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Lntroduction

There are many reasons to use regression analysis 1n biolo­

gy. Often times, the sole purpose is to demonstrate the

significant effect of a controlled, or Innependent, variable (X)

on some dependent variable (Y). In many cases, however, the

analysis aims at describing tne FORM of the relationship between

X and Y, or at PREDICtING the values of Y from known values of

X. In such cases, the possibility of non-linear responses must

be considered. Quite frequently, bloloqical relationsnios are

non-linear; that Is, the dependent variable Y Is not affected

1n the same way by changes in variable X over the entire ranqe

of possible values of X. For example, consider the effect of

fertilization on tree growth. ~ small amount of.fertilizer may

double the growth rate of a tree 1n a poor soil. However, there

comes a point where further increases 1n fertIlization w1ll not

produce additional growth response, simply because growth is

also limited by other factors. Similar examples may be drawn

from any biological field.

This paper Is intended as a practical" guide for those who

wish to (or must) deal witn non-linear regression. It is not

intended as a treatise on this complex SUbject. Rather, after a

brief discussion of the proolems and techniques of non-linear

regression, we discuss the use of various simple and commonly

used equations. The aiscusslon is centered around a computer

program Which was developed in conjunction with this handbook,

and ~hlcn 15 intended to simplify the tas~ of performing

non-linear regression analysis of data on our computer sY5te~.

This program, called SEARCH (for grld-searcn), simplifies the

task of obtaining initial estimates of eqtJation parameters which

are a prerequisite to the use of the BMDP non-linear regress10n

program PAR. As an added feature, SEARCH also prepares, upnn

request, complete PAR control-language tiles. this further sim­

plifies the task of non-linear regression analysis.

Rather than present1n~ equations and dlscusslnQ what they

can do, we have chosen to classify rel~tionshlps into 8 fre­
quently encountered SHAPES. ~e then discuss some of the simple

equat10ns which can be used to produce these shapes. While this
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maKes the handbook rather long, it simplifies the task of con­

sulting it. Within each snape, several equations are often

proposed. ~or each equation, ~e discuss (1) the basic mathe~at­

ical propert1es (e.q., parameter limits); (2) the role of

parameters in establishing the exact form of a relationship;

and (3) how to Obtain initial values of the parameters 'with

SEARCH.

Non-linear reqress!on: some general principles

Whenever non-linear regression 15 to be used to describe a

set of data, the analyst is faced wIth the problem of chooslnq

"an appropriate equation. In lInear reqression, the .problem

doesn't exist, since there is.only one equ'tlon aV~llable. In

non-linear reqress1on, there may be an infinity of equations

available to describe a set of data. How does one choose 1

Several qeneral principles C~hic~ aoplY to scientific 1nqulry in

general) can be used In making tne choice. Here are a few major

ones.

A regression equation (~hen used to descrIbe a relation­

ship) is 1n fact a matnemat1cally formulated hypothesis or

theory (rarely a law). The parsimony principle Should, there­

fore, be applied: it is best to find the simplest possible

express~on which accounts for a set of facts (data). Thus, one

Should lOOK for' the simplest equation possible to describe the

major Cnon-trivial) features of a relationship. Simplicity, in

non-linear regression, is not usually evaluated by the form of

an equat1on, but rather by tne number of parameters needed to

describe a relationship. we all know that any set of n data

points may be described PERFECTLY by a polynomial of order n-1.

This, however, 1s a direct violation of statIstical la-, and of
the parsl~ony principle.

Equations, like other scientific hypotheses or theories,

should acco~nt for ALL known facts ~bout a relationship, if they
are to be generally applicable. In some eases, it may be possi­

ble to deduce some progerties of a relationship from alrea~y

established facts. In sucn cases, the form of a relationship

~av be described by a tneoret1cal equation. when available,
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such equations should be used, since they make use of a much

wider base of knowledge than just the data to be desc1oed. we
recommend tnat pairs of varIables be carefully examined, first,

for trivial relationships (e.g., surface area vs radius).

Even when a theoretical relationship cannot be deduced, it

Is possible that some other authors have already developed or

used some equat1~n(s) to descrioe a relationship similar to the

one at hand. This type of precedent may be a strong incentive

to use one equation over another. In other instances, the same

relationship may have been studied in a different way, or over a

different range of values of X by someone els~. . Such informa­

tion can and should be considered In choosing a reqression
model.

A little bit of logic may also be welcome. Many bioloqical

relationships, have obvious logical constraints, which Should be

taken into account when a valid description Is so~ght (e.g.,
zero intercept, limited growth rates). One should accomodate

these logical arguments in the chol~e of a model.

BasicallY, one should lOOK for an equation which will

remain valid for any of the possible values of the independent

variable, regardless of the ran~e of value covered by the actual

data to be analysed. Of course, this 1s onlY done whenever pos­

sible, and whenever the basic requirements of sound scientific

inference and statistical analysis are not vIolated.

The techniques of non-linear regression

Non-linear regression is a complex analytical process best

left to the computer. Nevertheless, it Is useful to understand

to a certain extent how the computer is programmed to obtain

values of the parameters which "best" describe a set of data.

~lrst, one must realIze that any given equation has its own l1m­

itations In terms of flexibility. One may thinK of an equation

as some sort of rUbber ruler, ~hlch ca" only be bent to a cer­

tain extent, and In a certain way. Thus, the "best" fitting

parameter values may still not describe a set of data very well.

This question of goodness of fit Is of central importance 1n

non-l1near regression. Yet, it 1s not easy to devise rules as
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to how well an equation should f1t dat~. This Is all a question

of deqree and can usually be answered only in terms of a SPECIF­

IC example. Nevertneless, it may be useful to consult the

chapter on parameter estimation 1n the easy-read1nq book by Gold

entitled ftMathematical Modeling of Biological Systems" (1976).

Most non-lInear reqression proqrarns are based on a techn!­

que first developed by O.~. ~arquardt In 1963, called

appropriately Marquaidt's algorithm. This technique 1s based on

minimization of the sum of squared residuals (observed minus

predicted, squared), RSS for snort. The computer is programmed

to Change parameter values in a logical fashion, compute the

RSS, change the parameter values aqain, and repeat the process

until any further reduct10n 1n this sum becomes negligible.

Th1s Is called an iterative process. Several modifications of

Marquardt's algorithm have been devised (e.g •. , Gaussian or

Newtonian iteratIon). All are based on the same princiPle, but

use a different kind of Logic to modify parameter values before

each iteration. 6bvlously, since the programs are built to ~OD­

IFY parameter estimates, initial values must be available. ~uch

of the d1fficulty of non-linear reqresslon lies 1n finding suf­

ficientty accurate InitIal estimates of the parameters.

Parameter estimates snould converqe, eventually, to a set

of values which minimizes the RSS. This 1s not necessarily

true, however. In linear regression, the normal equations

guarantee that a solution (p~rameter estimates) will be found.

In non-linear regression, oecause the proCess 1s approxl~ative,

there is no guarantee tnat a suitable set of parameter values

can be found. The first, ~ost Obnoxious, problem arises ~hen

convergence cannot be achieved. This usually means one of three

things: (1) the initial values of the parameters were not good

enough, in which case"closer. est1mates must be foundl (2) there

1s a gao 1n the data 1n a region of critical importance to the

value of one or more of tne parameters; or (3) there 1s no way

that the equation chosen can describe the data (In other words,

another eQuation should be used). A second, more intricate,

problem has to do with ho~ parameters affect the size of the

residuals. In some cases (particularlv Whith complex equations)
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the proqram can qet cauqht in ~hat e~perts refer to as a local

m1nimum 1n the RSS. One can vIsualise the RSS as a surface 1n

the n-dimensional parameter space. In this surface there may be

several hills and valleys, one of Which 1s the lowest, and con­

tains the true m1nimum RSS. Ho~ever, 1f initial parameter

estimates are not somewhere in the hills immediately around that

valley, it Is possible that the parameter estimates will con­

verge 1n some other valley elsewhere, and that tne true minimum

RSS will not be found. This problem can sometimes be detected

by examining the plot of residuals versus the X-variable. To

correct tnis problem, better Initial estimates of the parameters

must be found.

