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Abstract. Airborne sensor image texture derived following a geostatistical
analysis can increase the accuracy of forest classification because the resulting
texture is insensitive to random variations in spectral response but related to the
structural features of interest at the scale of a forest inventory (e.g. tree species).
The combination of spectral and textural data derived from a kriging surface
provided 86% classification accuracy in 36 pure and mixed-wood stands in seven
forest classes in Alberta. This is an increase over the classification accuracy
obtained when texture was derived from the original image data, and when the
spectral response patterns were used alone.

1. Introduction

Many of the sources of error or uncertainty in the application of grey-level co-

occurrence image texture (Haralick et al. 1973) to forest classification have been

identified (Franklin et al. 2000). Among the more significant influences are: the

choice of the texture measure (Carr and Pellon de Miranda 1998), the area or

window size for the texture calculation (Marceau et al. 1990), and the choice of the

input data layer from which texture measures are derived (Carr 1996). With respect

to this latter point, while spatial resolution and scale of the image are always of

fundamental concern (Treitz and Howarth 2000), different ways of preparing the

image data for input to a texture analysis procedure have been only rarely

discussed. Typically, the use of summary, ‘grey-level vector-reduced’ input data

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160310001618059

*Author to whom correspondence should be addressed.

INT. J. REMOTE SENSING, 20 FEBRUARY, 2004,

VOL. 25, NO. 4, 859–865

mailto:Mike.Wulder@nrcan-rncan.gc.ca
mailto:Steven.Franklin@usask.ca
mailto:czhan@ucalgary.ca


(such as band ratios, vegetation indices, or principal component data) has been

suggested (Marceau et al. 1990, Gong and Howarth 1992). However, grey-level co-

occurrence matrices used to derive second-order texture measurements may be

highly sensitive to small variations in pixel values within small windows. This
influence may be augmented when using fine spatial resolution ‘grey-level vector-

reduced’ input data. Relatively large window sizes can provide stable and accurate

estimation of texture distributions from such data, and may even decrease random

error. The resulting textures are appropriate at a particular scale (usually the forest

stand-level) of forest mapping (Franklin et al. 2000).

Recently, filtered image data generated by kriging or smoothing functions have

been shown to provide useful description of texture (Wen and Sinding-Larsen 1997,

Oliver et al. 2000, Van Meirvenne and Goovaerts 2002). The idea is that
geostatistical image transformation may be appropriate for interpretation of spatial

structure in fine spatial resolution images and other spatial datasets because noise

and ‘unwanted’ spatial variations are reduced prior to the extraction of textural

information (Lévesque and King 1999, Muinonen et al. 2001). Image data represent

ground features with various spatial variability components, which are nested

within each other, as well as image noise introduced during data collection

processing. The nested spatial variability components and noise can be decomposed

into individual components with different spatial variability, because each
component has its own variogram model specific to a certain spatial scale (Wen

and Sinding-Larsen 1997). A geostatistical approach typically involves: computa-

tion of the image semivariogram, which is then used to model the spatial

correlation structure in an image by decomposing the nested spatial variations into

independent spatial components, and kriging analysis, which is required to estimate

or interpolate local pixel variables using image data and the parameters of the

semivariogram. This Letter aims to show that this use of the image semivariogram

and kriging analysis, prior to the derivation of grey-level co-occurrence texture

features from fine spatial resolution airborne sensor images acquired over several
pure and mixed-wood stands in Alberta, can increase forest classification accuracy.

2. Study area and methods

2.1. Study area

The study area is located (figure 1) in the Kananaskis Valley on the eastern slope

of the Rocky Mountains in Alberta, Canada. This area lies within a transition zone

from a mountainous region to the foothills. Forest stands are predominantly

composed of lodgepole pine (Pinus contorta), white spruce (Picea glauca), balsam
poplar (Populus balsamifera) and trembling aspen (Populus tremuloides). The

understorey is dominated by bearberry (Arctostaphylos rubra), creeping juniper

(Juniperus horizontalis), and hairy wild rye (Elymus innovatus). Multistorey stands

are common.

