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Abstract

Maximum posterior probability (MAP) maps of forest inventory (FI) cover type classes were produced from a maximum likelihood (ML)

classified TM image and 5% (2%) systematic reference sampling of actual cover types for of nine 2� 2 km study sites in New Brunswick,

Canada. MAP cover type maps were obtained via sequential indicator simulation (SIS) using collocated indicator cokriging. A 5% reference

sampling increased the coefficient of accuracy of MAP cover type maps by about 0.2 compared to the accuracy of the ML classified maps.

MAP prediction errors were obtained for global and small area estimates of cover type extent. MAP-based cover type statistics of extent and

precision were compatible with corresponding results for maximum likelihood bias-corrected estimates (MLE). Spatial autocorrelation of

MAP prediction errors declined rapidly with distance and were near 0 for distances of more than 3–4 Landsat TM pixels. MAP cover type

maps produced by SIS are attractive when both global and local estimates of precision of map-derived statistics are needed.
D 2003 Published by Elsevier Inc.
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1. Introduction

Forest cover type classification of a single remote sens-

ing image by maximum likelihood (ML) or by clustering

techniques (Andersen, 1998; Franklin, Gillespie, Titus, &

Pike, 1994; Friedl & Broadley, 1997) is the common and

most basic approach to transform a satellite image to a cover

type map. Map accuracy is generally estimated from an

independent reference sample (Stehman, 1999; Stehman &

Czaplewski, 1998). Reference data are used for estimation

of map accuracy and bias-corrected marginal cover type

frequencies (Card, 1982; McRoberts, Wendt, Nelson, &

Hansen, 2002; Tenenbein, 1972). However, the classified

map, usually remains fixed and disconnected from the

results of the reference sample. Ideally, the map should be

updated by integrating the results of the reference sample

(Moody & Woodcock, 1996). Spatial smoothing (Cressie,

1991), nearest neighbour smoothing (Franco-Lopez, Ek, &
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Bauer, 2001), and interpolation techniques (Soares, 1998,

2001) can achieve this integration. However, the accuracy of

the updated map, while improved, remains unknown unless

an estimate of the spatial distribution of prediction errors is

obtained as part of the update process.

Global estimates of map accuracy are useful in their own

right but do not apply directly to small areas of the map.

Map accuracy is not constant across the map and map errors

are generally spatially autocorrelated (Conese & Maselli,

1992; Foody, 1999, 2002; Masselli, Conese, & Petkov,

1994; Stehman & Czaplewski, 1998). Integration of the

reference data into an updated cover type map and estima-

tion of a spatial distribution of prediction errors would seem

desirable from a map user’s perspective.

The contiguous spatial extent of forest cover types

suggests that the reference sample and the classified image

can be integrated into a spatial prediction model of cover

types (Atkinson & Lewis, 2000; Kyriakidis & Dungan,

2002; Rossi, Dungan, & Beck, 1994). Solow (1986) was

among the first to suggest mapping a binary set of classes by

simple indicator kriging from a set of points of known cover

type. Solow further showed that the mapping was unbiased

for an isotropic stationary random binary field. Goovaerts

(1997) gives an overview of methods for spatial predictions

of categorical attributes.
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Yet, the accuracy of a cover type statistic derived from a

map that has been updated by integration of reference data

remains unknown, unless an estimate of the spatial distri-

bution of prediction errors is provided. Estimation of the

spatial distribution of prediction errors is complicated by the

conditional nature of the integration process and spatial

interdependencies (Cressie, 1991). Sequential indicator sim-

ulation (SIS) in which indicators (here synonymous with

cover types) are predicted for all map pixels in a random

sequential order (Deutsch & Journel, 1998; Goovaerts,

1997; Soares, 1998) is well suited for this estimation

problem. By repeating the SIS process, a large number of

times one obtains a series of stochastic realizations of a

cover type map suited for estimation of the spatial distribu-

tion of prediction errors.

The objective of our study is to produce a series of cover

type maps compatible with maximum likelihood bias-cor-

rected estimates (MLE) of relative cover type extent and to

estimate, from this series of maps, global and local estimates

of accuracy. The objective is pursued by extending the SIS

approach of De Bruin (2001) to a multivariate setting of

cover type mapping (Gaudard, Karson, Linder, & Sinha,

1999; Klein & Press, 1992). De Bruin demonstrated how

SIS with prediction via collocated indicator cokriging could

be used to generate a series of stochastic map realizations

from which the marginal distribution of the extent of a

particular olive grove could be obtained. Nine 2� 2 km

study sites within a single Landsat TM image scene from

New Brunswick, Canada are used for our purpose.
Table 1

Cover-type classes

Class Abbreviation Examples

Exposed land el roads, railroad, airstrips, cities, towns,

military impact zone, winter road

Shrubs sh barren land, wetland, cultivated

blueberry, burn, scattered outcrops,

newly planted after clearcutting,

alder thickets

Hardwoods tb hardwood species >80% by volume

Mixedwoods tm hardwoods and softwoods are

21–79% by volume

Softwoods tc softwoods >80% by volume

Water wa lakes, ponds, rivers, stream, ocean

Crops cp cultivated farm land, pastures, fields
2. Material and methods

Generation of a maximum posterior probability (MAP)

cover type map involved four steps: (i) image classification;

(ii) sampling of reference data; (iii) SIS with collocated

indicator cokriging predictions; and (iv) MAP cover type

labeling.