A final word of cautIon concerns ·setting limits to the

parameter values. The co~puter may, in the 1terative process,

try a wide range of parameter values, particularly i£ tne ini­

tial esti~ates were not so gaoa. In sucn cases, it is possible,

even likely, that some "crazy" values will be tried. This can

lead to problems, because there are some values which the com­

puter cannot· use. For example: division by zero, the root or

logarithm of zero or of a negative number, the exponential of a

number above about 87. Whenever possible, it Is w1se to set

limits to the parameter values so that this type of irritating

~roblem does not arise. The S€ARCH program assigns upper and

lower bounds (In the PAR ~ontrol files) to the parameters which

can lead to this type of problem.

Non-linear regression analysis is not quite as easy ~o per­

form as linear regression. ~evertheless, in most applications,

problems of tne type mentioned above do not occur. With a lit­

tle practice, the computer programs should become easy to use.

The SEARCH Proqram

The SEARCH program was designed as a tool to obtain qood
lnitial parameter estimates for all t~e equations described 1n

this handbook. Equations are referred to in tne same fashion as

1n this handbook: by snape-type and equatl~n number. As an

additional, very useful feature, SEARCH prepares P~R

control-language files uPon request (PAR Is tne BMDP non-linear
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regression analysis program).

SEARCH obtains initial estimates of the parameters by find­

ing the minimum residual sum of squares (RSSJ for a range ot

values of each parameter of ~n equAtion. The equation is chosen

by the user, after reference to this handbook. The ranges of

eaCh parameter are provided by the user. In this handbooK, for

eacn equation, we suqgest simple methods to arrive at approori­

ate ranges. Here is, brieflY, how to use SEARCH.

(1) What you need:

1. The data to oe analysed must be stored In a computer

file. Each observation [(X,Y) pair] should be entered

on a separate line. The format Is free, but values

must be separated by at least one space, or a comma.

SEARCH will read tn!s file to the end, or up to 1000

lines, and store tnese data In active memory. Any

valid lAS file name can oe use1. These files can be

created in a number of ways, including the card reader,

the PDS file-editor, or any of the data processing pro­

grams such as MINITAB, DATAENTRY, or OATATRIEVE.

2. A scatter diagram of the data to answer questions

concerning parameter r~nges and certain major features

of the more complex relationships, (such as maximum X,
Yl.

3. A copy of this handbooK, for qUiCK reference.

(2) Running the SEARCH program:

1. In response to a P~S prompt (POS», type

Run ORO:[200,203lSEARCH

2. In response to prompts from SEARCH:

a. enter the name of the file Where the data are
stored.

b. specify an equation, bV shape and equation number,
as listed in this handboo~.

c. give parameter ranges or ans~er the -simple ques­
tions concerning the riata (this 1s Where you neerl a

graph of the data), and the number of ste~s

(values) bet~een the minimum and maximum of each
parameter.
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There are some aspects worth mentioning here. Parameters such

as INTERCEPT, upper and lower ASYMPTOTES are frequently easy to

estimate visually. Purther~ore, final estimates of this type of

parameter are very easily arr1ved at by non-linear reqresslon

algorithms. Therefor~, a s~all number of steps (often only 1)

can be used for such parameters In the SEARCH program. Other

types ot parameters, sucn as multipliers and exponents, are less

easily arrived at, and require a larger number of steps (SEARCH

will accept up to 25 for each parameter). Whenever a Dara~eter

1s to be fixed (i.e., not re-estimated by PAR), enter 0 as the

number of steps. SEARCH will then instruct PAR (via the

control-language file) to FIX this parameter at the value pro­

vided by the user. We also point out that the number of

calculat10ns required to perfor~ the ~rtd-search in this program

1s the product of the number of steps ~equested for each parame­

ter. This number, therefore, can become'quite large when ~ore

than two or three parameters are being estimated. SEARCH has

been programmed to refuse more than 10,000 loops through the

data. This limits the number of steps Which can be requested to

a number which ~11l not be pronibitive.

(3) When to stop SEARCH and get final estimates with PAR:

1. After Obtaining parameter estimates for you, SEARCH

will prompt for directions on what do no next. You ~ay

either try to obtain better estimates (F tor further

searcnlng), stop (5 for stop) or start over again w1th

a different equation (R for restart). Whenever one or

more of the initial ~ara~eter estimates arrived at by

SEARCH lies against either limit of the range specified

bV the user, a ne~ ranqe encompassing tnis value should

De tried. If this PfoDlem does not arIse,.we recommenrt

that you stop, or perhaps perform a second run with

narrower ranges 1n a complex equation.

2. If you opt to stop, SEARCH ~ill ask you 1f you require

a BMDP PAR file. If you don't, type N and the proara~

will terminate. 1f you do, tyoe Y and SEARCH will

prompt you for tne control file name and a title to be
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generated 1n the PAR output. This file contains all

the instructions necessary to obtain final estimates of
the parameters. there should rarely ~e any need to

modify these control files. If this need occurs,

however, consult Biometrics Services for assistance.

(4) Running the 8MDP Non-linear regression program PAR:

1. In response to a PDS prompt (POS», type

Run ORO:[200,203]@AR

2. In response to a PAR promDt (PAR», type either

a. TI:=control file name (for output directed to your
terminal) or

b. LPO:=c:ontrol file name (for output directed to the
line print~r).
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Classification of relationShips by shape

In the figure below, we have classified commonly encoun­

tered types of non-linear relationships into 8 basic SHAPES. To

use this handboOk, first oota!n a scatter diagram of the data to

be analysed, consult this figure, and then go directlY to the
section wnere the selected snape 1s discussed.

<D Page n

@ Page 23 @

1
Page 29--

>-
®

Page 43

® Page 51

---x ·
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TtPE 1

Type 1 eQuations are cnaracterlzed by a gradual increase in

the slope of the X-Y relationship as X increases. This type of

relatlonsnlp is frequently encounter~d In biology. One must

realize that Y increases very rapidlv to infinity as X becomes

larger. Few bloloqlcal quantit1es actually do this. However,

it may be that it Is r.ot Y ~hlch is limited to a realistic ~axl­

mum, but ra~her X. In such cases, a Type 1 relationShip Is

quite poss1ble.
We propose 2 equations "for tn.ts type of relationship. Both

are simple (3 parameters). Equation [1-1] Is nevertheless pre­
ferred, because of the intuitive simplicity of its parameters,

and because the intercept can easily be fixed. This is not the

case for equation (1-21. An example of data wnlcn 1s suitably

described by a Type 1 relationship Is illustrated 1n Fig. 1-0.

The two regression lines were ootalned by fitting both eQuations
to the data.

Fig. 1-0
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TYPE 1 - Equation 1 (The Power Function)

------~~-~----------~---~--~-~---~~--._-~~---~---~-~---~---~----
where X ~ 0

P3
P2 XPl +=y

I
i
I

I

[1-·1] !,.
-----~--_.-------------------------~._~~----~-~------~---~-----~1. Parameter limits

- co < Pl < co
o < P2 < co
1 < P3 < co..

2. Role of tne parameters

P1: The intercept Yo (val~e of Y when X = 0).

P2: Scales the values of Y with respect to X. Thus,
changes the dImensions of the Y aXIs, without affecting
either curvature or startlnq point (Flq•. 1-1a).

P3: Changes the curvature of the relatlonshlD (Pig.
1-1b). P3 also affects' the size of the Y ax1s, and
therefore P2 must be adjusted to compensate for changes
1n P3. When P3 = 1, the relationship is a stralQht
line (linear regression ~odel). When P3 Is large
( > 4) the relat10nsnip Is virtually horizontal at low
X values, and soars up as X increases.

Fig. 1-1

1

o

A

x x
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3. Initial parameter estimation Csee page 7, item c)

A ranqe of values for tne parameters of equation. [1-1]
to be used in conjunction ~1th SEARCH can be obtained
1n the following ~anner.

First, obtain a ranqe of values for P1. How wide a
range can be determIned from the amount of "noise"
(error term) associated with Y In tne low range at X.
8ecause this parameter is quite simple to estimate, ~e
suqgest a small nU~ber of steps (1 to 10). If ~n
intercept can be deduced from logical arguments, Pl can
be fixed by specifying ~ of steps = o. In our eXamole
(Fig. 1-0),' the intercept 15 obviously close to zero.
However, we use the ranqe CO, 0], # of steps = 1,
because ~e want PAR to come up with a more precise
estimate.

