	0.98749	0.28716	1164.68135	11.83	0.1558
AV2	-0.55570	0.24781	495.23200	5.03	0.0416
VQ	-9.43674	3.17406	870.55195	8.84	0.0101

Bounds on condition number: 15.836, 178.02.

Step 6 Variable SLOPE entered, $\mathrm{R}^{2}=0.63, \mathrm{C}(\mathrm{p})=5.217$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	6	2060.92528		343.48755	3.61
Error	13	1237.92189	95.22476		0.0249
Total	19	3298.84717			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	4.70247	16.16370		8.05971	0.08
SLOPE	-0.03128	0.02571	140.90405	1.48	0.7757
AVAGE	6.29942	3.19229	370.80579	3.89	0.0754
SDI	0.25288	0.14712	281.35454	2.95	0.1093
AVCUT	0.94283	0.28474	1044.06740	10.96	0.0056
AV2	-0.59962	0.24633	564.23260	5.93	0.0301
VQ	-9.42353	3.12106	868.10509	9.12	0.0099

Bounds on condition number: 15.982, 223.54.

Step 7 Variable QUANT entered, $R^{2}=0.65, C(p)=6.479$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	7	2142.38421	306.05489	3.18	0.0381
Error	12	1156.46297	96.37191		
Total	19	3298.84717			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-7.49169	20.98411	12.28370	0.13	0.7273
QUANT	0.06144	0.06683	81.45892	0.85	0.3760
SLOPE	-0.03383	0.02602	162.95279	1.69	0.2179
AVAGE	7.89031	3.64798	450.85178	4.68	0.0514
SDI	0.21744	0.15294	194.78769	2.02	0.1806
AVCUT	1.08698	0.32655	1067.81755	11.08	0.0060
AV2	-0.70244	0.27188	643.30706	6.68	0.0239
VQ	-15.37083	7.19056	440.37190	4.57	0.0538

Bounds on condition number: 20.623, 411.9 .

Step 8 Variable STUM P entered, $R^{2}=0.69, C(p)=7.138$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	8	2290.41970	286.30246	3.12	0.0419
Error	11	1008.42747	91.67522		
Total	19	3298.84717			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-11.06126	20.65826	26.28292	0.29	0.6030
QUANT	0.13895	0.08927	222.11200	2.42	0.1479
SLOPE	-0.02992	0.02556	125.64950	1.37	0.2664
AVAGE	6.04377	3.84327	226.70710	2.47	0.1441
SDI	0.30081	0.16296	312.37161	3.41	0.0920
AVCUT	1.13932	0.32114	1153.83360	12.59	0.0046
STUMP	-11.23087	8.83805	148.03550	1.61	0.2300
AV2	-0.52451	0.29987	280.46511	3.06	0.1081
VQ	-22.38454	8.92457	576.73132	6.29	0.0291

Bounds on condition number: 24.292 , 657.39 .

Step 9 Variable VOLUME entered, $R^{2}=0.73, C(p)=7.926$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	9	2424.10454	269.34495	3.08	0.0472
Error	10	874.74264	87.47426		
Total	19	3298.84717			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-18.13766	20.97555			
QUANT	0.17740	0.09258	35.40577	0.75	0.4075
SLOPE	-0.03868	0.02595	321.19617	3.67	0.0843
AVAGE	6.34956	3.76232	194.28017	2.22	0.1670
SDI	0.31734	0.15974	349.14651	2.85	0.1224
AVCUT	1.16960	0.31465	1208.21280	3.95	0.0750
STUMP	-17.47485	-0.47643	-26.08694	0.00212	267.00743
AV2	0.21779	227.39766	13.82	0.0040	
VQ	00004170	0.00003373	700.60501	3.05	0.1112
VOLUME		133.68484	2.60	0.1380	
				1.01	0.0178
				0.2446	

Bounds on condition number: 24.72, 804.11

Step 10 Variable TOTB entered, $R^{2}=0.79, C(p)=8.170$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	10	2618.04950	261.80495	3.46	0.0377
Error	9	680.79768	75.64419		
Total	19	3298.84717			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-13.243 40	19.74370	34.03432	0.45	0.5192
QUANT	0.15048	0.08772	222.61790	2.94	0.1204
SLOPE	-0.051 58	0.02544	310.89408	4.11	0.0733
AVAGE	6.74888	3.50755	280.04646	3.70	0.0865
SDI	0.40970	0.15935	500.00593	6.61	0.0301
AVCUT	0.27686	0.62965	14.62456	0.19	0.6705
TOTB	-0.330 22	0.20623	193.94496	2.56	0.1438
STUMP	-15.841 55	9.35698	216.82028	2.87	0.1247
AV2	-0.497 04	0.27509	246.95518	3.26	0.1043
VQ	-18.820 87	9.69889	284.84657	3.77	0.0842
VOLUME	0.00015401	0.00007683	303.92343	4.02	0.0760

Bounds on condition number: 24.774, 1 291.5.
Note: No other variable met the 0.5 significance level for entry into the model.

