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coalesce into larger patches. Outbreaks collapse when the sup-Abstract
ply of suitable pines is exhausted. Effective management of theThe identification and classification of mountain pine beetle,
mountain pine beetle is dependent upon rapid and accurateDendroctonus ponderosae (Hopk ins), red-a ttack damag e patterns
detection of population stage and trend (i.e., increasing orin a mature lodgepole pine (Pinus contorta) forest located in
decreasing). Control or suppression is only feasible forthe Fort St. James Forest District, British Columbia, was
endemic or incipient populations (e.g., Carroll and Linton,accomplished using 1999 Landsat TM satellite imagery, 1999
2002). Most beetle detection programs involve a traditionalmountain pine beetle field and aerial survey point data, and
approach based on aerial surveys. In this approach, an observerGIS forest inventory data. Unrelated variance in the observed
views the forest canopy in a fixed-wing aircraft and looks forspectral response at mountain pine beetle field and aerial
signs of attacked trees, that is, dying trees whose foliage is turn-survey points was reduced following image stratification with
ing from green to red. The boundaries of foliage reddening arethe GIS forest inventory data and removal of other factors
then mentally averaged and delineated onto a sketch map.uncharacteristic of red-attack damage. Locations of known
Ground surveyors are often used to verify the cause of the dis-mountain pine beetle infestation were used to train a maxi-
turbance and assess the severity of forest damage. The draw-mum-likelihood algorithm; overall classification accuracy was
backs of using these surveying methods are the high operation73 percent, based on an assessment of 360 independent val-
costs and many hours of manpower required. Also, mountainidation points. If local stand variability is reduced prior to
pine beetles often spread and colonize new areas before ansignature generation, accuracies and map products can be
infested area has been completely surveyed by ground or air.useful for those involved in active forest management decision-

Mountain pine beetle attacks may first create a pre-visualmaking regarding mountain pine beetle infestations.
signal, known as the green-attack stage, which may become
detectable within foliage during the fall and early winter, orIntroduction
approximately 2 to 3 months after initial attacks. This stageInfestations of mountain pine beetle, Dendroctonus ponderosae
results from changes to the cellular structures of the foliage(Hopkins), are a major forest disturbance affecting mature
(Murtha, 1978; Murtha and Wiart, 1987), likely due to waterlodgepole pine (Pinus contorta) stands in western North
deficiency as a result of interrupted translocation caused by theAmerica. In many areas of the central interior region of British
mining of beetle larvae in the phloem and the colonization ofColumbia, populations of mountain pine beetle have reached
the sapwood by pathogenic bluestain fungi introduced to theepidemic proportions, possibly as a result of successive years
tree on attack (Safranyik et al., 1974). Visually, damage is oftenof favorable weather conditions and abundant reserves of
first apparent during the spring of the following year of anmature pines. Outbreaks commonly spread over the landscape
attack as foliage becomes yellow (i.e., chlorotic) then bright redcausing widespread damage, usually expressed as the mortality
(Plate 1). Foliage discoloration in this stage is caused by chloro-of hundreds of thousands of lodgepole pine trees, and are typi-
phyll degradation as the foliage dies (Murtha, 1978). In onecally not confined to individual forest stands. This resultant
study, current red-attack foliage was brighter than foliage onmortality of trees compromises efforts towards sustainable for-
non-attacked trees in the 520- to 640-nm range (Ahern, 1988).est management. Lodgepole pine also accounts for more than
This higher reflectance was thought to be caused by a reducedhalf of the growing stock in the central interior and is the domi-
amount of chlorophyll in the attacked foliage or by a shorternant species of commercially harvested timber in the province.
optical path because of decreased scattering by a less-devel-There are four distinct stages in a mountain pine beetle
oped cell structure. The grey-attack stage occurs approxi-infestation cycle: endemic, incipient, outbreak, and collapse.
mately 2 to 3 years after initial attack as the dead needles areEndemic infestations—small populations of widely dispersed
shed, leaving the grey-colored stems and branches (Unger,beetles—usually grow into an incipient stage and then pro-
1993).gress into an outbreak stage when groups of infested trees
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Research to detect and classify red-attack damage and for-
ests severely infested by mountain pine beetles using remotely
sensed data, acquired from sensors such as the Landsat The-
matic Mapper (TM) (Renz and Nemeth, 1985) and by aerial
multispectral sensors (Gimbarzevsky et al., 1992), has been
well documented, but few operational examples exist. The
main problems have been twofold: (1) there is a very high
degree of natural variability in forests affected by the beetle,
and (2) there is a relatively small influence of beetle damage on
spectral response, particularly as measured by broadband sat-
ellite sensors, unless very large and homogeneous areas are
affected. In one study, Sirois and Ahern (1988) interpreted
SPOT HRV color composites and concluded that the minimum
red-attack damaged area was 1 to 2 ha in size wherein more
than 80 percent of the crowns were red. This threshold of detec-
tion was too great to be practical for mountain pine beetle con-
trol programs which typically require the detection of five or
more trees within an area much less than one hectare. One way
of reducing large natural variability, and simultaneously isolat-
ing the spectral distinctiveness of the beetle-induced changes
to forest canopies, is to employ stratification techniques. Frank-
lin and Raske (1994) used forest structure strata obtained from a
GIS forest inventory database to increase SPOT and Landsat TM Figure 1. Location of the study area in central British
classification of “red-stage” spruce budworm (Choristoneura Columbia.
fumiferana Clem.) defoliation by up to 30 percent. When con-
sidering satellite remote sensing in the detection and classifi-
cation of mountain pine beetle damage, the development of
strata likely requires a judicious use of the available imagery
together with field, aerial survey, and GIS data. and northwest corners of the Vanderhoof and Prince George For-