A range of values for P2 is not easily defined because
it 1s dependent upon the value of P3. However, a rUle
of thumb can be apPlied. Since P3 > 1, we can assum~
that the maximum value of P2 will not exceed the ratio
of the maximum ~-value to the maximum X-value
(Ymax/Xmax). Obtain thts r~tio visually (i.e, Is the
ratio half? two-fold?), and try a range of
[Of Ymax/XmaxJ,~1tn a larqe number of steps (15 to
25J. In our example (~iq. 1-0) the ratio Ymax/Xmax 15
approximately 1/2. lnerefore, the ranqe (0, .5J could
be used.

Compare your data with Fig 1-1b for curvature.
Choose a realistic but SUfficientlY wIde ranqe of P3
values. FOLLOW T~E RECOM~ENDATION OF SEARCH concerning
the maximum allowable value of P3. Failure to do so
may lead to numbers too larqe for the computer to han­
dle. In choosing tne maximum value for P3, consider
that P3 > 10 shou11 rarelY occur. In our example (Flq.
1-0l L an appropriate range of values of P3 ~ould be
CiS ~.5]. We suqgest a large numb@r of steps (15 to
25 for this parameter as well.

For our example, SEARCH found a minimum RSS of 98.6
CS = .909), and PAR gave an RSS Of 90.7 (S = .917) .!th
final (converged) values of PI = -.17, P2 = .037, and
P3 = 1.64.
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TYPE 1 - EQUATION 2 (The Exponential Function)

PAGE: 14

-----------------------------.-------------------------------.-I P3 X '
i Y = PI T P2 e where X > 0 [1-2] I! !

------~---------~-~----~---~-.---------~-------~-------~-----~-1. Parameter limits
-co < Pi < co
o < P2 < co
o < P3 < co

2. Role of tne parameters

PI: Part of the intercept Yo (value of 1 when X = 0).
we note that Yo = Pl + P2. PI shifts the whole cu~ve
up and down on the ~ axis. The intercept, Yo, cannot
be readily forced tnrouqn a fixed po1nt (e.g., zero)
with this equation 1n non-linear regress10n analysis.

P2: . Scales the values of Y with respect to X. ThUS,
changes the dimensions ot the Y axis, w1thout affecting
tha curvature (Fig. 1-2a). Also partly determines the
intercept.

P3: Changes the APPARENT curvature (Fig. 1-2b), by
scaling the values of X. Determines the portion of an
eXPonential curve wnicn 1s seen over the ranqe of
values of X.

Fig. 1-2

>-

1

o
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x x
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3. Initial Parameter EstImation (see page 7, Item c)

A range of values for tne parameters of equation [1-2]
to be used in conjunction with SEARCH can be ootalned
in the following nanner.

FIrst, compare your data ~lth F1q. 1-2b, and cnoose a
tentative range of values of P3. We note that the max­
imum X Value In Fig. 1-2b is t. ThuS, s1nce P3 SCALESXl a valid range of values for P3 can be obtained by
d v1ding the values oota1ned from Fia. 1-2b by the
maximum X value in your data (Xmax). A large number of
steps t15 to 25) is recommended. In our example (Flq.
1-0), we obtained a range of [.5, 3] from Fig. 1-2b,
and divided by Xmax = 50 to obtain a range of
[.01, .06] for P3.

Parameter P2 depends on the value of P3. We suggest 0
as a convenient minimum. An a~oroprlate maximum value
of P2 should not exceed the maximum Y value (Ymax),
since it would i~plV such a low P3 tnat the curvature
of the relationShip ~ould be undetectable. Most like-

,lV, P2 will be much smaller than Ymax. A larqe number
of steps C15 to 25) 1s recom~ended. In our examole
(FIg. 1-0), we cnose a ranqe of [0, 10), which implies
a s1gn1£lcant curvature.

A range of values of PI 1s ~eterrn1ned from the ranqe of
values of P2, and tne approximate value of Yo. Because
Yo =PI + P2, we note tnat Pt = Yo - P2. ThUS the gen­
eral range [(Yo~maxlmuffi value ~f P2), (Yo-minimum value
of P2)] should be ~sed. A larqe number of steps (15 to
25) 1s recommended. In our exam~le, since Yo Is close
to zero, -we used toe range [-10, 0] for Pl.

For our example, SEARCH found a minImum RSS of 91.6
(5 = .916), and PAR gave an RSS of 91.2 (S = .916) with
final (converged) values of P1 = -9.25, P2 =8.42, and
P3 = .027.
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'rYPE 2

Type 2 equations are cnaracterlzed by a gradual decrease In

the slope of tne X-V relat10nsnlp as X increases. They resemble

closely the "dlmlnlshinq return" equations 1n all but one

respect: the value of Y does not ten~ to a maximum, but contin­

ues increasing w1thout bounds as X increases. In many cases,

Type 2 equations are justif1ed When values o~ X outside the

observed range are unlikely.

We propose 2 equations for this tvoe of relationship. Roth

are simple (3 parameters). Nevertheless, equation (2-1] is pre­

ferTed, because it Is more ~idelY used in scientific literature.
However, equation [2-2] has more intuitive appeal, since it 15

quite similar to a linear regression between Y and the logar­

ithmic transform of X. An example of data which is suitably

described by a Type 2 relationsnip Is illustrated 1n Fig. 2-0.
The two regress10n lines ~ere oota1ned by flttlnq both equations

to the data.

Fig. 2-0

4
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TYPE 2 - EQUATION 1 (The p~wp.r Function)

PAGE 18

------~-._-----~-------~~--------~--.-----~--------~-~------~---, P3 '
i Y = Pi + P2 X ~here X ~ 0 [2-1] i
! !
~--.---~-~-----~------~~---------~--~-~~------~-----------------1. parameter limits

- co < P1 < co
o < P2 < co
o < P3 < 1

2. Role of the parameters

P1: The intercept ~o ,(value of Y when X = 0).

P2: Scales the values of Y with respect to X. ThUS,
changes the dimensions of the Y axis, without affecting
either curvature or startinq Doint. (Fig. 2-1a).

P3: Changes, the curvature of the relatlon~h1p (P1~.
2-1b). P3' also affects the size of the Yaxis. P2
must be adjusted to compensate for Changes In P3. When
P3 = o( tnere 1s no relationship (hor1zontal line).
~hen p~ is close to 1 the relationsnip 15 a straiqnt
line '(linear regress10n model). With P3 small (but
still larger than 0), the curvature 15 very strong.

o x

Fig. 2-1

1

1 0 x 1
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3. Initial Parameter Estimation (see page 7, item c)

The range of values of tne Darameters of equatIon [2-1J
to be used in conjunction· with SEARCH can be obtained
in the following manner.

First, obtain a range of values for Pl. How wide a
range can be deter~ined from the amount of ~nolseM
(error term) associated ~1th y 1n the low range of X.
If an intercept can be deduced from logical arguments,
P1 can be fixed (specify ~ of steps = 0). In our exam­
ple (Fig. 2-0), tne intercept Is obviouSly close to
zero. we thUS used tne range [0, 0] (# of steps = 1).

A range of values for P2 is not easilY defined because
It Is dependent upon the value of P3. Ho~ever, a rule
of thumb can be applied. In the extreme, P3 = 1 (no
curvature), and tne ffiinlmum possible value of P2 Is the
ratio of maXiinum y-value to max1mum X-value
(Ymax/Xmax). A max1~um value for P2 is not as readily
found, but one can assume that it should not excee~
Ymax, when Xmax > 1. Obtain the Ymax/Xmax ratio visu­
ally (i.e, Is the ratio half? Two-fold?). We sUQqest
a range of [Y~ax/Xmax, Ymaxl, with a large number of
steps for this parameter (15 to 25). In our example
(Fig. 2-0) tne ratio rmax/X~ax lsapproxlmately 1/10.
Since the value of ~~ax is about 4, tne range [.1, 4]
could be used.

Next, compare lour data ~lth Fiq. 2-1b for curvature.
Choose a rea 1st1c but sufficIently wide range of P3
values (often, the range [0,1] Is convenient). In our
example (Fig. 2-0), an aoprooriate range of values of
P3 may be [.2, .71. we su~gest a large number of steps

'(15 to 25) for thIs parameter as well.