Summary of forward-selection procedure for dependent variable FRATE

Step	Variable entered	Number in	Partial R^{2}	Model R^{2}	$C(p)$	F	$p>F$
1	AVCUT	1	0.1514	0.1514	9.3652	3.21	0.0899
2	VQ	2	0.1811	0.3326	5.9507	4.61	0.0464
3	AV2	3	0.0803	0.4129	5.5496	2.19	0.1584
4	AVAGE	4	0.1020	0.5149	4.5018	3.15	0.0961
5	SDI	5	0.0672	0.5820	4.4940	2.25	0.1558
6	SLOPE	6	0.0427	0.6247	5.2172	1.48	0.2454
7	QUANT	7	0.0247	0.6494	6.4791	0.85	0.3760
8	STUMP	8	0.0449	0.6943	7.1377	1.61	0.2300
9	VOLUME	9	0.0405	0.7348	7.9263	1.53	0.2446
10	TOTB	10	0.0588	0.7936	8.1689	2.56	0.1438

Obs	Dep var FRATE	Predict value	$\begin{gathered} \mathrm{SE} \\ \text { predict } \end{gathered}$	Lower 95\% mean	Upper 95\% mean	Lower 95\% predict	Upper 95\% predict	Residual	$\begin{aligned} & \mathrm{SE} \\ & \text { residual } \end{aligned}$	Student residual	-2-1-0 12	Cook's D
1	21.8000	24.4161	6.4611	9.8001	39.0322	-0.0936	48.9259	-2.6161	5.822	-0.449		0.023
2	27.8100	25.2219	3.9624	16.2584	34.1855	3.6015	46.8424	2.5881	7.742	0.334		0.003
3	18.2500	23.3204	6.0167	9.7097	36.9311	-0.6034	47.2442	-5.0704	6.280	-0.807	*	0.054
4	44.8300	51.1178	6.2393	37.0035	65.2321	26.9040	75.3317	-6.2878	6.059	-1.038	**	0.104
5	15.0400	22.2762	6.4119	7.7716	36.7809	-2.1672	46.7197	-7.2362	5.876	-1.231	**	0.164
6	38.5300	39.9718	7.2777	23.5085	56.4350	14.3176	65.6259	-1.4418	4.762	-0.303		0.019
7	32.8400	27.4843	5.7340	14.5131	40.4555	3.9184	51.0501	5.3557	6.540	0.819	*	0.047
8	32.1600	33.8062	5.8079	20.6678	46.9445	10.1479	57.4644	-1.6462	6.474	-0.254		0.005
9	33.6000	28.9774	6.6265	13.9873	43.9674	4.2428	53.7120	4.6226	5.633	0.821		0.085
10	25.5100	23.0170	7.6364	5.7422	40.2917	-3.1654	49.1993	2.4930	4.163	0.599		0.110
11	65.4800	55.1546	6.2376	41.0443	69.2650	30.9431	79.3662	10.3254	6.061	1.704	***	0.279
12	16.2500	15.6002	8.4948	-3.6163	34.8167	-11.9020	43.1024	0.6498	1.866	0.348		0.228
13	24.0000	25.8871	7.5290	8.8553	42.9190	-0.1356	51.9099	-1.8871	4.354	-0.433		0.051
14	42.0000	29.7168	4.0337	20.5921	38.8416	8.0291	51.4046	12.2832	7.705	1.594	***	0.063
15	52.0000	52.6873	5.1084	41.1312	64.2433	29.8697	75.5048	-0.6873	7.039	-0.098		0.000
16	32.3500	40.4464	7.1173	24.3461	56.5468	15.0236	65.8692	-8.0964	4.999	-1.620	***	0.483
17	25.0000	28.8747	8.0070	10.7615	46.9879	2.1317	55.6177	-3.8747	3.396	-1.141	**	0.658
18	49.9100	48.9199	6.0831	35.1590	62.6808	24.9103	72.9295	0.9901	6.216	0.159		0.002
19	37.7800	46.5264	5.5951	33.8693	59.1835	23.1320	69.9208	-8.7464	6.659	-1.314	**	0.111
20	46.0100	37.7275	6.5879	22.8246	52.6304	13.0456	62.4093	8.2825	5.678	1.459	\|****	0.260

Sum of residuals $=0$.
Sum of squared residuals $=680.79768$.
Sum of squares of predicted residual errors (press) $=3724.48208$.
Note: $\mathrm{FRATE}=$ felling rate,$C(p)=$ total squared error, $\mathrm{DF}=$ degrees of freedom, $\mathrm{AVCUT}=$ average cutblock size in hectares, $\mathrm{VQ}=$ quantitative timber size index divided by average volume per hectare, AV2 = square of average age of logging machines, AVAGE = average age of all logging machines, $\mathrm{SDI}=$ species diversification index, $\mathrm{SLOPE}=$ slope index, $\mathrm{QUANT}=$ quantitative timber size index, $\mathrm{STUMP}=$ logging methods index, VOLUME $=$ total volume harvested in cubic metres, $\mathrm{TOTB}=$ total number of cutblocks accessed during the logging season, $\mathrm{SE}=$ standard error, Cook's $\mathrm{D}=$ Cook's D influence statistic.