A total of 36 fixed-area (100m2) plots in seven forest classes were established

and conventional forest inventory information collected (table 1). On 18 July 1998,

the Compact Airborne Spectrographic Imager (CASI) (Gray et al. 1997) was flown

over the study area close to solar noon (approximately 13 : 40 local time) during
clear atmospheric conditions. The spatial resolution was 2m, and the image was

georeferenced with ground control to the available digital base map. The radiance

data were converted to reflectance, in six visible and near-infrared bands ranging

between 400 and 950 nm, using an atmospheric model based on pseudo-invariant

reflectance measurements acquired during the overflight (e.g. Richter 1990). The 36
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field plots were located on the image and image variables extracted for input to a

linear discriminant analysis (LDA) classifier. Accuracy in an independent sample of

plots not used in training the classifier was determined to be the agreement (per cent

classification accuracy and the kappa coefficient, Khat) between the observed classes

of forest structure and the predicted class membership based on the LDA decision

rule. Several classifications were completed with the decision rule consisting of

various combinations of input data.

2.2. Methods

Semivariance c(h) describes the dependence of spatially correlated points x and

xzh, where h is the lag interval within a distribution of the regionalized variable

Figure 1. Location of the Kananaskis study area in south-western Alberta, Canada. The
study area is centred at 51‡1’13@N, 115‡4’20@W.

Table 1. Forest classes with multilayer species composition labels based on 36 forest plots
measured in the field (Aw~aspen, Pl~lodgepole pine, Sw~white spruce,
Pb~balsam poplar, Fd~Douglas fir; species proportions expressed in increments
of per cent 610).

Forest class

Field label (species composition)

Upper layer Second upper layer Lower layer

Class 1: Aspen Aw10 Aw10

Class 2: Aspen/Pine mixed-wood Aw7Pl3 Aw10 Aw7Pb2Sw1

Class 3: Pine/Spruce/Aspen mixed-wood Pl4Sw3Aw3 Pl6Sw2Pb1Aw1 Sw5Pl5
Class 4: Pine Pl10 Pl10 Pl7Aw3

Class 5: Pine/Spruce mixed-wood Pl6Sw4 Sw6Pl2Aw2 Sw10

Class 6: Spruce Sw10 Sw5Pb3Aw2 Pb8Aw2

Class 7: Spruce/Pine mixed-wood Sw5Pl4Fd1 Sw10 Sw10
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z(x) (Matheron 1963, Curran 1988):

c hð Þ~ 1

2N hð ÞgN hð Þ
z xð Þ{z xzhð Þ½ �2 ð1Þ

where N(h) is number of lag pairs separated by h. The second-order stationarity

assumption, a valid assumption for an image, suggests that the semivariance

function (2c(x, xzh)~Var[z(x)2z(xzh)]) is invariant with location x. A model

with a residual sum of squares value of 0.008 was used to describe the shape of the

image semivariogram in four directions (0‡, 45‡, 90‡ and 135‡) (figure 2). Block

kriging (Roberston 2000) was used to estimate local values ẑz x0ð Þ from surrounding

points z(xi) based on the spatial relationships provided by the semivariogram:

ẑz x0ð Þ~g
N

i~1

liz xið Þ ð2Þ

where li are weights, and g
N

i~1

li~1 assures unbiased estimation (the original pixel

mean is unchanged) (Oliver et al. 2000).

Three grey-level co-occurrence texture measures (Haralick et al. 1973) were

extracted from pre- and post-estimation images for each forest plot using an inter-

pixel distance of 1 and a window size of 19619 pixels based on the results of image

texture tests in similar forests in New Brunswick and Alberta (Franklin et al. 2001):

Angular SecondMoment ASMð Þ~g
m

i~1

g
n

j~1

P i, jð Þf g2 ð3Þ

Contrast CONð Þ~g
n

i~1

g
m

j~1

P i, jð Þ R ið Þ{C jð Þf g2 ð4Þ

Correlation CORð Þ~g
m

i~1

g
n

j~1

P i, jð Þ R ið Þ{Mean R ið Þ½ � C jð Þ{Mean C jð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance R ið Þð Þ Variance C jð Þð Þf g

p ð5Þ

Figure 2. Exponential semivariogram model used for the analysis. Where Co is nugget,
CozC is sill, Ao is range, and RSS (residual sums of squares) provides a measure of
the fitness of the model to the data.
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Where P(i, j) is the spatial co-occurrence matrix element, R(i) is the grey-level value

for the row, and C( j) is the grey-level value for the column.