2.1. Study sites and image data

We worked with nine 2� 2 km study sites (plots) located

on a 20� 20 km grid in the southeastern part of New

Brunswick, Canada. The size and locations of the study

sites were determined by the national forest inventory grid

(Natural Resources Canada, 1999).

A Landsat 5 TM scene (Track 9, Frame 28) from July

31, 1995, covered all nine areas. The image was geomet-

rically corrected with 37 control points obtained from

forest inventory (FI) maps. The estimate of the overall

root mean square positional error based on a first-order

nearest neighbor sampling technique was 0.46 pixels

(Glasby & Horgan, 1995). No radiometric correction was

attempted since reliable data on local atmospheric condi-

tions were not available. The image was cloud-free over

the nine areas.
2.2. Image classification

All pixels in the study areas were classified into one of

seven cover type classes (Table 1) using a Gaussian ML

classifier (McLachlan, 1991). The classifier was trained on

7000 pixels with known cover type in a contiguous area

separated from the nine study sites by a minimum distance

of 20 km. The known cover types were obtained from a

contemporary FI cover type map (New Brunswick Depart-

ment of Natural Resources and Energy, Forest Management

Branch). For computational convenience, the first four

principal components (explaining 94.5% of the variation

in the data) served as predictors of cover type class

(Magnussen, Boudewyn, Wulder, & Seemann, 2000).

2.3. Reference data

Reference data for accuracy assessment and bias correc-

tion were obtained by a systematic grid sampling with a

random start location of pairs of coregistered pixels in the

classified image and in the FI cover type map. FI data serve

as a benchmark reference. Two sampling intensities of 5%

and 2% were employed, yielding 217 and 72 pixels located

on a regular grid within each 2� 2 km study area. Reference

sample data were used in the SIS procedure (see below), for

bias correction of ML classifications, and for a direct

estimation of the extent of a cover type. The latter applies

to both study areas (S) and to small areas of interest

(polygons) where only samples inside a polygon of interest

are used (SIP).

The statistical inference applied to reference sample data

use estimators applicable to simple random sampling (Köhl,

Innes, & Kaufmann, 1994) since systematic and simple

random sampling designs have identical variance estimators

when the sample attribute is a binary (indicator variable)

(Collett, 1991; Särndal, Swensson, & Wretman, 1992).

2.4. SIS

The main objective of SIS is to produce an estimate of

the spatial uncertainty given the available data (Goovaerts,
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1997 pp. 376–379). For each pixel in a random path of all

nonreference pixels in a study area, SIS first computes a

conditional probability pi* of membership in a given cover

type class i (i = 1,. . .,7) given the ‘soft’ and ‘hard’ data for

the eight closest pixels for which ‘hard’ data in the form of a

reference FI cover type class or a prior SIS cover type exist.

Soft data are vectors of the probability of cover type class

memberships given the pixel’s spectral signature as gener-

ated during the ML classification process. A stochastic

cover type for the pixel is then simulated by choosing a

class i randomly with probability proportional to pi*.

Stationarity of the simulated pixel labels is thus conserved.

Further details are below.

The probability of membership in a cover type class ( pi*)

was estimated from (Goovaerts, 1997, p. 313, Eq. 7.46):

pi* ¼ ½di piV� �
li1

ki2

2
4

3
5 ð1Þ

where di is an 8� 1 column vector of nearby cover type

indicator variables di( j), j= 1,. . .,8 with di ( j) = 1 if the

predicted or actual cover type class of the jth nearest pixel

is i and 0 otherwise, piV is the pixel-specific adjusted

probability of membership in class i as per the ML

classification (adjusted via a multinomial logistic regres-

sion to prevent bias), li1 is an 8� 1 vector of class

indicator weights, and ki2 is the weight given to the

collocated ‘soft datum’ ( piV). The weights combine hard

and soft data in a way that minimizes the root mean square

error of predictions. A sum-to-one constraint is imposed on

the weights to prevent bias. Any pi* value outside the

interval [0;1] was replaced by the closest value inside the

allowed interval. A sum-to-one condition was assured by

dividing each pi* by
P

i pi*. Eq. (1) is identical to the

prediction equation used in collocated indicator cokriging

(Goovaerts, 1997). Note that pi* depends on the random

path through the pixels. We assume that the conditions

necessary for kriging have been met, i.e., second-order

stationarity and ergodic, and isotropic spatial covariance

processes. Binary indicator variables are less sensitive to

violations of these conditions than continuous variables

(Solow, 1986). Simple indicator kriging with a local prior

(the classified image) was tried as a natural alternative to

the collocated indicator cokriging but was found to be less

performing, probably due to the nonlinear and variable

relationship between the soft and hard data. Increasing the

number of neighbouring pixels from 8 to 10 or even 12

had virtually no effect on predictions. Further details are in

Appendix A.