Step 1 Variable STUM P entered, $R^{2}=0.13, C(p)=26.441$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	1	278.10858	278.10858	3.92	0.0589
Error	25	1774.55154	70.98206		
Total	26	2052.66012			
	Parameter	Standard	Type II		
estimate	error	sum of squares	F	$p>F$	
Variable	34.49653	3.85789	5675.43583	79.96	0.0001
INTERCEP	3.77991	278.10858	3.92	0.0589	
STUMP	-5.50254				

Bounds on condition number: 1,1 .

Step 2 Variable AVAGE entered, $\mathrm{R}^{2}=0.19, \mathrm{C}(\mathrm{p})=25.119$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	2	397.33520	198.66760	2.88	0.0756
Error	24	1655.32491	68.97187		
Total	26	2052.66012			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	37.08570	4.28252	5172.33773	74.99	0.0001
AVAGE	-1.207 84	0.91867	119.22663	1.73	0.2010
STUMP	-3.958 20	2.98140	121.57073	1.76	0.1968

Bounds on condition number: $1.183738,4.73495$.

Step 3 Variable Q2 entered, $R^{2}=0.26, C(p)=23.381$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	3	531.49976	177.16659	2.68	0.0708
Error	23	1521.16036	66.13741		
Total	26	2052.66012			
	Parameter	Standard	Type II		
Variable	estimate	error			
		4.30423	5282.33480	79.87	0.0001
INTERCEP	38.46671	0.90368	143.27055	2.17	0.1546
AVAGE	-1.33005	3.18423	30.08692	0.45	0.5067
STUMP	-2.14768	0.00001	134.16455	2.03	0.1678

Bounds on condition number: $1.408155,11.39734$.

Step 4 Variable SDI entered, $\mathrm{R}^{2}=0.32, \mathrm{C}(\mathrm{p})=21.967$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	4	654.02209	163.50552	2.57	0.0662
Error	22	1398.63803	63.57445		
Total	26	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable		9.58492	486.67301	7.66	0.0113
INTERCEP	26.51954	0.89372	108.45741	1.71	0.2050
AVAGE	-1.16732	0.11727	122.52233	1.93	0.1790
SDI	0.16280	3.32115	79.78382	1.25	0.2747
STUMP	-3.72053	0.00002	191.09267	3.01	0.0970

Bounds on condition number: 1.593 614, 21.51965.

Step 5 Variable SDI2 entered, $R^{2}=0.44, C(p)=16.792$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	5	911.56006	182.31201	3.36	0.0221
Error	21	1141.10005	54.33810		
Total	26	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	-81.09889	50.22110	141.69736	2.61	0.1213
AVAGE	-0.88232	0.83656	60.44575	1.11	0.3035
SDI	2.94220	1.28128	286.52538	5.27	0.0320
STUMP	-4.83674	3.11295	131.17944	2.41	0.1352
Q2	-0.00002	0.00001	134.94394	2.48	0.1300
SDI2	-0.01727	0.00793	257.53798	4.74	0.0410

Bounds on condition number: 182.569 2, 1841.614 .

Step 6 Variable QUANT entered, $R^{2}=0.48, C(p)=17.031$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	6	974.77535	162.46256	3.01	0.0289
Error	20	1077.88477	53.89424		
Total	26	2052.66012			
		Standard	Type II		
		error	sum of squares		
Variable	estimate				
		56.72445	202.96714	3.77	0.0665
INTERCEP	-110.08091	0.09436	63.21528	1.17	0.2917
QUANT	0.10220	0.91475	14.42561	0.27	0.6106
AVAGE	-0.47326	1.29793	327.46050	6.08	0.0229
SDI	3.19935	3.61866	193.57683	3.59	0.0726
STUMP	-6.85810	0.00011	88.75676	1.65	0.2141
Q2	-0.00014	0.00802	295.02124	5.47	0.0298

Bounds on condition number: 188.89, 3 179.039.

Step 7 Variable VQ entered, $\mathrm{R}^{2}=0.52, \mathrm{C}(\mathrm{p})=16.667$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	7	1059.60388		151.37198	2.90
Error	12	993.05624	52.26612	0.0308	
Total	19	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	-146.73633	62.83562	285.02552	5.45	0.0307
QUANT	0.15345	0.10126	120.02084	2.30	0.1461
AVAGE	-0.31336	0.90953	6.20394	0.12	0.7342
SDI	4.03716	1.43744	412.28108	7.89	0.0112
STUMP	-8.66356	3.83504	266.73040	5.10	0.0358
VQ	-4.01843	3.15425	84.82853	1.62	0.2180
Q2	-0.00017	0.00011	119.54407	2.29	0.1469
SDI2	-0.02418	0.00897	379.84944	7.27	0.0143

Bounds on condition number: $241.1629,4592.732$.

