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1. INTRODUCTION

A large part of the research efforts concerning the remote sensing of
forests has been devoted to the development of repeatable methods for the
extraction of information from monoscopic, two-dimensional images.
Emphasis has been on spectral pattern recognition. Although appropriate for
species or health characterisation, this approach comes with several
limitations when detailed information on forest structure, e.g. three-
dimensional aspects of forest canopies, is sought (Wulder 1998). Accurate
measurements of height, density, volume, stratification, etc. at local scales.
which are of prime interest for foresters and forest ecologists, and which
have a geometric rather than radiometric nature, are still beyond the
capabilities of two-dimensional remote sensing and image processing.

Three-dimensional remote sensing is a promising and fast growing field,
and has already proven more accurate than spectral remote sensing for
certain attributes (Hyyppd et al. 2000; Lefsky et al. 2001). Recent
technological advances allow efficient soft copy photogrammetry, precise
radar interferometry, and laser altimetry. Out of these three technologies,
laser altimetry shows the best performance in producing three-dimensional
data on both ground and canopy topography (Baltsavias 1999; Hyyppi et al.
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2000; Hese and Lehman 2000). In particular, the ability of laser altimeters to
penetrate forest canopies through to ground level presents new possibilities,
such as mapping canopy height with high precision and accuracy.

Light Detection and Ranging (lidar) is a common research technique used
in a variety of application areas including atmospheric research, chemical
analysis and monitoring and distance measuring. When deployed as a remote
sensing tool from airborne or spaceborne platforms it is referred to as laser
altimetry. In common practise laser altimetry is performed using an active
sensor that combines a high frequency pulsed laser (the transmitter) with a
telescope and solid state photo-detector (the receiver). A portion of the
incident laser pulse energy is reflected back to the sensor from each
intercepted surface and the round trip travel time between the transmitted
and reflected laser pulses between the airborne sensor and the target surface
is converted to a range distance. In post-processing this range measurement
is combined with synchronised platform position data from a precise
differential GPS solution and platform orientation information from an on-
board inertial navigation system (INS) to compute the position of the lidar
echo, or “pulse return”, from each terrestrial target.

Scanning the field of view of the sensor perpendicular to the flight path
of the aircraft during flight provides greater swath coverage and more
efficient data collection than a simple profiling system but introduces some
complexities due to off-nadir look angles. The absolute elevation accuracy of
the lidar data is typically 10-40 cm from a flying height of 1000 m for
scanning lidar systems (Baltsavias 1999).

There are two distinct types of lidar systems in the commercial and
research sectors: full waveform and discrete return. In the first case, the
returned laser energy is densely sampled over a short time interval using an
on-board high sampling rate signal digitizer to create a “full waveform”
description, i.e. amplitude over time, of the return signal from a single pulse.
This full waveform describes the energy intensity reflected back towards the
sensor by the different strata of the vegetation column traversed by the pulse.
It is a function of foliage density and structure (i.e. clumping, gaps)
throughout the column (Ni-Meister 2001).

Discrete return lidar systems, on the other hand, typically record only the
occurrence of first and last returns from a series of returns corresponding to
discrete surfaces along the slant range. That is, they do not sample the full
return signal waveform but rather record the time-of-flight (range) to the
peak of any signal that exceeds the noise threshold. Sample and hold
techniques are used to capture the last return of a series of returns when the
vertical profile of the target is complex.

In a forest environment, the first return corresponds to the initial
amplitude rise over the background noise level caused by the energy echoed
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by the outer vegetation layer of a canopy. The last return corresponds to the
last detectable signal above the noise threshold from a series of returns, at
some time interval after the first return, when the pulse is intercepted by an
opaque object, normally the ground. Last returns are (post-flight) classified
such that “true” ground returns are separated from low vegetation returns.
Some discrete-return lidar systems are now capable of recording up to five
returns.

The majority of discrete return sensors in use today are built using solid-
state, diode-pumped lasers that operate at near infrared wavelengths, ~ 1 pum,
with pulse repetition rates from 5,000 to 35,000 Hz and pulse energies in the
order of 100s of pJ.

Full waveform lidar systems, such as SLICER (e.g. Means et al. 1999)
are generally profiling systems (with one to a few parallel profiles) and have
only been used for research purposes. Discrete return scanning lidar systems
are used commercially for topographic mapping, including wide area
surveys (Hill et al. 2000). While the former have a large diameter footprint
(several meters wide), discrete return lidar systems typically possess
footprints of less than a metre in diameter. Even though only a fraction of all
pulses reach ground level, the sampling of ground elevation remains
sufficiently dense to allow for development of precise below-canopy digital
elevation models (Kraus and Pfeifer 1998).