In this study, red-attack damage caused by mountain pine est Districts in British Columbia (Figure 1). There are no areas of
beetle infestation was classified using Landsat TM imagery, significant relief on either a large or small scale. The main forest
acquired on 12 September 1999, within strata developed from species in the study area include lodgepole pine, white spruce
GIS forest inventory data and with reference to field data and (Picea glauca), Engelmann spruce (Picea engelmannii), black
aerial survey information. The field and aerial survey dataset spruce (Picea mariana), trembling aspen (Populus tremuloides),
was collected in the Prince George Forest Region from 09 Aug- and Douglas fir (Pseudotsuga menziesii), with a smaller compo-
ust to 10 September 1999. Trained field and aerial observers nent of western red cedar (Thuja plicata) and sub-alpine firmapped three red-attack damage classes: less than 10, 10 to 20, (Abies lasiocarpa) (Table 1). Based on these forest species,and 21 to 50 red-attacked trees in approximately 50-meter- lodgepole pine stands were one of the youngest (104 years) anddiameter plots across a large mountain pine beetle forest infes- most dense in terms of canopy closure (51 percent). The lodge-tation. These observations were later combined into a single

pole pine stands also cover approximately 61 percent of the totalred-attack damage class which could then be compared to sam-
forested area. Aspen and Douglas fir stands occur more fre-ples obtained in non-attacked forest stands of similar composi-
quently along the western margins of the study area. Higher ele-tion and structure. A maximum-likelihood classifier based on
vations in the northern interior contain most of the sub-alpinetraining areas developed from the field and aerial samples was
fir. Forest harvesting operations are most active along the easternused to classify the satellite image to determine the occurrence
half and northern interior. Many of the cut-blocks are less thanof red-attack beetle damage. Accuracy was assessed using an
15 years of age; lodgepole pine and white spruce are the mainindependent sample of known damage sites. The result of the
forest species planted or regenerated naturally.red-attack damage classification was a map showing stands

The mountain pine beetle field and aerial survey point data-with a high likelihood of containing small groups of red-attack
set was collected from 09 August to 10 September 1999. Antrees.
observer in a helicopter counted the number of red-attack trees
directly below the aircraft, at a flying altitude of 30 to 60 meters,Study Area and Data Collection
and recorded the location of each infestation and number of red-The 5070 km2 study area is located in the lower southern half of

the Fort St. James Forest District and extends into the northeast attack trees into one of three categories: less than 10, 10 to 20,

TABLE 1. TYPE OF FOREST SPECIES AND THEIR ASSOCIATED STRUCTURAL COMPONENTS IN THE STUDY AREA

Species Code Area (ha) Volume (m3) 1DBH (cm) 2CC (%) Age (years) Height (m)