Step 8 Variable VOLHA entered, $R^{2}=0.59, C(p)=14.472$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	8	1210.18556	151.27319	3.23	0.018
Error	18	842.47456	46.80414		4
Total	26	2052.66012			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-124.007 04	60.79704	194.72064	4.16	0.056
					3
QUANT	0.17120	0.09633	147.82406	3.16	0.092
					4
AVAGE	-0.519 95	0.86837	16.78059	0.36	0.556
					8
VOLHA	-0.039 81	0.02219	150.58168	3.22	0.089
					7
SDI	3.81381	1.36594	364.86780	7.80	0.012
					0

Step 9 Variable SUMWIN entered, $\mathrm{R}^{2}=0.63, \mathrm{C}(\mathrm{p})=13.969$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	9	1300.03027	144.44781	3.26	0.0172
Error	17	752.62984	44.27234		
Total	26	2052.66012			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-128.08863	59.19920	207.26311	4.68	0.0450
QUANT	0.18527	0.09421	171.20910	3.87	0.0658
AVAGE	-0.86949	0.87947	43.27270	0.98	0.3367
VOLHA	-0.04572	0.02198	191.57826	4.33	0.0529
SDI	4.07552	1.34113	408.84402	9.23	0.0074
SUMWIN	-4.43287	3.11175	89.84471	2.03	0.1724
STUMP	-11.31875	3.70901	412.30002	9.31	0.0072
VQ	-9.26720	3.99868	237.79127	5.37	0.0332
Q2	-0.00017	0.00010	119.95071	2.71	0.1181
SDI2	-0.02429	0.00834	375.80505	8.49	0.0097

Bounds on condition number: 245.997 7, 6114.541.

Step 10 Variable SORT entered, $R^{2}=0.69, C(p)=12.891$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	10	1410.50079		141.05008	3.51
Error	16	642.15932	40.13496	0.0125	
Total	26	2052.66012			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-177.04334	63.62176	310.79258	7.74	0.0133
QUANT	0.19779	0.09002	193.76304	4.83	0.0431
AVAGE	-1.31624	0.87960	89.87073	2.24	0.1540
SORT	-4.11021	2.47743	110.47052	2.75	0.1166
VOLHA	-0.03641	0.02167	113.34134	2.82	0.1123
SDI	5.45072	1.52237	514.50362	12.82	0.0025
SUMWIN	-6.18724	3.14584	155.25438	3.87	0.0668
STUMP	-9.76606	3.65336	286.79905	7.15	0.0167
VQ	-10.06494	3.83750	276.08867	6.88	0.0185
Q2	-0.00017	0.00010	127.48213	3.18	0.0937
SDI2	-0.03302	0.00952	482.42863	12.02	0.0032

Bounds on condition number: 354.328, 8948.654.

Step 11 Variable SLOPE entered, $\mathrm{R}^{2}=0.70, \mathrm{C}(\mathrm{p})=14.131$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	11	1437.79584	130.70871	3.19	0.0197
Error	15	614.86428	40.99095		
Total	26	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-204.71513	72.69117	325.10563	7.93	0.0130
QUANT	0.21050	0.09230	213.21789	5.20	0.0376
SLOPE	0.01538	0.01885	27.29504	0.67	0.4273
AVAGE	-1.21727	0.89717	75.45942	1.84	0.1949
SORT	-4.46469	2.54112	126.53770	3.09	0.0993
VOLHA	-0.03421	0.02206	98.56780	2.40	0.1418
SDI	6.03730	1.69817	518.09864	12.64	0.0029
SUMWIN	-7.07327	3.35951	181.70861	4.43	0.0525
STUMP	-11.03927	4.00826	310.92614	7.59	0.0148
VQ	-10.32979	-0.00018	0.00010	288.78731	7.05
Q2	-0.03665	0.01060	136.73272	3.34	0.0180
SDI2		489.74148	11.95	0.0878	