Due to their commercial availability (as opposed to full-waveform
systems) and their mapping capabilities, the following discussion on lidar for
forest attribute estimation will concentrate on the application of discrete
return lidar systems. For detailed reviews of lidar technology and
applications for forestry, the reader is referred to Wehr and Lorh, (1999), and
Lim et al. (2002). The reader is also referred to Lefsky et al. (2001) and
Harding et al. (2001) for examples of full waveform lidar applications for the
study of forest canopies.

Here we discuss the methods used to produce, pre-process, and analyse
discrete return scanning lidar data. We will review several methodological
details that are critical to the success of a lidar mission for forestry and
subsequent analyses. We begin, however, by presenting a brief review of
forestry applications of lidar to give a general idea of the current status.

Subsequent sections include: methodological considerations pertaining to
the acquisition of lidar data; pre-processing and analysis of lidar data for the
extraction of forest information, specifically what we consider the most
suitable methods for the estimation of stand height and individual tree
height. For brevity, we have omitted detailed methodological considerations
related to other forest attributes such as timber volume, biomass, density, etc.
Our focus on height is motivated by the importance of this parameter for
estimating other forest attributes, in particular volume and biomass. To
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ensure completeness, the following overview section includes, where
appropriate, attributes other than height.

2, THE STUDY OF FORESTS USING LIDAR

Lidar systems were first tested as remote sensing tools for topography
and bathymetry in the 1960s (see Aldred and Bonnor 1985, for a review of
early systems). The use of lidar for forest applications was first investigated
in the 1970s (Soludukin 1977 cited in Nelson et al. 1997). Interest in the
accurate estimation of stand height, volume, and biomass developed as early
as the 1980s, when it was demonstrated that mean stand height estimates
produced using lidar were as accurate as ground or standard
photogrammetric measurements (Schreier et al. 1985; Aldred and Bonnor
1985).

Success in estimating timber volume and biomass was also achieved
early. For example, MacLean and Krabill (1986) obtained high coefficients
of determination (0.72 <1 < 0.89) for predictive models of volume.

Until 1993, the vast majority of forest studies using lidar were carried out
with profiling systems, using either full waveform or discrete return
approaches. Because the Global Positioning System (GPS) was not yet fully
developed at the time, locating the lidar trace on the ground was
problematic. Since the mid-nineties, several researchers have tested lidar
scanners equipped with precision GPS and Inertial Navigation Systems
(INS), also referred to as internal measurement units (IMUs). Estimates of
stand height and volume comparable to those obtained using profilers have
been achieved consistently (e.g. Nilsson 1996; Nasset 1997; St-Onge and
Renaud 2000; Nasset 2002). '

The return density of current scanning lidar systems enables the resolving
of individual tree crowns, which allows for the estimation of individual tree
heights (St-Onge et al. 1999; Lim et al. 2001; Persson et al. 2002). Methods
for extracting tree and forest stand data will continue to improve through a
better theoretical understanding of the lidar response of forest canopies.

As well as stand height and volume, other forest attributes are being
studied, notably biomass and vertical foliage distribution. Most of these
studies were performed using full waveform lidar systems (e.g. Lefsky et al.
1999).
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3 LIDAR SURVEY SPECIFICATIONS

No systematic satellite lidar data acquisition programs comparable to
Landsat in the field of multi-spectral imagery currently exist. Lidar space
missions are planned, however, for instance the Geoscience Laser Altimeter
System (GLAS) (Carabajal and Harding 2001), and the Vegetation Canopy
Lidar (VCL) (Dubayah et al. 1997; Luthcke and Rowlands 2001).

The acquisition of lidar data from airborne platforms (light aeroplanes or
helicopters) requires input parameter specifications for both the lidar
instrument and the flight configuration, in order to achieve the desired
sampling pattern. For this reason, users specify lidar survey acquisition
parameters in consultation with the survey provider. It is therefore essential
that the user understand the implications of flight and acquisition parameters
for the quality and usefulness of the lidar data collected for their application.

In this section, we provide a summary of the key parameters to consider
and present a few principles for adequately matching needs and
specifications.

3.1 Platforms

Current lidar missions are performed using small aircraft operating at low
altitudes. While small aeroplanes and helicopters are regularly used, the
former tend to be used more frequently. Each platform possesses certain
advantages and disadvantages. Aeroplanes tend to provide better pitch and
yaw stability, which translates into more regular flight lines with fewer gaps
between adjacent flight lines. Helicopters provide slower air speeds, a factor
that is very useful in providing a high density of pulse returns. Some lidar
systems can be quickly attached to standard helicopters, such as the ALMIS-
350 operated by Mosaic Mapping Systems Inc. (Ottawa). The ALTM series
of instruments from Optech can be mounted on an aeroplane or helicopter
and offers roll compensation.