For our example, SEARCH found ~ mInimum RSS of 1.86
(5 = .948), and p~~ gave an RSS of 1.55 (S - .956) witn
final (converged) values of P1 = -.354, P2 = .767, and
P3 = .414.
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TYPE 2 - EQUATION 2 (Ine Loqarithmlc Function)

---------------------------------------------------------------t I

! Y = Pl + P2 Ln(P3 X + 1) Where X ~ 0 (2-2] !
t t. .---------------------------------------------------------------1. Parameter Limits

.00< Pi < 00
o < P2 < 00
o < P3 < 00

2. Role of the Parameters
Pl: Thelntercept Yo (value of Y when X = 0').

P2: Scales the values of Y with respect to X. Thus,
chanqes the dimensions of the Y axiS L without affect~ng
either curvature or startlnq point (y!g. 2-2a).

P3: Chanqes the APPARENT curvature (F1g. 2-~b), by
scaling the values of X. Determines the portion of a
loqarlthm1c curve wnicn 1s seen over the ranqe of
values of X.

x1 0x

Fig. 2-2
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3. Init1al Parameter estimation (see page 7, item c)

The range of values of the parameters of equation [2-2]
to be 'used in conjunctIon with SEARCH can be oDtained
In toe following manner.

First, obtain a ranae of values for Pl. How wide a
range can be determined from the amount of "noise"
(error ter~) associated with Y in the low range of X.
If an intercept can be deduced from logical arguments,
Pi can be fixed (spec1fy # of steps = 0). In our exam­
ple (Fig. 2-0), tne interceot 1s obviously close to
zero. We thUs used tne range [0, 0] C' of steps = 1).

A rang~ of values for P2 Is not easily defined because
it is dependent upon tne value of P3. However, a rule
of thumb can be app11ed. In the extreme, P) Is close
to 0 (no curvature), and the ~aXlmum possible value of
P2 can be Infinite. In practical terms, however, the
curvature would oe undetectable 1f P3 < (.S/Ymax), 1n
which case P2 would be rouqhlY 2 x Ymax (where Ymax 1s
the maxImUm value of Y). For strong curvatures, P2
would be much smaller. A pr~ct1cal range ~ould there­
fore be [0, Y~ax], w1tn a larqe number of steps (15-25)
for initial estimation. Por our example (FIg. 2-0),
an appropriate range of P7. would be [0, 4].' .

Next, compare your data with ~!q. 2-2b, and choose a
tentative range of values of P3. We note that the max-·
imum X value 1n Plq. 2-2b is 1. Thus, since P3 SCALES
Xi a valid range of values for P3 can be obtained by
d v1dlng tne values taKen fro~ F1q. 2-2b by the maxi­
mum X value in your data (Xmax). A large number of
steps CiS to 25) 1s recommended. In.our example (Flq.
2-0), we chose a ranqe of (5, 50J from Fig. 2-2b, and
divided by Xmax =50 to obtain a range of - (.1, 1] for
P3.

For our example, S€ARCH found a minimum RSS of 1.65
(5 = .954), and PAR gave an RSS of 1.59 (5 = .955) with
final (converged) values of PI = .074, P2 = 1.171, and
P3 = .297.
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Type 3 equations are cnaracter1zed by a qradual decrease of

Y as X increases. Tne rate of decrease of Y is rapid at first,

but eventually becomes very small, as Y approaches a mlnl~um

value (e.Q., Ymln = 0). this value is often called the lower

ASY~PTOTE of I, a value WhiCh is never quite reached by Y.

We propose 2 equations for this type of relationship.

Although botn are fairly simple, we prefer equation [3-11,

because it has fewer parameters, and Is much easier for PAR to

handle. In equation [3-2], it Is often necessary to FIX the

value of parameter P3 In order to achieve convergence. We suq­

gest trying equation [3-1] fIrst. If the fit Is unsatisfactory,

then equation [3-21 can be tried. An example of data which is

.suitably described by a fype 3 equation is illustrated In Fig.

3-0. The two regression lines ~ere obtained by fitting both
equations to the data.

Fig. 3-0
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TYPE 3 - EQUATION 1 erne Exponential Function)

-------~----~-----~---~--.-----._~-----------~---~~----~~----~--I P3 X '! Y = P1 + P2 e where X ~ 0 [3-1l i
I t. .
----------------------------------------------------------------1. Parameter Limits

_ca( Pi < ca
o < P2 < ca

- ca ( P3 < 0
2. Role of the Parameters

Pi: Lower asymptote Ymln (value of Y wnen X->ca ).

P2: Chanqes the magnitude of Y (Fig.. 3-la).
Therefore, determines! along ~lth P1, the intercept Yo
(value of Y when X =OJ. We note that Yo = P1 + P2.
ThuS, P2 = Yo - Pl.
P): Chanqes the APPARENT curvature of the relationship
(Fig. 3-1b), bV scaling the values of X. Determines
the portion of an exponential curve which Is seen over
the range of values of X. When P3 = 0, there 15 no
relat1onshl0 (horizontal line). when P3 Is very small
(i.e., neQat1vely large), the curvature Is stronq.
wIth P3 close to zero, the curvature Is weak.

Fig. 3-1

1x1 0x

1

oL--=::::===~~~
o



Non-linear reqresslon ••• Regnlere and Beilhartz PAGE 25

3. In1tial Parameter €stl~ation (see page 7, item c)

The range of values ot the oarameters of equation (3-1]
to be used 1n conjunction with SEARCH can be obtained
as follows.

First, obtain a range of values for P1. How wide a
range can oe deter~ined from the amount of ~nolse"
(error term) associated with Y 1n the h1qh ranae ot x.
If a lower asymptote can be 1educed from logical arqu­
ments, P1 can be fixed (specify # of steps = 0). In
our example (fl1. 3-0), the lower asymptote Is obvi­
ously close to zero. ~e thUS used the ranqe [0, 0] (#
of steps =1).

Second, estimate a range of values for the intercept
(Yo). A suitable range of values of P2 1s given by:

[P2m1n, P2maxJ = [Yomin-Plmax, Yomax-Plm1n]

In our example (Fig. 3-0), Yo ranges between 0.6 and
0.8. ThUS, since PI is very close to 0, an appropriate
range for P2 would be £.6-0, .8-0] = [.6, .8]. .

Third, compare your data with Fig. 3-1b, and choose a
tentative range of values of P3. we note that the max­
imum X value In Fig. 3-1b 1s 1. ThUS, since P3 SCALESXl a valid ranqe of values for P3 can be obta1ned by
d vidlng the values ootained from Fig. 3-1b bv tne
maximum X value in your data (Xmax). A large number of
steps (15 to 25) is recommended. In our example (Fiq.
3-0), we obtained a range of [-6, -3J from Fig. 3-1b
(since Xmax = 1 in tnis case, it was not necessary to
alter this range.)

For our example, SgAHCH foun~ a minimum RSS of 0.08
(S = .920), and PAR gave an RSS of 0.076 (S = .925)
with final (converged) values of P1 = -.034, P2 = .694,
and P3 = -3.538.
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TYPE 3 - EQUATIUN 2 (The Power Function)

.------~-~---~---~-------------------------~------------_._~----
where X ~ 0

P4
... 1) .P1 + P2 (P3 X::y

I

i
i

,
[3-2] !,. .

-~----~---------~-~---~---_.~~----~-~--~--~--~--------~----~-~--1. Parameter Lim1ts
-co< P1 < co
o < P2 < co
o < P3 < co

- co < P4 < 0
2. Role of tne Parameters

PI: Lower asymptote ~rnin (value Of Y when X-> co ).

~2: Changes the magnitude of Y (Fiq. 3-2al.
Therefore, determines! along with Pi, the intercept Yo
(value of Y when X =OJ. We note that Yo:: Pi + P2.
Thus, P2 = Yo - Pl.
P3: Scales the values of X. This parameter Qlves
additional flexibility to the equation, and is neces­
sary because of tne "+ 1" term In equat10n [3-2] •.

P4: Changes the curvature of the relationship CFiq.
3-2b). When P4 = 0, tnere is no relat10nship (horizon­
tal l1ne). When P4 15 very small (i.e., neQat1velv
larqe), the curvature 1s stronq. With P4 larqe (but
still smaller than 0), the curvature is weak. .

Fig. 3-2
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3. Initial Parameter Es~imation (see page 7, item c)

The ranqe of values of the parameters of equation (3-2]
to be used 1n conjunction with 5~ARCH can be obtai~ed
as follows.