Bounds on condition number: 429.975 6, 11577.61 .
Step 12 Variable SLOPE2 entered, $\mathrm{R}^{2}=0.79, C(p)=10.869$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	12	1626.66582	135.55548	4.45	0.0049
Error	14	425.99430	30.42816		
Total	26	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	-169.35865	64.21673	211.63820	6.96	0.0195
QUANT	0.17770	0.08060	147.89373	4.86	0.0447
SLOPE	0.42670	0.16589	201.31447	6.62	0.0221
AVAGE	-0.90928	0.78280	41.05525	1.35	0.2648
SORT	0.18936	2.87801	0.13173	0.00	0.9485
VOLHA	-0.04067	0.01918	136.72570	4.49	0.0524
SDI	3.48624	1.78581	115.96296	3.81	0.0712
SUMWIN	-4.43876	3.08159	63.13205	2.07	0.1717
STUMP	-11.76843	3.46580	350.83696	11.53	0.0044
SLOPE2	-0.00067	0.00027	188.86998	6.21	0.0259
VQ	-8.35419	3.44554	178.88301	5.88	0.0294
Q2	-0.00017	0.00008	117.87441	3.87	0.0692
SDI2	-0.02040	0.01123	100.46883	3.30	0.0907

Bounds on condition number: 649.221 1, 21 819.57.

Step 13 Variable SB2 entered, $\mathrm{R}^{2}=0.81, C(p)=11.790$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	13	1665.38227	128.10633	4.30	0.0066
Error	13	387.27785	29.79060		
Total	26	2052.66012			

Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-182.21065	64.53276	237.50145	7.97	0.0144
QUANT	0.18153	0.07982	154.06154	5.17	0.0406
SLOPE	0.46852	0.16819	231.16447	7.76	0.0154
AVAGE	-0.95939	0.77580	45.55807	1.53	0.2381
SORT	-2.11492	3.49213	10.92665	0.37	0.5552
VOLHA	-0.04841	0.02016	171.77023	5.77	0.0320
SDI	3.72299	1.77917	130.44582	4.38	0.0566
SUMWIN	-5.10604	3.10481	80.57102	2.70	0.1240
STUMP	-12.98891	3.59253	389.42545	13.07	0.0031
SLOPE2	-0.00073	0.00027	214.99660	7.22	0.0187
VQ	-8.58284	3.41515	188.15778	6.32	0.0259
Q2	-0.00017	0.00008	119.77832	4.02	0.0662
SB2	0.26789	0.23499	38.71645	1.30	0.2749
SDI2	-0.02174	0.01117	112.81340	3.79	0.0736

Bounds on condition number: 656.459 2, 24120.81 .

Step 14 Variable AV2 entered, $R^{2}=0.82, C(p)=13.041$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	14	1692.25000	120.87500	4.02	0.0103
Error	12	360.41011	30.03418		
Total	26	2052.66012			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-156.04932	70.45284	147.34741	4.91	0.0469
QUANT	0.17319	0.08063	138.55885	4.61	0.0528
SLOPE	0.52725	0.17993	257.88645	8.59	0.0126
AVAGE	-4.73215	4.06424	40.71695	1.36	0.2669
SORT	-2.02720	3.50761	10.03203	0.33	0.5740
VOLHA	-0.05014	0.02033	182.75312	6.08	0.0297
SDI	3.02746	1.93186	73.75984	2.46	0.1431
SUMWIN	-4.62600	3.15852	64.42597	2.15	0.1687
STUMP	-12.10487	3.72631	316.94037	10.55	0.0070
AV2	0.36455	0.38544	26.86774	0.89	0.3629
SLOPE2	-0.00082	0.00029	241.82898	8.05	0.0150
VQ	-7.83721	3.51853	149.00985	4.96	0.0458
Q2	-0.00017	0.00008	124.63168	4.15	0.0643
SB2	0.26140	0.23605	36.83162	1.23	0.2898
SDI2	-0.01733	0.01215	61.13245	2.04	0.1792

Bounds on condition number: 769.849, 31 210.24.
Note: No other variable met the 0.5 significance level for entry into the model.

Summary of forward-selection procedure for dependent variable FRATE

Step	Variable entered	Number in	Partial R^{2}	Model R^{2}	$C(p)$	F	$p>F$
1	STUMP	1	0.1355	0.1355	26.4408	3.9180	0.0589
2	AVAGE	2	0.0581	0.1936	25.1190	1.7286	0.2010
3	Q2	3	0.0654	0.2589	23.3810	2.0286	0.1678
4	SDI	4	0.0597	0.3186	21.9675	1.9272	0.1990
5	SDI2	5	0.1255	0.4441	16.7922	4.7395	0.0410
6	QUANT	6	0.0308	0.4749	17.0309	1.1730	0.2917
7	VQ	7	0.0413	0.5162	16.6675	1.6230	0.2180
8	VOLHA	8	0.0734	0.5896	14.4722	3.2173	0.0897
9	SUMWIN	9	0.0438	0.6333	13.9690	2.0294	0.1724
10	SORT	10	0.0538	0.6872	12.8912	2.7525	0.1166
11	SLOPE	11	0.0133	0.7005	14.1307	0.6659	0.4273
12	SLOPE2	12	0.0920	0.7925	10.8686	6.2071	0.0259
13	SB2	13	0.0189	0.8113	11.7899	1.2996	0.2749
14	AV2	14	0.0131	0.8244	13.0414	0.8946	0.3629