3.2 Flight altitude

The flight altitude interval of current lidar systems is quite narrow. The
minimum altitude at which the sensor can be operated is governed by eye
safety regulations; this varies from design to design but a good rule-of-
thumb is approximately 500 m above ground level (AGL)). At the higher
end, the power of the laser and the peak pulse energy become the limiting
factors, as sufficient energy must reach ground level for a clear return to be
detected and recorded. In addition, intervening cloud cover becomes an issue
at higher altitudes as, unlike radar sensors, lidar systems cannot penetrate
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clouds, thus limiting the available data collection hours in areas where low-
lying clouds are an issue.

For commercial sensors, the maximum operating altitude is 6000 m, but
in practice most systems are limited to 2000 m AGL. Research systems such
as NASA’s LVIS sensor operate at higher altitudes, up to 8,000 m, although
this is a waveform capture design (Blair et al. 1999). It is also important to
note that with all other parameters held constant, the return density, i.e. the
number of laser echoes recorded per unit area, decreases as altitude is
increased. Technological developments will no doubt help raise this
maximum altitude.

Meanwhile, low flight altitude and near vertical incidence angles make
for narrow swath widths, numerous flight lines, and relatively high costs,
but, when paired with a high repetition rate sensor, allow for extremely high-
density data collection (multiple returns per sq. m).

3.3 Flying speed

While minimum and maximum flying speeds are normally limited by the
aircraft’s design specifications, other considerations such as the pattern of
laser returns on the ground are equally important. The return density is
typically much higher along the scan lines (cross-track) than along the flight
path (along-track). Flying at too great a speed will increase the discrepancy
between the along- and across-track target pulse return densities. The gap
between two consecutive scan lines at nadir could reach such a size that
many trees would be omitted from the along-track direction (Evans et al.
2001), even though individual trees could be resolved in the across-track
direction. If the aim is an ideal isotropic return density, then altitude, speed,
pulse frequency, scan width and scan frequency must be considered and
adjusted as a set. In addition, the scan pattern produced by the sensor must
be considered.

The majority of commercial sensors employ a single axis scanning mirror
driven by a galvanometer that produces a saw-tooth pattern on the ground,
but there are sensors that use rotating polygon mirrors to produce equidistant
sampling in a well-defined grid. This type of scan pattern can be desirable if
isotropic sampling is a primary requirement of the research. Survey
providers normally use special software applications to plan missions
according to target pulse return densities.

34 Divergence and footprint size

Divergence is the rate at which the collimated laser beam’s diameter
increases with range. It is measured in milliradians (mr) and can be readily
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converted to footprint diameter using aircraft-to-ground distance. Some
recent commercial lidar systems (e.g. Optech ALTM 1225 and 2033) offer
two divergence settings.

Footprint size, not divergence per se, is the determining factor in forest
studies. Two conflicting objectives generally arise when seeking an optimal
footprint size. These are: 1) achieving a high penetration rate and a high
spatial resolution; and 2) hitting tree apices as often as possible. The first
goal demands a small footprint while the second imposes a larger footprint
size. The decreased probability of hitting tree apices with a very small
footprint size tends to be compensated for with very high pulse return
densities.

While footprint size does affect data characteristics, it does not greatly
influence the accuracy of canopy height measurement within the most
commonly applied range of settings, at least when using nadir viewing
profilers (Aldred and Bonnor 1985). Footprint size will impact the horizontal
accuracy (XY position) of the data due to spatial ambiguity within the
footprint; increasing footprint size will increase this ambiguity. However for
most small footprint (< 1 m) sensors this is not a major error contributor.
Moreover, the narrow flying altitude intervals and rigid system settings do
not permit much flexibility in footprint size. However, next-generation
sensors already under development should increase the options in this area.

35 Pulse frequency

Pulse frequency is a characteristic of the pulsed laser itself.
Technological improvements have brought about a rapid increase in pulse
frequency for commercial systems. For example, the ALTM series from
Optech has evolved from a 5 kHz frequency for the 1020 model in 1993 to
33 kHz for the 2033 model in 2001. Development is continuing, with 50 kilz
sensors being field tested and due to be online by miid 2002 while some
studies have predicted 100 kHz sensors will be available by 2005 (Flood
2001). Surveys are generally conducted with the pulse frequency set to
maximum. However, optimal lidar sampling theory for forest studies has yet
to be fully developed.