First, obtain a r3nge of v~lues for Pl. How wide a
range can be determined from the amount of "noise"
(error term) associated with Y in the high ranqe of X.
If a lower asymptote can be deduced from logical ar~u­
ments, Pl can be fixed by spp.c1£v1nq # of steps = O.
However l In our e~a~ple (F1q. 3-0), althouoh the lower
asympto~e 1s obviouslY close to zero, we stIll want PAR
to estimate it and tnus we use the range ro, 0] with #
of steps = 1.

Second, estimate a ran~e of values for the intercept
(Yo). A suitable range of values of P2 Is given by:

[P2mln, P~maxJ = CYomtn-Ptmax, Yomax-Plminl

where Yamin is your estimate of the smallest value Yo
could be, and lomax 1s your estimate of the larqest
value Yo could be. We suqqest a large number of steps
(15 to 25) for this parameter~ In our example (Piq.
3-0), Yo ranges between 0.6 an" 0.8. Thus, since Pi 1s
very close to 0, an approp~iate ranqe for P2 would be
£.6-0, .a-OJ = [.6, .8l.
Parameter P3 1s useful only to scale X so that a co~­
parison can be made between data and the curves in Flq.
3-2b. Thus the value of P3 should be fixed (specifv ~
of steps = 0) at l/Xmax. In some cases, it m.ay be use­
ful to leave P3 as a parameter to be estimated, and
then a ranqe for Xmax should be obtained graphically.
In our example, Xmax = 1, and therefore P3 = 1.

Finally, compare your data ~lth Fia. 3-2b for curva­
ture. Choose a realistic but SUfficientlY wide ranqe
of P4 values. In chooslnq the minimum value for P4,
cons1der that P4 < -10 could rarely occur. In our
example (Fig. 3-0), an·appropr1ate range of values Of
P4 may be (-10, -4J. We sugaest a large number of
steps (15 to 25) for this parameter.

For our example, SEARCH found a minimum RSS of 0.09
(S = .908), and PAR gave an RSS of 0.08 (5 = .921) with
final (converged) values of Pl = -.08, P2 = .747,
P3 = 1 (fixed), and P4 = -3.633.



Non-linear regression ••• Reqniere and Bel1hartz PAGE 29

-lYPE 4

Type 4 equatIons are characterized by a gradual decrease in

the slope of the X-y relatlonshlo as X increases. The rate of

increase of Y Is very high at first, but qradually decreases to

near zero, as Y approaches a maximum value (Ymax). This value

is often called the upper ASYMPTOTE of Y, a value which is never

quite reached by Y.

we propose 2 equations for this type of relationshl~.

Equation [4-1] 1s preferred ~ecause it is simpler and more wide­

ly used In scientific literature (the typical dimlnlsnlng

return, or Poisson, function). Fitting eQuation [4-2] to data

often requires that parameter P3 be fixed, so that convergence

can be achieved. We suggest trying equation [4-1] first, and If

a satisfactory fit Is not Obtained, then trying equation [4-2].

An example' of data which 1s sui tabl y descri bed by a Type 4 equa­

tion 1s illustrated In Fig. 4-0. The two regression lines were

obtained ~y fitting both equat10ns to the data.

Fig. 4-0
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TYPE 4 - EQUATION 1 (The Potsson Function)

PAGE 30

------~------------------------------~-----~~-------~~---~-----~, -P3 X I

! y = P1 + P2 (1 - e ) where X > 0 (4-1] !
! !
----~---~-------------------------~----_._------------~---~--.-~1. Parameter Limits

- co < Pi < co
o < P2 < ca
o < P3 < ca

2. Role of the Parameters

PI: The intercept lo (value of Y when X = 0).

P2: Determines, along w1th P1, the upper asymotote
(Fig. 4-1a). We note that Y = Pl + P2when X-> ca.

P3: Changes the APPARENT curvature of the relationship
(Fig. 4-1b), by scaling the values of X. Determines
the portion of a Poisson curve which 15 seen over the
ranqe of values of X. When P3 =0, there 1s no rela­
tionship (Y =P1). when P3 Is large, the curvature 1s
strong. With P] close to zero, the curvature Is weak.

Fig. 4-1
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3. InItial Parameter Estimation (see page 7, item c)

The range ot values of the parameters of equation [4-1]
to be used 1n conjunction w1th SEARCH can be obtained
as follows.

First, obtain a rdnge of values for Pl. How wide a
range can be deter~ined from the amount of "noise"
(error term) assoc1ated ~lth Y In the low range of X.
If an intercept can oe deduced from logical arguments,
P1 can be fixed (specify' of steps =0). In our exam­
ple (Fig. 4-0), the intercept is obviously close to
zero. We thus usej tne range CO, 0] 't of steps = 1).

Second, estimate a range of values for the upper asvmp­
tote (Amin, Amax). A suitable range of values of P2 is
obtained by substractlng tne h1Qner limit of Pl (Plmax)
from Amin, and the lo~er limit of Pl (Plm1n) from ~max:

[P2min, P2maxJ = (Amin-Plmax, Amax-P1min]

In our example (Fig. 4-0), the upper asymptote lies
between .75 and 1. 2S. Since the intercept- is very
close to 0L an appropriate range for P2 would be
[.75-0, 1.~5-0] = [.75, 1.25J.

Third, compare your data with Fiq. 4-1b, and choose a
tentatlv~ ranqe of values of P3. We note that the max·
imum X value in Fig. 4-1b is 1. Thus, since P3 SCALES
X a valid range of values for P3 can be obtained by
dividIng tne values obtained from Fig. 4-10 bY the
maximum X value in your data (Xmax). A larqe number of
steps C15 to 25) 1s recommended. In our example (~Iq.
4-0), ~e obtained a range of [1, 5] from Fig. 4-1b
(sInce Xmax = 1 In this case, it was not necessary to
alter this range.)

For our example, 5€ARCH found a minimum RSS of 0.20
(5 = .856), and PAR gave an RSS of 0.197 (S = .858)
witn fInal (converged) values of P1 = -.041, P2 = .929,
and P3 =4.09.
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TYPE 4 - EQUATION 2 (The Po~er Function)

---------~-----~-~--~----------------~~~.-~--~---~----~~~--.----t

[4-2] i
!

where X > 0
P4

... 1)PI + P2 CP3 X=y
I

!
I.
-~-~~---------~--------------.--~----~--~--~--------------------1. Parameter Limits

-CD"< PI <CD

- CD < P2 < 0
o < P3 < CD

- CD < P4 < 0
2. Role of the Parameters

P1: Upper asymptote (Y=Ymax when X-)CD ).

P2: Changes the magnitude of Y (Fig. 4-2a).
Therefore, determines, along with P1, the intercept (Yo
when X = 0). We note that Yo = Pl + P2. Thus,
P2 = Yo - Pl. Rememoer that P2 < o.
P3: Scales the values of X. This parameter gives
additional flexibi11tV to the equation, and 1s neces­
sary because of tne "+ 1" term in equation 4-2.

P4: Changes the curvature of the relationship (Fig.
4-2b). ~hen P4 = 0, there is no relationship (horizon­
tal line). When P4 is very small (i.e., neqativelY
larqe), the curvature 1s strong. with P4 large (but
stlll smaller than 0), the curvature 1s weak.

Fig. 4-2
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3. Initial Parameter Estl~at!on (see paqe 7, item c)

The range of values of the parameters of equation [4-2]
to be used in conjunction with SEARCH can be obta1ne1
as follows.

First, obtain a range ot values for Pl. How wide a
range can be determined from the amount of "noise"
(error term) associated with Y in the high range of X.
If~an upper asymptote can be deduced from logical argu­
ments, PI can be fixed (specifV # of steps = 0). In
our example (Fig. 4-0), the upper asymptote sould lie
within the range (.7, 1.1].

Second, estimate a range of values for the intercept
(Yo). A suitable range of values ot P2 1s given bY:

CP2min, P2max] = CYomin-P1max, Yomax-P1minJ

We suggest a large number of steps (15 to 25) for this
param~ter. In our example (Fig. 4-0), Yo is very
close to O. Thus, since P1 ranges between .7 and 1.1,
an appropriate range for P2 would be [0-.7! 0-1.1] =
[-1.1, -.71. We sugyest a large number of terations
(15 to 25) for this parameter.