W. Red Cedar AC 60.0 8,321.0 31.3 33 109 25.7
Trembling Aspen AT 3,773.3 246,998.6 21.6 45 86 19.8
Sub-alpine Fir ALF 804.0 59,691.1 23.8 44 127 37.6
Douglas Fir FD 940.5 113,040.3 30.1 47 137 25.4
Lodgepole Pine PL 23,274.8 2,649,161.6 22.7 51 104 21.8
Engelmann Spruce ES 1,863.4 199,962.5 19.4 34 105 18.1
Black Spruce SB 1,520.8 630,788.1 9.4 33 124 11.2
White Spruce SW 6,034.5 1,024,565.4 27.7 41 128 24.9
Total 38,271.3

1DBH � diameter breast height, 2CC � canopy closure
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and 21 to 50 trees (M. Paulson, TerraPro GPS Surveys Ltd., per- stratification procedure proved to be an important component
sonal communication). For example, a point collected in the in reducing unrelated variance in the spectral response and cre-
less-than-ten-tree category represents an epicenter containing ating the desired red-attack spectral response patterns to gen-
less than ten red-attack trees in an approximate 50-meter-diame- erate a spectral signature.
ter plot area. A ground crew then walked an area around a sam- Some spruce beetle (Dendroctonus rufipennis) and west-
ple of these sites and recorded the following field data: ern balsam bark beetle (Dryocoetes confusus) infestation oc-

curred and, where noted in the field sample, were deleted. A
● type of attacking bark beetle(s) specie(s) (up to four);

similar screening decision-rule was applied to remove grey-● possible fire and water damage at the site;
attack points from the sample to avoid possible confusion with● location near road, cut-block edge, swamp, creek, lake, or beside
red-attack spectral response during classification. Finally, ansalvage and poor site conditions;

● presence of faders (synonymous with red-attack trees); and edge filter was used to delete points located near and on the
● single and scattered red-attack and grey-attack (number of trees). edges of cut-blocks, roads, rivers, and lakes in order to reduce

spectral variability caused by edge effects.The location of each field and aerial survey site was
The resulting mountain pine beetle red-attack training arearecorded in real GPS time and projected to a UTM NAD83 Zone

comprised 360 sites from only those areas observed in the field10 projection. In total, 2249 mountain pine beetle field and
or the aerial survey which were likely to have suffered moun-aerial survey points were recorded in the study area. The
tain pine beetle red-attack damage at the time of the data col-majority of these were located along the western half of the
lection. We acquired a similar size training area for non-study area, where harvesting of lodgepole pine was most
attacked forest by sampling from the large number of polygonsactive. Most of the observations were in the less-than-ten-tree
in the GIS which did not contain beetle damage but which satis-category, which comprises 82 percent of the total mountain
fied the stratification criteria. Overall, more than 700 pixelspine beetle field and aerial survey points.
were used in the generation of these two signatures, which wereA GIS forest inventory polygon dataset was used to develop
then tested for suitability as input to the maximum-likelihoodstrata of the forest composition and structure in the study area.
algorithm based on the full set of TM bands. The spectral re-Each of the forest polygons contained a large number of attri-
sponse values in each TM band of the red-attack training areabute data, including species composition, stand age (years),
pixels were very close to a normal distribution (Table 2). Singu-canopy closure (to the nearest 10 percent), height (m), dbh
larity and multicollinearity were assessed to determine the(diameter breast height, cm), volume (m3), and area (ha). The
redundancy of the variables. Singularity represents a perfectdataset was structured in vector format (1:250,000 scale) and
correlation (r � 1) between variables, which did not exist in theprojected to UTM Zone 10 on the NAD83 datum to facilitate geo-
correlations between the TM bands. Also, there were no TMmetric correction and overlay of the image and mountain pine
band correlations greater than �0.80�, suggesting that the TMbeetle survey data. The data for the forest stands were pro-
bands were relatively free from multicollinearity conditionsjected (or date-stamped) for 01 January 1999.
(Clark and Hosking, 1986).The satellite data consisted of a Landsat TM image (Path/

Row: 49/22) acquired on 12 September 1999, with approxi-
mately 0 percent cloud cover. The image solar conditions were
38.6� sun elevation and 160.3� sun azimuth. The image was