Improvement in pulse frequency enables more cost effective data
acquisition on a per unit basis since flying height, within a modest range, can
be increased as pulse return density improves. It also allows denser sampling
for a low flying aircraft, which means that commercial lidar systems can
now achieve several pulse returns per square meter. This in turn opens up
new research possibilities, as ever-smaller individual tree crowns can be
sampled. Increased pulse density also allows for better fidelity of ground
models as increased pulse rates will increase the number of pulses that pass
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through the canopy to the ground. This can be of increasing importance
when dealing with very closed canopy or where there is significant
understorey or ground cover.

3.6 Scan frequency, swath width, and overlap

The typical single axis oscillating mirror design results in a saw-tooth
scan pattern. In order to maximize lidar energy penetration through
vegetation cover to the ground level, it is preferable to limit incidence angles
to 15-20 degrees off nadir. Penetration improves as the scan approaches
nadir. Due to low flying altitudes and near vertical viewing angles, swath
width is generally quite low (e.g. 115 m), but can be as wide as 2,180 m
(Optech 2001). Swath width and scan frequency can be adjusted
concurrently with altitude, aircraft speed and pulse frequency to produce, on
average, anisotropic return densities. Optech’s ALTM 2033 (released in
2001) has a maximum scan frequency of 90 Hz. If the lidar systems and
flying parameters are set to: (i) full pulse frequency (i.e. 33 kHz) (ii) typical
flying speed of 64 m/s; (iii) flying altitude of 500 m, (iv) scan frequency of
66 Hz; and (v) swath width of 115 m , an average posting distance (i.e. the
distance between two consecutive pulse returns) of 0.48 m will result
(Optech 2001). Sensors based on rotating polygon mirrors provide a much
more regular grid pattern but require a more complex receiver design and so
are less common in commercial use.

Swath overlap, or irter-flight line distance, should be set in such a way
that the probability of gaps appearing between swaths is minimized. Large
variations in return density for overlapping and non-overlapping regions of
the survey can result in inconsistencies in data processing. To alleviate this
problem, it is often recommended to set a goal of 50 % overlap between
flight lines. This will not only double the return density, but will provide for
a more even distribution of returns. Sensors that include roll stabilisation or a
fully stabilised mount can usually reduce this overlap to 25 % - 35 % while
maintaining full coverage. Flying twice to increase the density can also be
considered. When possible, it is preferable to lay out the second pass flight
lines perpendicularly to that of the first one (e.g. Nasset 2002).
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4. LIDAR DATA CHARACTERISTICS AND
QUALITY

4.1 Composition of lidar datasets

A discrete scanning lidar dataset is minimally composed of X,Y,Z triplets
representing the location of each recorded echo for at least the first or last
return from the emitted pulse. These data are generally delivered in ASCII
files; however a major industry initiative was started in 2002 to adopt a
common binary format for the delivery and exchange of lidar data. When
implemented, this initiative should improve the accessibility of lidar data by
reducing file sizes and providing a common exchange format, while also
promoting the development of third-party software tools for data analysis
and manipulation.

Currently, lidar data sets require interpolation if a continuous grid
representation is desired. Most current lidar systems capture a first and last
return for each pulse. While these are often divorced in typical data products
because the bulk of lidar users are solely interested in ground returns for
topographical purposes, there are advantages to retaining the two triplets
representing the first and last returns in the same ASCII record. Several uses
can be made of this pairing. For example, the depth of the traversed
vegetation column (i.e. Zgrg-Zys), and/or the occurrence of bare ground (i.e.
Zies= Ziag) can be determined. Moreover, as mer.tioned above, we see more
lidar systems that record the intensity (I) of the return energy. These values
are normally proportional to the reflectance of surfaces. However, incidence
angle effects on the footprint size and on the specular reflection component
can also affect the quantity of returned energy. Intensity measurements can
help in discriminating between deciduous and coniferous trees, with the
return intensity being a function of the nature of the reflecting surface and
the wavelength and angle of incidence of the emitted lidar signal. However,
the algorithms used to trigger first and last pulse recordings based on
characteristics of the return signal may also affect the intensity value, as do
variations in the transmitted pulse energy. It would be desirable that lidar
manufacturers publish these algorithms and explicate how the radiance
measured by the sensor is normalised (or not) and converted to digital
numbers.