Parameter P3 1s useful only to scale X so that a com­
parison can be made between data and the curves 1n Flq.
4-2b. Thus tne value of P3 should be fixed (specify #
of steps = 0) at l/Xmax. In some cases, it may be use­
ful to leave P3 as a parameter to be estimated, and
then a ranqe for Xmax should be obtained graphically.
In our example, Xmax =1, and therefore P3 = 1.
Finally, compare your data with Fiq. 4-2b for curva­
ture. Choose a realistic but sufficiently ~ide range
of P4 values. In cnooslnq the minimum value for P4,
consider that P4 < -10 could rarely occur. In our
example (Fig. 4-0), an appropriate ranqe of values of
P4 may be [-5, -lJ. we suqqest a large number of steps
(15 to 25) for this parameter.

For our example, SEARCH found a minimum RSS of 0.199
(S = .857), and PAR gave an RSS of 0.198 (S = .857)
with final (conver~ed) values of Pl = .946, P2 =-1.0,
P3 = 1 (fixed), and P4 = -4.202.
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TYPE 5

Type 5 equations are the s1gmolds. These relationShips are

characterized by the fact tnat Y Is bounded by two asymptotes,

upper and lower, between whlcn it varies. We propose 3 dif­

ferent sigmoid functions. These 3 equations are not similar In

complexity, and apply to slightly different sigmoid shapes or

conditions. Equation [5-1J snouid be applied to symetrlcal sig­

molds or to relationships ~here the lower leQ is much lonQer

than the upper leg. Equation (5-2] should be applied to slg­

moids where the lower leg Is much Shorter than the upper leq.

Equation [5-3J applies to cases ~here X varies between two logi­

cally established limits C.Xmin and Xmax) .(e.g., 0 to 100%).

An example of data which 1s suitably described by a Type 5

equation is illustrated 1n Fig. 5-0. The three regression

lines were obtained by fitting all three eQuations to the data.

Fig. 5-0
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TYPE 5 - EQUATION 1 (The Logistic Equation)

---~--~------~-~-----~------------~----~----~------------------~,
I,
i. y -- -P3(X-P4)

PI + P2 [1/(1 + e )
P5

] where X ~ 0

1
•

[s-ll I
!

-~----~--~-------~-~-----------~-----~--------~-----~----~------1. Parameter Limits
-00< P1 < 00

- 00 < P2 < 00

o < P3 < 00
_ 00 < P4 < 00

o .< P5 < 00

2. Role of tne Parameters

P1: Th~ lower asymptote Yo (value of I when X=O).
P2: Determines, along with Pl, the upper asymptote
(Fig. 5-1a). We note that y = PI + P2 ~hen X-)oo •

P): Changes the APPARENT curvature of the relationship
(Fig. 5-1b), by scal1nQ the values of X•. When P3 1s
large, the curve occurs very rapidly, in a
threshold-type of fashion. With P3 close to zero, the
X-I relationShip 1s more gradual.
P4: Displaces the curve alonq the X axis (Fig. 5-1c).
~hen P5=1, P4 1s tne value of X wnen Y 1s at MIDPOINT
between P1 and P2. ~henever P5 1s not 1, this is no
longer true.
P5: Distorts the basic shape of the logistic equation
(Fig. S-ld). When 0 < PS < 1, the lower leq is longer
than the upper leg of the curve. When P5 >1, the upper
leg 15 lonqer.· Extreme skews of the latter type cannot
be produced readilY with equation [5-1], because they
require very large values of P5.

A

Fig. 5-1
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3. InItial Parameter Estimation (see page 7, item c)

The range of values of the oarameters of equation [5-11
to be used In conjunction' with SgARCH can be obtained
as follows.

F1rst, obtain a range of ValtleS for Pl. How wide a
ranQe can be determined from the amount of "noise"
(error term) associated with Y in the low ranqe of X.
If a lower asymptote can be ~educed from logical argu­
~ents, Pi can be fixed (specify ~ of steps = 0). In
our example (rig. 5-0), the lower asymptote is obvi­
ously close to zero. ~e thus used the range CO, 01 (#
of steps = 1).

Second, estimate a range of values for the upper asymp­
tote (Amin, Amax). A suitable range of values of P2 Is
obtained by substracting the hiaher limit of Pl (Plmax)
from Amin, and the lo~er ltmit of Pi (Plmln) from Amax:

[P2min, P2max] = [Amln-Plmax, Amax-Plmln]

In our examDle (Fig. 5-0), the upper asymptote Is very
close to 100. Since the lower asymptote is very close
to 0, an aopropriate range for P2 would be (100-0,
lOa-OJ = [100, 100], with ~ of steps =1.

Third, compare your data with Fig. 5-1b, and choose a
tentative range of values of P3. we note that the max­
imum X value in Fi~. 5-1b 15 1. Thus, since P3 SCALESXi a valid range of values for P3 can be obtaIned by
d vId1ng the values obtained from Fig. 5-1b by the
maxImum X value In your data (Xmax). A large number of
steps (15 to 25) is' recommended. In our example (Fig.
5-0), we obtained a range of CI0, 20] from Fig. S-lb.
SInce Xmax = 13 1n this case, the range [.7, 1.5] could
be used.

You need not estimate a ranqe of values for P4. This
range depends on the value of P5. SEARCH has been pro­
qrammed to provide tnis range itself, when given the
range of values .of X ~here Y 1s at about midpoint
between P1 and P2. In our example, this range would be
[4.5, 5.5]. We suggest a large number of steps (15 to
25) for tnis para~eter.

Finally, a range of value of P5 can be obtained direct­
ly from Fig. S·ld. Note that this range snould be
fairly wide, particularly when P5 >1. For our examole,
the range [1, 3000J would be necessary. Use a lar~e
number of steps (15 to 25) for th1s parameter.

For our examPle, SEARCH foun~ a minimum RSS of 66.0
(5 = .997), and PAR gave an RSS of 68.0 (S = .996) With
final values of Pl = -.163, P2 = 100.3, P3 = 1.06,
P4 =-2.834, and PS = 2912.5. These values did not
converqe, however. This suqqests that the amount of
skew in our example ~as too larqe, and tnat equation
[5-2] would be more suItable.
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TYPE 5 - EQUATION 2 (The Poisson Function)

PAGE 38

-------------------.---_._-----------_._------------------------
t P4 !
i -P3 X '! y = P1 + P2 (1 - e ) 'II hereX> 0 [ 5- 2 ] !
! !

----------~----------------~----.---------------------~-~--~----1. Parameter Limits
- co < P1 < co
- co < P2 < co
o < P3 < co
1 < P4 < co

2. Role of the Parameters

P1: The lower asymptote Yo (value of Y when X=O).

P2: Determines, along wi th P1, the. upper asymptote.
We note that y = PI + P2 when X->co •

P3: Cnanges the APPARENT curvature of the relatlonshl~
(FIg. 5-2a), by scalinq the values of X. Determines
the range of values of X over Which the sigmoid curve
occurs. The value of P3 is strOnqlY affected by P4.

P4: Distorts the basic shape of the Poisson equation
(Fig. 5-2bl. P4 ~orKS 1n the opposite manner as PS in
equation [5-11. Here, tne s~ew (lower leg always
shorter than the upper) Is most extreme when P4 = 1
(the typical Poisson). The amount of skew becomes
smaller as P4 increases. At the limit, the curve Is
svmetr1cal when P4 is inftnite. Thus equation [5-2]
snould not be used to describe nearly symetr1cal 51g­
moids.

Fig. 5-2

>-

o 1 o 1



Non-linear regression ••• Regnlere and Bel1hartz PAG~ 39

3. Initial Parameter Esti~aclon (see page 7, item c)

The range of values of the oarameters of equat10n [5-2]
to be used in conjunction with SEARCH can be obtained
as follows.

First, obtain a range of values for Pl. How wide a
range can be determined fro~ the amount of ftnoise"
(error term) associated ~ith Y In the low range of X.
If a lower asY~Ptote can ~e 1educed from lOQlcal argu­
~ents, Pi can be fixed (specify # of steps =0). In
our exam~le (Fig. S-O), the lower asymptote Is obvi­
ouslY close to zero. ~e tnus used the range CO, 0] (J
of steps = 1).