TABLE 2. SUMMARY STATISTICS OF THE MOUNTAIN PINE BEETLE FIELD ANDfirst geometrically corrected to the GIS forest inventory dataset,
AERIAL SURVEY POINTS FOR TRAINING THE LANDSAT TM CLASSIFICATIONusing a cubic-convolution resampling algorithm and 40

ground control points at key road intersections dispersed Univariate Statistics
throughout the scene, and then atmospherically corrected

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7based on a standard atmospheric model as described by Richter
(1990). In this atmospheric correction program, the ground visi- Min. 24 18 13 53 21 10

Max. 36 29 26 84 60 29bility is first determined for the image scene. Then the program
Mean 30 23 18* 66* 35 17used this estimate of the ground visibility, along with the type
Median 30 23 18 65 36 18of atmosphere and the aerosol type, the average elevation con-
Std. Dev. 2.00 1.97 2.12 7.50 5.81 3.05stant, calibration coefficients, image acquisition data, and the
Skewness �0.126 0.052 0.509 0.370 0.535 0.422solar zenith angle, to calculate the reflectance from the image Kurtosis �0.310 0.391 0.462 �0.665 1.115 0.779

DN values. The mountain pine beetle field and aerial survey
data points were then overlayed on the TM image (Plate 2). Covariance Matrix

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7Analytical Methods
Band 1 4.21A supervised classification approach was adopted based on the
Band 2 0.47 3.07large number of possible training area pixels contained in the
Band 3 0.84 0.93 4.96field and aerial survey dataset. This dataset was stratified such
Band 4 1.15 3.40 1.88 56.25that a red-attack signature was obtained from pixels with a high
Band 5 1.78 3.62 3.67 13.54 33.76degree of confidence that these pixels represented red-attack Band 7 0.66 1.85 2.29 4.65 8.98 9.30

damage at the time of image acquisition. A similar sample was
developed from healthy stands in the area to train a non- Correlation Matrix
attacked forest class. First, a forest structure mask was gener-

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7ated based on a set of host susceptibility factors. Safranyik et al.
(1974) suggested that stand susceptibility to mountain pine Band 2 0.19

Band 3 0.22 0.36beetle increases “with trees over 60 years of age and stands with
Band 4 0.17 0.52 0.26a high pine component.” We removed from further consider-
Band 5 0.21 0.55 0.40 0.65ation all field sample points which were located in polygons
Band 7 0.14 0.45 0.40 0.44 0.78composed of less than 40 percent lodgepole pine or which

were less than 60 years of age. Of the polygons remaining, 93 *Significant difference between non-attack class and red-attack class
percent were composed of lodgepole pine as the dominant spe- at 95% probability.

**All correlations significant at 90%.cies covering an area approximately 19,100 ha. Involving a data
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Plate 1. Mountain pine beetle red-attack damage (photo-
graphed by Rob Skakun, Fort St. James area, 04 Septem-
ber 2001).

TABLE 3. SUPERVISED MAXIMUM-LIKELIHOOD CLASSIFICATION ACCURACY FOR

THE RED-ATTACK CLASS AND NON-ATTACK CLASS

Percent of Pixels Classified into a Class*

1 2 Total

From Class*
1 71.1 28.9 100
2 26.7 73.3 100

Overall accuracy for the classification: 72.3%
Kappa classification accuracy: 35%
*Class 1 � non-attack
*Class 2 � red-attack Plate 2. Project study area showing locations of field and

aerial survey points overlayed on the Landsat TM image.

The maximum-likelihood algorithm is a spatially explicit
classification procedure that assigns every pixel to the class to
which it has the highest probability of being a class member (Jen-

correct; however, for an infestation less than 1.5 ha, the accu-sen, 1996). We divided the training pixels into two equal samples,
racy was less than 40 percent. In the current study, each moun-and reserved one of these to test the accuracy, using the other to
tain pine beetle field and aerial point represents a single TMgenerate class signatures for input to the maximum-likelihood
pixel, which, in turn, represents an ocularly-estimated (fromprocedure. Classification accuracy was assessed using a stand-
helicopter) 50-meter-diameter plot size (much less than 1 ha).ard confusion matrix (Congalton and Green, 1999). The produc-