4.2 Spatial resolution and accuracy

Spatial resolution for typical remotely sensed data is dependent upon the
size of the instantaneous field of view (IFOV). In the case of lidar, spatial
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resolution is determined by: (i) the footprint size; and (ii) the posting
distance. This latter parameter is the primary factor defining spatial
resolution for interpolated lidar elevation or intensity surfaces. Spatial
resolution is used here to designate the extent to which details of canopy
surface topography can be resolved. Footprint sizes from scanning lidar
systems are typically just a few centimetres wide (15-50 c¢m). If such small
footprint pulse returns were touching or overlapping, individual branches
could easily be resolved. Normally, the average posting distance is of the
order of one to a few meters.

A few important characteristics of the pulse return spatial distribution
should be noted. First, laser returns are not evenly distributed over the area
surveyed. The scan pattern, the attitude variation of the aircraft, the lost
returns due to deflection, the topography of both the terrain and canopy
surface, and the random manner in which incident pulses from two adjacent
flight lines will criss-cross, all compound to distribute the pulse returns in
unpredictable and uncontrollable semi-irregular patterns. Some patches
might, for example, receive more than 10 pulse returns/m” while areas of
several square meters might be devoid of any pulse returns. It is common to
report resolution equivalents in the form of pulse return densities or average
posting distance rather than in terms of IFOV or true spatial resolution.
Rarely do authors state the variations around these average figures or report
on the size of the largest lidar gaps. The irregular layout can seriously impact
data quality, especially at low pulse return densities. Research on the effects
that follow from this disorderliness arc just beginning (e.g. Evans et al.
2001).

Lidar is, however, a very accurate instrument. Manufacturers and data
providers report absolute elevation accuracies of 15 ¢m and even better
relative accuracies. In the commercial sector, vertical accuracy is generally
taken by system manufactures to be a 1o statistical measure of the sensor’s
accuracy against a known ground target, while data providers generally
quote a 20 or 95 % confidence level closer to 20 cm. Vertical accuracy of
lidar data varies with vegetation cover and topography; in addition, the error
budget for a lidar sensor is quite hard to establish (Shenk 2000).

Two sets of factors can affect elevation accuracy: system related and
target related. Errors from the lidar system include ranging error, GPS error,
timing errors and mounting error, which consists of errors in determining the
offset between the onboard GPS antenna and the lidar system itself. By far
the largest cause of “bad” lidar datasets is a poor GPS solution. A good GPS
solution is a necessary but not sufficient condition if any reasonable
accuracy is to be expected from the lidar data; conversely, a poor GPS
solution generally degrades the dataset quality, often significantly so. It is
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critical, when working with lidar data providers, to ensure they implement
proper GPS planning (PDOP windows, baseline lengths etc).

Target related errors include slope-induced errors (i.e. error is known to
increase with terrain slope), classification errors and uncertainty in precisely
defining the first and last return ranges. Of these, classification errors
produce the largest discrepancies between “true” and “observed” terrain
elevations (see section 5.1). The impact of elevation errors on our capacity to
accurately estimate stand height remains to be investigated.

Planimetric (i.e. X, Y) errors are known to be approximately five times
greater than their elevation counterpart (Baltsavias 1999). As a rule of
thumb, absolute planimetric errors are approximately 1/2000 of the above-
ground altitude of the aircraft.

5. LIDAR DATA PRE-PROCESSING

Stages of pre-processing normally required to prepare lidar data for
predicting stand parameters include: (i) calculation of a precise platform
trajectory from the differential GPS solution; (ii) computation of the X,Y,Z
values from in-flight ranging and combined GPS and INS data; (iii)
classification of the pulse returns and (iv) interpolation of ground and
vegetation returns. The survey provider will deliver X,Y,Z triplets and will
very often carry out the classification. However, there are advantages to
retaining control over the classification in order to test different
classification parameter values.

Most data providers will deliver classified and unclassified datasets if
requested. Unfortunately, classification software, such as Optech’s
REALM™ (Optech Inc., Toronto, Canada) or TerraScan™ (TerraSolid Inc.,
Helsinki, Finland) are proprietary to sensor owners (REALM) or still quite
expensive to acquire (TerraScan). Lidar classification functions are not
currently part of any common image processing software package, although
this functionality will probably become standard over the next few years.