Second r estimate a range of values for tne upper asvm~­
tote (Amin, Amax). A suitable range of values of P2 1s
obtained by substracting the higher limit of Pl (Pt~axJ
from Amin, and the lower limit of P1 (Plmin) from Amax:

[P2m1n, P2maxJ = (Amln-Plmax, Amax-Plmin]

In our exampl~ (Fig. 5-0), the upper asymptote Is very
close to 100. Since tne lo~er asymptote 1s very close
to 0, an- aDPropriate range for P2 would be (100-0,
lOa-OJ = [100, 100J, ~ltn # of steps = 1.

SEARCH has been programmed to provide the range of
values of P3. Lt Nill promct for the range of values
of X where Y 1s at about midP~lnt. In our example,
this range ~ould be [4.5, 5.5]. We suggest a large
number of steps (15 to 25) for this parameter.

Finally, a range of value of P4 can be obtained direct­
ly from Fig. 5-2b. ~ote that this range Should be
fairly wide. For our example, the range Cl t 300] would
be needed. Use a large number of steps (1~ to 25) for
tnls parameter.

For our example, SEARCH found a minimum RSS of 65.0
(S = .991), and PAR gave an RSS of 40.2 (5 = .998) with
final (converqed) values of P1 = -.206, P2 = 98.02,
P3 = 1.14, and P4 = 2u5.1.
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~~-----~-----~--------~--~---.-_._---~-----~.~-------~ ----------P3
P2 Z

Y = Pi (1 - Z)

~here Z = (Xmax - X) I (Xmax - Xrnln)
(Xmln and Xmax user-suDpllen)---------------.-------------------------------.---------------.• slC 1

NOTE: THIS EQUATION SHOULD OHLl a€ USED WHEN XMIN AND XMAX CAN
BE OBJECTIVELY DEFINED •
• slc 1

1. Parameter Lim1ts
eco( Pl (CO

1 < P2 < co
1 < P3 < co

2. Role of the Parameters

Pi: The upper asymptote Y"'ax (value of Y wn.en X-> co ).

P2: Controls the steepness of the lower. leg of the
sigmoid (F1q. 5-3a). Also controls the positIon (re­
lative to Xmln and Xmax) of the rise 1n Y. The higher
P2, the later the rise.
P3: Controls the steeoness of the upper leq of the
sigmoid (Fig. S-3b):. ~lso controls the position of
tne rise in Y. Tne nigner P3, the earlier the rise.
NOTE: P2 and P3 are In fact actlnq aqalnst eacn other,
and when both are high, the curve Is centrally located
and very steep.

Fig. 5-3

Xmin
Xmax Xmin

Xmax
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3. Initial Parameter Estimation (see page 7, item c)

The range of values of the par3meters of equation [5-)]
to be used in conjunction with SEARCH can be obtained
as follows.

First, obtain a ran~e of values for Pl. How wide a
range can be deter~ined trom the amount of "noise"
(error term) associated ~lth Y 1n the hlgn range of X.
If an upper asymptote can be deduced from logical arqu­
ments, Pl can be fixed (specify # of steps = 0). In
our example (Fi1. 5-0), the uDper asymptote is obV1­
ously close to 100. ~e thus used the range [100, 100]
(J of steps = 1).

Second, a range of values of P2 and P3 can be obtained
directly from Figs 5-3a and S-3b. Because it Is diffi­
cUlt to suggest ho~ to Choose them, we suggest that vou
use very wIde ranges, with a l~rae number of steps (15
to 25) for eaCh parameter. In qeneral1 If the sigmoid
1s rather sharp, Doth P2 ~nd P3 w 11 be large, and
~ice-versa. For our example (Flq. 5-0), we used the
ranges [1, 10] for botn P2 and P3. .

For our example, 5€ARCH found a ~inlmum RSS of 106.0
(5 = .994), and PAR gave an RSS of 62.9 (S = .997) with
fInal (converged) values of Pl = 97.3, P2 = 5.233,
P3 =7.09.
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Type 6 relationships are tne reversed slgmoids, where Y

decreases from an upper li:01t at lo~ X values, down to a lo~er

asymptote at large X values. ~e suqqest two equations for this

type of relationship. Equation C6-1J 15 suitable for data ~nere

X can take any value. Equ3tion [6-2] shoUld be used only in

cases ~here X has a limited scale Ci.e., varies between strictly

defined upper and lower limits, Xm1n and Xmax).

In Fig. 6-0, we have illustrated an example of this tyoe
of relationship. The regression lines were obtained by f1ttlnq

both equations to the data.

Fig. 6-0
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----------------------------------------------------------------! P5 I

• -P3(X-P4) i
; y = P1 + P2 [1/ (1 + e ) ] where X > 0 (6- t ] !; .. .
-~-----~-~----~-----~-~.-------------_._----~-~--------~--~----~1. Parameter Limits

- ~ < PI < ~
- ~ < P2 < ~
- ~ < P3 < 0
- ~ < P4 < ~
o < P5 < ~

2. Role of the Parameters

We refer the reader to the discussion of the parameters
of equation [5-1). The only difference to be Kept in
mind, here, 1s that P3 is NEGATIVE. All statements
applyinq to P3 remain valid as long as it 1s understood
that a large P3 in equation {S-\l 1s equivalent to a
small (negatively large) P3 1n equation (6-1]. The
effect of chanqing the siqn of P3 here 1s to reverse
the X axis.

3. Initial Parameter Estimation (see paqe 7, item c)

Estimation of ranges for Darameters of equation [6-1]
is identical to tnat dischssed 1n equation [5-1]. Keep
In mind (1) that Pl, tne lower asymptote, now occurs at
larqe values of X, and (2) that P3 is NEGATIVE. If you
choose a range of, -sav, [3, 20] from Fig. 5-1b, you
must change the sign to [-20, -3J before dividing by
Xmax.
For our example, SEARCH found a minimum RSS of 20.2
(5 = .9989), and PAR gave an RSS of 6.6 (5 = .9997)
with final values of P1 = .492, P2 = 101.9, P3 = -26.6,
P4 = .506~ and P5 = 2248.4. The values did not con­
verge. However, 1n view of the extremely high
coefficient of determination, this 1s a minor setback.
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-~--~----~-----~----------~----~---~---~-------~---~-- ---------.

Where

y --
PJ

P2 Z
PI (1 - Z)

Z = ex - Xm1n) / (Xmax - X~in)

(Xmln and X~ax user-supolied)

•·I·[6-2] !
t

!
I

I
---------------------~----------------_.-~-~--------~---~------~
HOTE: THIS EQUATION SHOULD ONLY dE USED WHEN XMIN AND XMAX CAN
BE OBJECTIVELY DEFINED.

1. Parameter Limits
_CD( Pi < CD

1 < P2 < CD

1 < P3 < CD

2. Role of the P~rameters

Pi: Tne upper asymptote Ymax (value of Y when X-> ).

We refer the reader t~ the d1scussion of the parameters
of equation (5-3]. Note that the X axis is reversed 1n
this case, by the transformation Z.

3. Initial Parameter Estimation (see page 7, item c)

The reader 1s referred to the discussion of equation
(5-3J. The parameter estimation process Is the same in
both cases.

For our example (Fig. 6-0), S~ARCH found a minimum RSS
of 233.7 (5 = .9d7)1 and PAR gave an RS& of 8.0
(5 = .9996) with f1na (converged) values of Pl = 99.4,
P2 = 64.7, and PJ =4.2.
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T'iPe: 7

Type 1 relationships are cnaracter1ze~ by an increase and then

decrease of Y over the ranqe of X ("hell-shaped" relationships),

wnere the decreasing section 1s equal to or longer than the

increasing section. ~e propose only one, very flexible equation

for tn1s type of relationship.

An examPle of data, and resulting regression line·, are

illustrated 1n Fig. 7-0.

Fig. 7-0
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TYPE 7 - EQUATION 1

-------~-------~---~--.~-~---.-.-.-~._--------~-----------------PS
)

wnere X > 0

-P.3 -P4 X
Pl + [P2 (X+l)] (1 - e--

,
;.,.
!

I

[7-1] i
!
t.

----------------------._----------------------------------------1. Parameter Limits
- = < P1 < =o < P2 < =

1 < P3 < =
o < P4 < =
1 < P5 < =

2. Role of tne Parameters

PI: The lower limit In!n (value of Y at x=o or X->= ).