Obs	Dep var FRATE	Predict value	SE predict	Lower 95\% mean	Upper 95\% mean	Lower 95\% predict	Upper 95\% predict	Residual	$\begin{gathered} \mathrm{SE} \\ \text { residual } \end{gathered}$	Student residual	-2-1-0 12	Cook's D
1	35.4100	31.9477	2.779	25.8925	38.0030	18.5595	45.3360	3.4623	4.723	0.733		0.012
2	24.8100	29.5002	4.269	20.1993	38.8010	14.3646	44.6357	-4.6902	3.437	-1.365	**	0.192
3	14.0900	15.4529	4.962	4.6414	26.2643	-0.6551	31.5608	-1.3629	2.326	-0.586	*	0.104
4	28.6100	27.3629	4.091	18.4501	36.2757	12.4627	42.2631	1.2471	3.647	0.342		0.010
5	49.2600	44.0085	4.095	35.0861	52.9308	29.1025	58.9144	5.2515	3.642	1.442	**	0.175
6	26.6700	28.2146	4.311	18.8226	37.6066	13.0229	43.4063	-1.5446	3.384	-0.456		0.023
7	35.4200	37.5516	3.919	29.0138	46.0895	22.8726	52.2307	-2.1316	3.831	-0.556		0.022
8	25.7300	21.2792	4.747	10.9358	31.6225	5.4816	37.0768	4.4508	2.738	1.625	\|***	0.529
9	15.2900	16.3437	4.974	5.5070	27.1804	0.2188	32.4686	-1.0537	2.301	-0.458		0.065
10	20.6300	20.3309	3.503	12.6987	27.9631	6.1595	34.5023	0.2991	4.215	0.071		0.000
11	38.7300	34.5181	3.668	26.5261	42.5101	20.1497	48.8865	4.2119	4.072	1.034	**	. 058
12	20.9600	20.7766	5.081	9.7054	31.8478	4.4931	37.0600	0.1834	2.053	0.089		0.003
13	33.0000	33.3236	3.761	25.1298	41.5174	18.8420	47.8052	-0.3236	3.986	-0.081		0.000
14	30.4400	27.7476	3.400	20.3391	35.1561	13.6954	41.7998	2.6924	4.298	0.626	*	0.016
15	32.7400	36.5810	3.982	27.9053	45.2566	21.8214	51.3406	-3.8410	3.766	-1.020	**	0.078
16	14.8500	18.8911	3.970	10.2404	27.5417	4.1462	33.6360	-4.0411	3.778	-1.070	** \|	0.084
17	42.3100	34.1661	3.808	25.8687	42.4635	19.6256	48.7066	8.1439	3.941	2.066		0.266
18	24.4400	29.3283	3.952	20.7178	37.9388	14.6069	44.0497	-4.8883	3.797	-1.287	** \|	0.120
19	24.7100	22.1115	4.219	12.9188	31.3042	7.0421	37.1808	2.5985	3.498	0.743		0.054
20	37.1400	38.6975	3.622	30.8068	46.5882	24.3852	53.0098	-1.5575	4.113	-0.379		0.007
21	29.3300	33.2178	3.070	26.5281	39.9075	19.5309	46.9047	-3.8878	4.540	-0.856	*	0.022
22	17.7800	18.6208	4.900	7.9443	29.2973	2.6031	34.6385	-0.8408	2.454	-0.343		0.031
23	32.6800	37.9479	2.767	31.9199	43.9760	24.5720	51.3239	-5.2679	4.731	-1.114	**	0.028
24	27.4200	26.6169	3.449	19.1031	34.1307	12.5089	40.7249	0.8031	4.259	0.189		0.002
25	15.4100	21.2633	4.238	12.0292	30.4974	6.1687	36.3579	-5.8533	3.475	-1.685	***	0.281
26	19.1300	14.1892	4.762	3.8127	24.5656	-1.6301	30.0085	4.9408	2.712	1.822	\|***	0.683
27	27.3300	24.3306	4.658	14.1815	34.4798	8.6595	40.0018	2.9994	2.887	1.039	**	0.187

Sum of residuals $=0$.

Sum of squared residuals $=360.4101$.
Sum of squares of predicted residual errors (press) $=2215.2866$.
Note: $\operatorname{FRATE}=$ processing rate,$C(p)=$ total squared error, $\mathrm{DF}=$ degrees of freedom, $\mathrm{STUMP}=$ logging methods index, AVAGE $=$ average age of logging machines, $\mathrm{Q} 2=$ square of quantitative timber size index, $\mathrm{SDI}=$ species diversification index, SDI2 $=$ square of species diversification index, $\mathrm{QUANT}=$ quantitative timber size index, $\mathrm{VQ}=$ quantitative timber size index divided by average volume per hectare, VOLHA = average volume ($\mathrm{m}^{3} / \mathrm{ha}$), SUMWIN $=$ seasonal index, SORT = sorting index, SLOPE = slope index, SLOPE 2 = square of slope index, SB2 = square of sorting index + bucking index, AV2 = square of average age of logging machines, $\mathrm{SE}=$ standard error, Cook's D = Cook's D influence statistic.