3. Results
The LDA classifier demonstrated that there was a difference in the classification

accuracy based on the different input variables used in the procedure. The lowest

overall classification accuracy was 47% (Khat~0.35) when using the original six

spectral bands. Using three grey-level co-occurrence texture variables derived from

the original spectral data generated 64% classification accuracy (Khat~0.54).

Adding the texture variables to the six spectral bands increased the overall accuracy

to 77% overall (Khat~0.72). Finally, the accuracy was increased to 86%

(Khat~0.82) when texture was derived from the kriging surface rather than the
original image data.

All classes increased in accuracy when texture was used together with the

spectral response patterns. In previous work (Franklin et al. 2001) it was suggested

that sometimes accuracy in all classes will not be increased when texture variables

are added; in another study, Franklin et al. (2000) showed that a few classes

actually decreased in accuracy. The texture variables were thought to have

contributed greater variance than could be handled by a statistical classifier. In the

present study, classes of pure conifer and deciduous species were among the most
accurately classified using spectral response patterns alone; for example, aspen trees

were always the most accurately classified in these tests. The mixed-wood stands

were classified with the least accuracy, but increased most when texture was used to

the analysis. These mixed-wood stands were also the classes that showed the largest

increase in accuracy following the kriging procedure. However, the accuracy of

classes from these stands might still be considered too low (e.g. mixed-wood plots

containing three or more species of trees or two or more canopy layers were less

than 75% correct in the classification).
The maps contained in figure 3 illustrate the differences in the classification

spatially over the study area. The large aspen stand in the central part of the map is

apparent as a contiguous class in these maps; in figure 3(a), generated with the

spectral data alone, the mixed-wood class confusion is apparent in the large extent

of the various mixed classes, which is shown in figure 3(b) as well. The confusion is

reduced in figure 3(c), when three texture channels (derived from original spectral

bands) were added, however, some small aspen stands were classified incorrectly

because of the texture data. In figure 3(d), when the classifier used the kriging

surface texture and the spectral response pattern together, these classes were
reduced in area and subsequently the stands appear to be more accurately

portrayed. The influence of the spatial filtering is also apparent in these four maps;

the map (figure 3(d)), based on the geostatistical procedure, contains fewer small

parcels and less ‘salt-and-pepper’ noise. This map, more accurate, also appears to

be a more realistic depiction of stand homogeneity—the spatial arrangement and

internal homogeneity of these classes more closely resemble the polygonal strata

used in standard aerial photointerpretation-based forest stand mapping.

4. Conclusion

The accuracy of forest classification using fine spatial resolution remotely sensed

data can be increased using image texture. The steps used to prepare the input data,

and the type of texture variables selected, are among the many factors that can

strongly influence the resulting forest classification accuracy. In this study, image
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grey-level co-occurrence texture variables extracted following a geostatistical

analysis of airborne sensor images were used in pure and mixed-wood stands in

Alberta; 86% overall classification accuracy was achieved in seven forest classes.
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Figure 3. Classification maps based on (a) spectral response patterns alone (overall
accuracy~47%); (b) kriging surface alone (overall accuracy~64%); (c) spectral
patterns with texture derived from original spectral bands (overall accuracy~77%);
(d ) spectral patterns and texture derived from the geostatistical surface (overall
accuracy~86%).
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This is an increase in accuracy over that which was obtained using the spectral data

alone, the texture data alone, or the spectral data plus texture derived from the

original image bands.
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