The map of red-attacked forest stands is shown in Plate 3.er’s accuracy, user’s accuracy, overall accuracy, and the Kappa
Two small inset windows indicate the patchy nature of the red-coefficient were generated. Overall class accuracies are inter-
attack damage class within stand polygons. Each TM pixel inpreted here, together with a map showing red-attack damage pix-
the red-attack class represents at least nine red-attack trees.els within forest stand polygons.
Polygons with several small patches represent stands in which
beetles were relatively abundant (Inset A). Some relativelyResults
large homogeneous patches indicate high infestation areasThe classification accuracy assessment revealed that overall
(Inset B). The general appearance of the map and degree ofclassification accuracy was 72.3 percent (Table 3). The red-
detection is, however, consistent with the way in which moun-attack class was 73.3 percent correct based on the spectral
tain pine beetle infestations occurred in this area (see Sharmaresponse data obtained following stratification of the moun-
and Murtha, 2001). The map appears useful in decision makingtain pine beetle field and aerial survey calibration points. The
for forest managers for several reasons. Although it indicatesnon-attack accuracy of 71.1 percent is reasonable. This level of
only the extent of damage from the previous year’s populationaccuracy is consistent with forest classification results reported
(i.e., red-attack is the result of infestation of trees during thein a wide range of relatively homogeneous conifer stands and
preceding summer), the map provides a rapid and accuratesimple maximum-likelihood decision rules (e.g., Franklin and
quantification of the distribution of mountain pine beetle overLuther, 1995). Higher classification accuracy may have been
the landscape. This information can be used to prioritize areasachieved with greater effort in the field to collect training areas
for more detailed surveys of current (i.e., green) attack trees tofor the non-attack forest class. The red-attack class accuracy is
identify stands in which to apply direct control methods, andhigher than the accuracies of mountain pine beetle red-attack
to plan salvage logging activities. Moreover, comparison ofdamage reported previously. For example, in a study using sim-
red-attack maps among years can be used to assess populationulated Thematic Mapper data (Renz and Nemeth, 1985), infes-

tations greater than 1.5 ha were approximately 70 percent and damage trends within forest management units, and
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Plate 3. Classification of the mountain pine beetle red-attack damage class in the Fort St.
James area.

thereby allow control efforts to focus on areas where popula- pine beetle field and aerial survey point dataset. To reduce
training area variability, the training areas were stratified priortions are increasing.

Stratification of a large number of field and aerial survey to signature generation with GIS data and logical decision rules
based on host susceptibility information and forest structure.points resulted in a distinct spectral signature for red-attack

damage in relatively homogeneous lodgepole pine stands. This This was important because the high variance in spectral
response within training areas can cause an overestimation oftechnique has been used to improve classification results of

spruce budworm defoliation in conifer stands (Franklin and the red-attack damage class during supervised classification
procedures (Gimbarzevsky et al., 1992). The maximum-likeli-Raske, 1994). For example, 75 percent overall classification

accuracy was achieved based on the classification of spruce hood classification accuracy was determined to be approxi-
mately 73 percent, based on 360 independent mountain pinebudworm (Choristoneura occidentalis Free.) defoliation using

Landsat TM data in western Oregon (Franklin et al., 1995). In beetle field and aerial survey validation points. Overall, the
classification accuracy achieved in this project was higher thanthat study, stratification was accomplished using a Landsat

image acquired prior to the insect infestation occurrence (see that obtained in earlier research with Landsat TM data and for-
est damage classes because spectral differences between non-also Collins and Woodcock (1996)). However, several other

methods may be considered to improve the classification accu- attacked and red-attacked areas were enhanced through strati-
fication. Damage caused by the mountain pine beetle was notracy still further. Multispectral data from Ikonos (1- to 4-meter

spatial resolution) satellite imagery could be used for detection confounded by uncontrolled natural stand variability and the
relatively small spectral influence of a few damaged crownsof small, scattered infestations, as was the case in the present

study area. A sub-pixel TM analysis (Murtha, 2000) could also within a small area. The final classification map showed small
pockets of infestation - individual pixels within forest stands -be performed. The sub-pixel analysis process requires individ-

ual spectral signatures of background material, and then identi- which were likely the locations of mountain pine beetle red-
attack damage.fies the residual spectrum that most closely matches the spec-

trum of the material of interest (the damage class signature).
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