Step 1 Variable SLOPE entered, $R^{2}=0.28, C(p)=3.617$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	1	49485727.96552	49485727.96552	7.15	0.0155
Error	18	124656654.73448	6925369.70747		
Total	19	174142382.70000			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-2 598.98699	2195.20387	9707367.08928	1.40	0.2518
SLOPE	18.95143	7.08963	49485727.96552	7.15	0.0155

Bounds on condition number: 1,1 .

Step 2 Variable SLOPE2 entered, $\mathrm{R}^{2}=0.39, C(p)=2.846$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	2	67094663.15668	33547331.57834	5.33	0.0160
Error	17	107047719.54332	6296924.67902		
Total	19	174142382.70000			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-19619.760 01	10391.35429	22447685.83180	3.56	0.0762
SLOPE	134.77593	69.59163	23617783.83302	3.75	0.0696
SLOPE2	-0.182 84	0.10934	17608935.19116	2.80	0.1128

Bounds on condition number: $105.9697,23.8787$.

Step 3 Variable SORT entered, $\mathrm{R}^{2}=0.51, \mathrm{C}(\mathrm{p})=1.371$

| | DF | Sum of squares | Mean square | F | $p>F$ |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: |
| | | | | | |
| Regression | 3 | 89177157.37874 | 29725719.12625 | 5.60 | 0.0081 |
| Error | 16 | 84965225.32126 | 5310326.58258 | | |
| Total | 19 | 174142382.70000 | | | |

	Parameter estimate	Standard error	Type II Variable of squares	F	$p>F$
INTERCEP	-20310.90305	9548.65643	24026757.35698	4.52	0.0493
SLOPE	149.16667	64.29620	28582221.70503	5.38	0.0339
SORT	-1407.26211	690.09924	22082494.22206	4.16	0.0583
SLOPE2	-0.20940	0.10125	22713833.56064	4.28	0.0552

Bounds on condition number: 107.752 5, 48.2045 .

Step 4 Variable FTYPE entered, $R^{2}=0.58, C(p)=1.527$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	4	100893452.18091	25223363.04523	5.17	0.0081
Error	15	73248930.51909	4883262.03461		
Total	19	174142382.70000			
Variable	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
INTERCEP	-16 335.81968	9509.47503	14410491.91662	2.95	0.1064
SLOPE	145.72650	61.69661	27243599.34432	5.58	0.0321
FTYPE	-1719.123 58	1109.85685	11716294.80217	2.40	0.1422
SORT	-1495.819 69	664.23334	24764364.10353	5.07	0.0397
SLOPE2	-0.210 78	0.09710	23011033.28995	4.71	0.0464

Bounds on condition number: 107.761 5, 869.74.

Step 5 Variable HA entered, $R^{2}=0.67, C(p)=1.081$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	5	116437287.62415	23287457.52483	5.65	0.0047
Error	14	57705095.07585	4121792.50542		
Total	19	174142382.70000			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	-12110.97655	9003.44759	7458075.40018	1.81	0.2000
SLOPE	111.77670	59.31733	14636104.66042	3.55	0.0804
FTYPE	-2377.86152	1074.60337	20181936.85638	4.90	0.0440
HA	2.03171	1.04622	15543835.44324	3.77	0.0725
SORT	-1550.14254	610.89211	26539965.82597	6.44	0.0237
SLOPE2	0.15933	0.09306	12082926.85926	2.93	0.1089

Bounds on condition number: 117.617 8, 1 192.486.

Step 6 Variable SUM WIN entered, R $^{2}=0.69, C(p)=2.401$

	DF	Sum of squares	Mean square	F	$p>F$
Regression	6	120761396.80979	20126899.46830	4.90	0.0079
Error	13	53380985.89021	4106229.68386		
Total	19	174142382.70000			

	Parameter estimate	Standard error	Type II sum of squares	F	$p>F$
Variable					
INTERCEP	-17618.38922	10467.05647	11633931.54185	2.83	0.1162
SLOPE	140.41897	65.45459	18897944.57319	4.60	0.0514
FTYPE	-2335.34257	1073.37275	19437629.41499	4.73	0.0486
HA	1.49953	1.16593	6792214.11739	1.65	0.2208
SORT	-1455.40055	616.68783	22870599.96121	5.57	0.0346
SUMWIN	1115.08102	1086.62506	4324109.18564	1.05	0.3235
SLOPE2	-0.20484	0.10293	16263592.36551	3.96	0.0680

Bounds on condition number: $144.0013,1758.72$.
Note: No other variable met the 0.5 significance level for entry into the model.