P2: Scales the values of Y. Changes the size of the
axes. Because of its Dos1tlon 1n the equation,
however, t~e smaller P2 tne- larqer Y (Fig. 7-tal.

P3: Controls the rate of DeCREASE of Y at large~ X
values (Fig. 7-10). CIt 15 the same as P4 1n equation
[3-1]). A large P3 ma~es Y ~ecrease faster. .

P4: Scales X. Cnanges the rate of increase of Y (Flq.
7-1c). A large P4 maKes Y increase more rapidly withx.
P5: Changes the snape of the early portion of the
increase of Y at lower values of X (Fig. 7-1d). This
1s the same as P4 in equation [5-2J.

Fig. 7-1

A
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3. Initial Parameter Estimation (see paqe 7, item c)

th~ range of values of the oarameters of e~uatlon [7-1]
to be used In conjunction with SEARCH can be obtained
as follows.
First, estimate P1 visually. In most cases, Pi 1s
zero, and this parameter ~an be fixed (specify # of
steps = 0). In our example, this is the case.

P2 is very difficult to estimate, because it depends on
the values of PJ, P4, and PS •. SEARCH has been pro­
grammed to com~ute P2 for you. Simply provide SEARCH
with the maxi~um Y value, and the approximate value of
X Where this maxl~um occurs. In our example (Fig.
7-0), the maXimum t=6~ occurs When X=8.5.
The range of P3 snould be made as wide as possible. we
suggest starting ~itn tl, 20), with a large number of
steps (10 to 20).

A tentative ranqe of- P4 1s chosen from Fig. '-tc.
The t divide these values hy Xmax. In our example (Flq.
7-0J, we chose the range [1, 10l, then diVided by
Xmax=20! to obtain (.05, 1]. A large number of steps
(10 to ~O) is reco~menjed.

Parameter PS Is very difficult to estimate accurately.
~e suggest using a very wide range (e.q., (1, 1000]),
with a large numbar of steps (10 to 20).

For our example, SEARCH found a minimum RSS of 192.6
(S = .973), and PAR gave an RSS of 174.2 (5 = .976)
with the final (converged) values Pi = 0 (fixed),
P2 = .058, P3 = 9.96, P4 =.• 58, and PS = 246.6.
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TYPE 8

Type 8 relationships are similar to type 7, 1n that Y rises

and falls with 1ncreasln~ X. The difference between the two

types 1s that the rise 1n Y nere 1s more qradual than the col­

lapse. Type 8 relat10nsnips are sUbject to THRESHOLD effects,

particularly an UPPER thresnold near which Y decays very rapid­

IV. This form Is frequently encountered in temperature-qrowth

relationships. We suggest 2 equations for this ty~e. Both are

matched asymptote equations, develooed by Logan et al.

(Environ. Ent. 5: 1133-1140, 1976). To use these equations,

there must be a basis to define a lower and an upper limit of X

(Xmln and Xmax) below and above Which Y=O.

Equation [8-11 is a cO~binatlon of an exponential curve and

a decay curve. Equation (8-2] is a combination of a loqlstic

curve and a decay curve. Thus, tne choice between them should

be based on the "flatness" of ~he curve When y reaches its max!­

mum value. A flat portion of c~rve there indicates that

equation [B-21 Should be used.

An example of data is illustrated 1n Fig. SaO. The two

regression lines were obtained by fitting both equations to the

data.

Fig. 8-0
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TYPE S - EQUATION 1

------------~--~--~-~~~-~~---~---------._------~-------------.-.,.
[8-11 !,.,

i
i

}
[P2 - (1-Z1/P31

e
P2 Z

Pl ( e

Z = ex - Xm!n) I (Xmax • Xmln)
(Xmin and Xmax user-suPDlied)

--y

where

,
i·,·!,
i·------------------------------------------._--------------------
NOTE: THIS EQUATION SHOULD ONL~ BE USED WHEN XMIH AND XMAX CAN
BE OBJECTIVELY DEFINED.

1. Parameter Limits
o < Pi < a:.
o < P2 < CD

o < P3 < 1
2. Role of the Parameters

Pl: The value of Y at X = Xm1n (Fig. S-la).
P2: Scales the transform Z, and determines the curva­
ture of the curve 1n the lower range of X (exponential
curve) (Fig. 8-10).

P3: Determines tne width (relative to Z) of the
Ndecay" portion of tne curve (F1q. a-le).

Fig. 8-1
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3. Initial Parameter Estimation (see page 7, item c)
The range of values of the parameters of equation [8-1]
to be used in conjunction with SEARCH can be Obtained
as follows.

First, estimate a ran~e of values for Pl. This ranqe
depends on the a~ount of "nolse" associated with Y 1n
tne low ranqe of X. In our exa~ple, a range of
[0, .02] coUld oe used. We suqgest a moderate number
of steps for this parameter (i.e., 10).

Second, compare your data with Flq. a-lb. Choose a
range for P2. In our example, a range of [2.5, 7.5]
would be suitable. Use a larqe number of steps fo~
this parameter (15 to 25).

Finally, compare your data with Fig. a-le, and choose a
range of values for P3. Note that P3 Should rarely be
smaller than 0.01, or larqer than .5. In our example,
the ranqe [.01, .251 ~ould be sUfficient. Use a larqe
number of steps (15 to 25) for this parameter.
For our example, SEARCH found a minimum RSS of .0001
(S = .9976), and PAR returned an RSS of .00007
(5 = .998) ~lth tne values PI = .0152, P2 =5.23, and
P3 = .16. These values rttd not converge. However, 1n
view of the high coefficient of determination, this 1s
not of much concern.
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----------------------------------------------------------------, (P2-P3 Z) .( Z-l) IP4 t
i .y = PI { llCl + e ] - e } (8-2] t
i i.

iI tfhere Z = ex - Xmin) I (Xmax Xmln); i. .
! (Xm1n and Xmax user-supolted) !

----------------------------------------------------------------
NOTE: THIS EQUATION SHOULO aN~Y BE USED WHEN XMIN AND XMAX CAn
8E OBJECTIVELY DEFINED.

1. Parameter Limits
o < P1 < ca
o < P2 < ca
o < P3 < ca
o < P4 < 1

2. Role of tne Parameters
PI: The "maximum" v31ue of Y (Fig. 8-2a). This
value, however, is only approximate, as it 1s affected
by the value of P4.

P2: Determines tne lo1t1al value of Y at X = Xmln.
(Fig. 8-2b).

P3: Determines the rate at which the maximum Y 1s
reached, and thus toe "flatness" of the curve (Fig.
8-2c).

P4: Determines the ~1dth (relative to Z) of the
"decay· portion of tne curve (Pig. 8-2d).

Fig. 8-2
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3. Initial. Parameter Estimation (see paqe 7, item c)

Tne range of values of the parameters of equation [8-2]
to be used 1n conjunction with SEARCH can be obtained
as follows.

First, estimate a ran~e of values for Pl. This ranqe
depends on the amoont of Nnoise" associated with Y
around its maximum. rne value of P1 1s affected bV P4.
When P4 Is very small, P1 sould be very close to this
actual maximum Y. But when P4 Is large (e.g. .15) P1
must be larqer tnan tne maximum Y. ThUS, be generous
with the upper li~1t of the ranae of Pl. In our exam­
ple, a range of [.10, .21] could be used. We suqqest a
moderate number of steps for this parameter (i.e., 10).

second, compare your jata with Fig. 8-2b. Choose a
ranqe for P2. In our example, a ranqe of [3, 10] would
be suitable. Use a large number of steps for this
parameter (10 to 20).

Third, compare your data with Flq. 8-2c, and determine
a range of values for P3. In our example, a range of
[5, 15J would be suitable. We suqaest a large number
of steps (10 to 20) for this parameter.

Finally, compare your data with Fig. 8-2d, and choose
a range of values for P4. Note that P4 should rarely
be smaller than 0.01, or laraer than .5. In our exam­
ple, the range [.01, .15] would be SUfficient. Use a
large number of steps (10 to 20) for this parameter.

For our example, S€ARCH found a minimum R55 of .0002
(5 = .995), and PAR returned an RSS of .00016
(5 = .995) with tne final (converqed) values Pl = .194,
P2 =3.69, P3 = 6.89, and P4 = .035.