The user most often carries out interpolation of the lidar returns, using
either their own code or routines available in the public domain. Here again,
control over interpolation methods is preferable. Finally, lidar data volumes
are considerable. Relatively modest datasets are composed of millions, or
tens of millions of return triplets. A standard desktop computer is not
designed to process lidar data in these quantities. Even for small study areas,
a workstation with considerable disk capacity (60 GB); RAM (2 GB); and
CPU speed (1 GHz) is recommended for efficient processing of lidar data.
These requirements will undoubtedly increase as study areas become larger
(e.g. for operational surveys) and sample density increases.
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5.1 Classification of lidar pulse returns

Classification, also referred to as “filtering”, essentially consists of
assigning a particular return to ground level or to some other feature on the
surface. Most often, it is carried out automatically using classification
software, but manual interventions are still required for, among other things,
building and vegetation removal. Classification techniques were initially
developed in order to produce “bare-earth” digital elevation models (DEMs)
and are still being perfected. For forest applications, classification relies on
the following simple rationale: the lowest returns in a small neighbourhood
will be ground, while the rest will correspond to vegetation, buildings or
infrastructure. The approach consists of identifying which returns are most
likely to correspond to ground level, and to assume that all other returns
correspond to something else. In natural landscapes, these other returns are
assumed to be vegetation.

Most classification algorithms use iterative statistical or morphological
algorithms operating over window-based kernels. As an example, we
describe here the algorithm used by the TerraScan™ software (TerraSolid
Ltd., Helsinki, Finland). TerraScan™ is relatively affordable and
widespread. The algorithm is published by Axelsson (2000).

After an initial coarse classification to remove gross errors (high and low
points, or points outside the known range of expected returns) , the algorithm
builds a sparse TIN (Triangulated Irregular Network) from a subset of lidar
pulse returns that are considered “sure pulse returns on the ground”
(TerraSolid 2001). This initial subset is composed of the lowest points in
each cell of a user defined virtual gnid that is superimposed onto the dataset.
Most triangular facets of this first TIN will be below .the ground level.
Retumns are then added iteratively by selecting new points and rebuilding the
TIN, with point selection based on angle and distance thresholds. The angle
threshold consists, at the maximum, of the angle formed by a line joining a
candidate point to the closest vertex of the facet on which it downwardly
projects, and the line joining this vertex to the point projection location on
the same facet. It is often suggested that different angle threshold values be
used depending on the nature of the topography. The maximum distance
threshold controls the single-iteration upward evolution of the TIN by
limiting the vertical distance between a candidate point and the surface of
the facet on which it vertically projects. The steepest allowable terrain slope
also controls the algorithm. We have tested both TerraScan™ and
REALM™ on double return data acquired with Optech’s ALTM1225. Both
software packages classified dense bushes, which were virtually
impenetrable by the lidar pulse, as ground. This finding is similar to that of
Pfeifer et al. (1999). It led to the presence of conspicuous bumps on the
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otherwise smooth DEM. It supports our contention that automated
classification for DEM generation requires further refinement.

5.2 Interpolating lidar pulse returns

Lidar data is typically composed of millions of X, Y, Z data points.
While these can be visualised as point clouds, raster grid representations are
usually more readily interpreted. Moreover, measuring tree or canopy
heights requires that the elevation difference between the top of canopy and
ground level be measured. Theoretically, it is close to impossible for a
ground return to be recorded directly under a vegetation return located on a
tree apex. For this reason, it is practical, and very common, to interpolate the
ground returns to form a DEM. In most cases, TIN or spline interpolation
(e.g. Magnussen et al. 1999) is used. Height is then obtained by computing
the elevation difference between each vegetation pulse return and the
underlying grid cell’s elevation. Canopy pulse returns can also be
interpolated, but more restrictive conditions apply.

Interpolation of vegetation returns is far more complicated than that of
ground returns as the goal is to reconstruct the canopy surface to create a
canopy surface model (CSM). Interpolation of the CSM to a raster grid
greatly reduces the size of the lidar dataset and also allows for the
application of standard raster GIS and remote sensing algorithms. It is nur
opinion that only very dense lidar vegetation pulse return datasets should be
interpolated in this fashion. Once the they are, the inierpolated ground car be
subtracted from the interpolated canopy to produce a canopy height model in
which each pixel represents the height above ground of the canopy. Figure
19-1A gives an example of a canopy height model for a patch of forest also
presented on an orthophoto (Figure 19-1B).

6. ESTIMATING CANOPY, STAND, AND
INDIVIDUAL TREE HEIGHT

Tree height remains a primary attribute for forest inventory and timber
volume estimation (Aldred and Bonner 1985; Schreier et al. 1985) and is one
of the main factors determining light interception and inter-tree competition
(Sprurr and Barnes 1980). It is therefore not surprising that the estimation of
tree and canopy height using lidar data has received more attention than that
of any other forest metric. Height estimation methods have been tested at
different spatial scales (i.e. individual tree, plot, stand), with relatively
positive results. Many authors have reported that lidar underestimates stand
height (e.g. Nilsson 1996; Nasset 1997), which is in our opinion, and in light
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of the theoretical work done by Magnussen and Boudewyn (1998) and
Magnussen et al. (1999), a statement which requires qualification.