Summary of forward-selection procedure for dependent variable PMH

Step	Variable entered	Number in	Partial R^{2}	Model R^{2}	$C(p)$	F	$p>F$
1	SLOPE	1	0.2842	0.2842	3.6172	7.1456	0.0155
2	SLOPE2	2	0.1011	0.3853	2.8461	2.7964	0.1128
3	SORT	3	0.1268	0.5121	1.3710	4.1584	0.0583
4	FTYPE	4	0.0673	0.5794	1.5272	2.3993	0.1422
5	HA	5	0.0893	0.6686	1.0811	3.7711	0.0725
6	SUMWIN	6	0.0248	0.6935	2.4006	1.0531	0.3235

Obs	Dep var FRATE	Predict value	SE predict	Lower 95\% mean	Upper 95\% mean	$\begin{aligned} & \text { Lower } \\ & 95 \% \\ & \text { predict } \end{aligned}$	Upper 95\% predict	Residual	$\begin{aligned} & \mathrm{SE} \\ & \text { residual } \end{aligned}$	Student residual	-2-1-0 12	Cook's D
1	9500.0	6284.5	1028.058	4063.5	8505.5	1375.6	11193.4	3215.5	1746.232	1.841	$\left.\right\|^{* * *}$	0.168
2	3173.5	4171.1	1206.945	1563.7	6778.6	-924.3	9266.6	-997.6	1627.732	-0.613	* 1	0.030
3	500.0	2515.5	1316.391	-328.4	5359.4	-2 704.9	7735.8	-2 015.5	1540.566	-1.308	**	0.179
4	2292.0	3325.0	1160.043	818.9	5831.1	-1719.3	8369.3	-1 033.0	1661.484	-0.622	*	0.027
5	2000.0	1171.0	1471.467	-2 007.9	4349.9	-4 239.2	6581.2	829.0	1393.203	0.595	*	0.056
6	5400.0	4076.1	959.029	2004.3	6148.0	-767.1	8919.4	1323.9	1785.075	0.742		0.023
7	6000.0	3490.6	1038.521	1247.0	5734.2	-1 428.6	8409.8	2509.4	1740.030	1.442	*	0.106
8	300.0	-650.9	974.109	-2 755.3	1453.5	-5 508.2	4206.4	950.9	1776.891	0.535		0.012
9	2000.0	5401.7	1399.684	2377.9	8425.6	81.2	10722.3	-3 401.7	1465.303	-2.322	*	0.703
10	10800.0	8484.1	1317.889	5637.0	11331.2	3262.0	13706.2	2315.9	1539.285	1.505	***	0.237
11	4000.0	4888.9	1232.683	2225.8	7551.9	-235.2	10013.0	-888.9	1608.329	-0.553	*	0.026
12	6114.5	7102.0	1385.145	4109.6	10094.5	1799.3	12404.8	-987.5	1479.054	-0.668	*	0.056
13	1080.0	413.1	1261.958	-2 313.2	3139.4	-4744.2	5570.3	666.9	1585.463	0.421		0.016
14	500.0	-830.3	1316.690	-3 674.8	2014.3	-6 051.0	4390.5	1330.3	1540.311	0.864	*	0.078
15	700.0	595.9	1262.560	-2 131.7	3323.5	-4562.0	5753.9	104.1	1584.983	0.066		0.000
16	1926.0	2815.6	815.803	1053.1	4578.0	-1903.6	7534.8	-889.6	1854.911	-0.480		0.006
17	1200.0	2871.1	1173.244	336.4	5405.7	-2 187.5	7929.6	-1 671.1	1652.189	-1.011	**	0.074
18	1000.0	1138.9	886.543	-776.3	3054.2	-3639.5	5917.3	-138.9	1822.161	-0.076		0.000
19	1000.0	2611.1	1430.075	-478.3	5700.6	-2 747.0	7969.3	-1 611.1	1435.659	-1.122	**	0.179
20	1600.0	1210.8	1054.315	-1 066.9	3488.5	-3724.0	6145.6	389.2	1730.506	0.225		0.003

Sum of residuals $=0$.
Sum of squared residuals $=53380$ 985.890.
Sum of squares of predicted residual errors (press) = 143195 263.14
Note: $\mathrm{PMH}=$ productive machine hours, $\mathrm{C}(\mathrm{p})=$ total squared error, $\mathrm{DF}=$ degrees of freedom, SLOPE $=$ slope index, SLOPE2 $=$ square of slope index, SORT = sorting index, FTYPE = forest type, HA = total area harvested, SUMWIN = seasonal index, $\mathrm{SE}=$ standard error, Cook's D = Cook's D influence statistic.

[^0]: Include Canada Pension Plan, Workmen's Compensation, Unemployment Insurance, medical benefits and vacation pay

[^1]: ${ }^{\text {a }}$ Machine vintage not available. Vintage estimated based on average age of logging machines in the Logging Cost Survey.