.q i :mL
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Figure 19-1. anopy height model of a forest pach located in Green River, New-
Brunswick, Canada (with brightness proportional to canopy height) (A), and Orthophoto of
the same patch (B).

6.1 Basic concepts and rationale

A tree is a discrete object for which boundaries can be established readily
in the field. The height of an individual tree is simply the elevation
difference between its ground level base and its apex. What constitutes
canopy height or stand height is less straightforward. For clarity, we will use
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the following concepts: canopy surface height, mean canopy height, mean
tree height and Lorey's height.

Canopy surface height refers to the “outer canopy envelope” containing
the underlying vegetation volume. The height of a point on the canopy
surface is the length of a vertical line that extends from the idealised canopy
surface down to the ground level. We will call this point measure ‘“‘canopy
surface height” or, more simply, “canopy height” after Magnussen and
Boudewyn (1998), and Magnussen et al. (1999). In this regard, lidar first
returns (minus ground elevation) are considered a sample of the complete
canopy height distribution (Magnussen et al. 1999).

Mean canopy height consists of the mean height of all canopy surface
points. Mean tree height is simply the average height of all trees within a
given area, while Lorey's height is defined as the basal area weighted
average tree height within an area (Nasset 1997).

Having defined the key terms and concepts, we can now state the general
problem. We have seen that the sampling pattern of a scanning lidar is semi-
random and that only a small fraction of the canopy surface is intercepted by
laser pulses. Most pulses miss tree apices. Hence, the average height of lidar
(1.e. vegetation) first returns is primarily an estimator of mean canopy height,
and can in no way be directly related to mean tree height nor Lorey’s height.
For this reason, it can be misleading to state that “lidar underestimates stand
height”. This also means that we must find a way fo predict, for example,
Lorey’s height by stand or forest polygon, or individual tree heights, using
semi-random point samples of canopy surface height. It translates into ‘a
search for a method that can identify the most useful lidar returns and/or an
unbiased statist:cal estimator of tree height, whethser at the stand or tree
level. These simple statements of complex problems have beén rigorously
formalised by Magnussen and Boudewyn (1998) and Magnussen et al.
(1999).

6.2 Point estimates of canopy height

Before examining how stand or individual tree heights can be extracted
from semi-random point patterns, we raise the issue of the accuracy of point
estimates of canopy heights. In other words, what is the canopy height
accuracy of a single lidar pulse return? This matter has, to our knowledge,
never been studied empirically in the case of forest canopies.

The uncertainty of the planimetric position of single pulse returns renders
field validation extremely difficult (Filin 2001). The other problem relates to
the definition of a canopy surface, which, as discussed above, is an
abstraction. Stating the problem in more theoretical terms, we ask the
question, “what is the minimum amount of tree material (cumulative, one
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side projected, leaf and twig/branch surface) required so that a single
incident pulse will generate sufficient returned energy to trigger a first return
recording?” The corollary question is “how deep must a single pulse travel
below an idealised canopy surface before a first return is recorded?” A
number of key parameters that affect the analysis of this problem include: (i)
laser energy and its distribution; (ii) first-return detection algorithms and
appropriate critical thresholds; (iii) foliage density or LAI; (iv) foliage
reflectance; and (v) incidence angle.

Concerning tree material density, Magnussen and Boudewyn (1998)
report an approximate measure of “I m’ of needle surface (one-side
projected) per 1 m’ of crown surface and per 1 m* of crown volume” (p.
1018) for a 49 year old plantation of Douglas-fir (Pseudotsuga menziesii
[Mirb.] Franco). This strongly suggests that first returns have a Z position
that is at least a little below the elevation of the first needles in the case of
conifers. It also indicates that a pulse intersecting a conifer apex directly
would probably yield a Z value below the apex. The implication is that mean
canopy height estimates, based on average lidar heights, are probably biased
to provide a lower height estimate, a fact that is not often recognised.
Therefore, when estimating stand-wise Lorey’s height from lidar heights
issues to consider include: 1) that pulse returns usually fall on tree sides (not
apices); and 2) that they penetrate the canopy surface to a certain extent.

6.3 Stand height

Practical methods for estimating stand height from hdar data resemble
other remote sensing methods in that they require field calibration.
Obviously, a height recovery model that could work with lidar data input
alone would be ideal. Two such models were proposcd and tested by
Magnussen et al. (1999). Although results were encouraging, these models
“hinge on a series of simplifying assumptions that naturaly limit their
application domain” (p. 415), i.e. they are applicable to idealised
monospecific stands of trees with solid conical crowns. Empirical
approaches based on simple heuristics have also been quite successful.

Window-based quantile estimators are clearly the most common
approach for measuring stand height (Aldred and Bonnor 1985; Nilsson
1996; Nesset 1997; Magnussen and Boudewyn 1998; Nasset 2002).
Although influenced by crown shape (tree species), stand density and stand
structure (Nelson 1997), window-based quantile estimators can be designed
to generate unbiased estimates of Lorey’s height (Magnussen and Boudewyn
1998).

The method consists of determining a quantile of the lidar canopy height
distribution that will reliably reflect average stand height. For kernals of
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various sizes operating on a lidar canopy height dataset, the lidar canopy
height observation corresponding to the " quantile is taken as the local
value of stand height. The stand-wise average of all kernel-extracted n"
quantile lidar observations is then computed. Both the precise quantile and
the optimal kernel generally have to be identified through trial and error
(Neasset 1997). Most studies report optimal window sizes around 20 m x 20
m and quantiles from 85 % to 95 %.

Calibration for such studies usually consists of measuring a few dozen
stands for which 10-20 plots are sampled in the field. The lidar predictor is
established on a stand basis, and not by comparing lidar windows to field
plots. This approach is influenced by species and canopy structure, so
calibration should incorporate the majority of stand types to produce a
general-purpose estimator. This methodology is also known to be fairly
robust with respect to lidar pulse return density. Positive results have been
obtained with older lidar systems such as the ALTM1020, with canopy pulse
return densities of 6-14 returns per 100 m® (Magnussen and Boudewyn
1998). This would allow measuring stand heights from low density, large
area lidar surveys. Higher densities should, however, yield greater spatial
precision and higher accuracies.

6.4 Individual tree height

Attempts to estimate individual tree heights for large areas may seem
overly ambirtious. However, Magnussen and Boudewyn (1998) demonstrate
that the optimal quantile estimator is dependent on forest structure, the
vertical distribution of LAI, and other variables for which accurate values
are not normally available. This puts an upper limit on the accuracy of the
grid-based methods for evaluating stand height. If the height of all trees
emerging from the canopy could be estimated, then stand height estimation
would be less influenced by forest structure. Furtherraore, if the height of
trees could be measured over a given area, significant insight could be
gained into the structure of forest canopies, since height distributions and
accurate stem maps (of visible trees) could be easily generated. This would
undoubtedly open up new research possibilities in forest ecology. It could
also replace, in some cases, field measurements of forest inventory plots or
assist in calibration of lower density / wider coverage lidar surveys.
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Figure 19-2. Scatter plot of field- and lidar-derived individual tree heights including
regression line (reproduced with permission from Lim et al. 2001)

Individual tree height estimation is a relatively new area of research, as
lidar systems that can provide sufiiciently dense coverage have only recently
entered the market. To our knowledge, only a few studies have addressed
this issue (St-Onge 1999; Lim et al. 2001; Andersen et al. 2002; Persson et
al. 2002). Results are encouraging, with typical field/lidar. RMSE values
approaching those of field-based measurements. In general, all attempts rely
on identifying the highest lidar pulse in single crowns and comparing these
values to the heights of the corresponding trees on the ground. As for stand
height estimation, the fact that most pulse returns will be on the side of trees,
and not on the apices, constitutes a problem. The probability of a pulse
return falling close to a tree apex, however, increases at high pulse density.
To alleviate this problem, field measurements are regressed against lidar
estimations to produce a predictive equation (e.g. Figure 19-2). Coefficients
of determination (r*) for these are usually quite high (i.e. r">= 0.90).
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7. SUMMARY AND CONCLUSIONS

Tree and canopy heights are an important attribute for studies of forest
structure and function. Height information may be used as an attribute or as
an input to allometric equations for estimates of volume and biomass.
Advances in GPS and inertial navigation systems now allow for accurate
positioning of each lidar pulse return. High frequency lidar pulse rates now
enable high pulse return densities while maintaining a relatively wide data
swath. Improvements in lidar technology and processing techniques have
combined to position lidar as a valuable tool for the monitoring of forest
structure and function.

As presented in this Chapter, there is currently a reliable suite of
techniques available, based largely upon quantile estimators, for estimating
tree and canopy height. Improvements in lidar data processing methods are
additive in nature. Future improvements may be made to lidar sensors and
the raw data generated, to processing of the point cloud to determine ground
and canopy models, to the creation of interpolated surfaces from the point
data, and finally to the conversion of surfaces to grids. Improvements in
these aspects will ultimately improve the height estimation of forest stands
and individual trees. Techniques for the improvement of estimates of tree
and canopy height will no doubt be an ongoing research endeavour.
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