The above simulations generated, as expected, nonsen-

sical results along edges of water bodies due to smoothing

of local contrast. In an attempt to maintain a high ML

classification accuracy for water, our search protocol for

the eight nearest neighbours of any pixel located on or

within one pixel from a water’s edge in the classified
image was therefore restricted to either the land or the

water side of that edge. Edges were identified with a

Roberts filter (Gonzales & Woods, 1992; Pratt, 1991). A

similar adjustment was considered for string-like features in

the classified image but the rules needed to prevent

potential kriging artefacts were deemed too restrictive for

the present purpose.

2.5. MAP cover type map

A MAP cover type map was obtained for each area by

assigning to each pixel the cover type class predicted most

often for that pixel during 200 repeat SIS runs. Preliminary

results indicated that 200 SIS realizations sufficed to keep

the chance that a different set of 200 realizations would

change the MAP cover type of pixel below 0.01.

2.6. MAP prediction errors

Cover type assignments during a single SIS realization

depend on the specific constellation of (simulated) hard and

soft data used for the collocated indicator cokriging pre-

diction for a single pixel. Errors obtained after a single SIS

run will be biased due to this dependency. Instead, we

consider the 200 SIS cover type assignments for a partic-

ular pixel as an estimate of the distribution of predictions

over all possible constellations of hard and soft data for

that pixel. The mean and variance of this distribution has

lessened the above dependency (through averaging) to a

level assumed insignificant for the intended use. Spatial

covariance of predictions are obtained by extending this

principle to pairs of pixels. Specifically, a SIS label for a

pixel is either equal to or different from the final MAP

prediction. Hence, the 200 SIS realizations can be trans-

formed into 200 binary maps taking the value 1 if the

realized cover type equals the MAP prediction and 0 other-

wise. We compute the variance and covariances of MAP

predictions from these binary maps. Specifically, we first

obtained a 7� 200 matrix (SI) of indicator variables for each

pixel in an area. The elements of SI are dij (i = 1,. . .,7;
j = 1,. . .,200), where dij = 1 if the jth SIS cover type is equal

to the final MAP prediction and 0 otherwise. Variances and

covariances of MAP predictions were then computed by

standard procedures applied to these SI matrices (Searle,

1982). For two pixels, say i and j, their 7� 7 predic-

tion covariance (or variance if i = j) matrix is 6̂ij = 1/

(200)SIi� SIjV� 1/(2002)(SIi� JV)(SIj� JV) where SIV is
the transpose of SI and J is a 7� 200 matrix of ones. The

MAP prediction variance associated with a specific MAP

cover type map area (A) is simply
P

iaA

P
jaA6̂ij (Matern,

1980). Note, the above variances (covariances) are invariant

under a permutation of the binary labeling convention

(Collett, 1991). We provide estimates of MAP prediction

errors of cover type extent for each study area and for local

application to small areas (polygons) of interest within each

study area.



Fig. 1. Cover type maps for three of the nine study areas. Left column: ML

classified TM cover type maps. Center column: photo-interpreted forest

inventory (FI) cover type maps (benchmark). Right column: MAP cover

type maps. Pixels included in the 5% reference sample have the same FI

cover type across columns. Small areas of interest (polygons) are delineated

by a black line. See Table 1 for the cover type legend.

ensing of Environment 87 (2003) 161–170
2.7. Coefficient of map accuracy (Kappa)

The accuracy of MAP and ML cover type maps was

gauged by the Kappa coefficient of map accuracy

(0V jV 1) (Hudson, 1987; Lunetta et al., 1991). A perfect

map has j = 1.0 while a map where classification is no better

than chance has j = 0. Approximate standard errors of

Kappa were computed as outlined by, for example, Cza-

plewski (1994). The accuracy is computed only for pixels

not in the reference sample. Kappa coefficients of MAP and

ML were compared statistically by means of a one-sided test

of the hypothesis that the accuracy of a MAP-based cover

type map is higher than that of a ML classified map.

2.8. MLE of cover type extent

Estimates of cover type extent obtained by pixel counts

from the classified maps are biased due to imperfection of the

ML classifier (Cochran, 1977). MLEs of cover type extent

were obtained by premultiplying the vector of relative ML

classified cover type frequencies with the matrix of refer-

ence-sample-based estimates of the probabilities that the FI

class is i given that the classified class is j (i,j = 1,. . ., 7)
(Card, 1982; Tenenbein, 1972). Precision of MLEs was

estimated by standard procedures (Card, 1982; Tenenbein,

1972). Localized MLEs for small areas (polygons) of interest

were obtained in a similar way by limiting the computations

to the pixels representing the polygon(s) in question.

2.9. MAP, MLE, and FI statistics

To infer whether the MAP cover type maps are compat-

ible with associated MLEs of cover type extent, a compar-

ison was done under the null hypothesis of no difference.

The comparisons were done for global map estimates and

estimates applicable to small areas of interest. Our compar-

ison only serves to benchmark the MAP results.

Paired t-tests (Snedecor & Cochran, 1971) gauged the

significance of the average absolute difference (MAD) be-

tween a MAP estimate and a MLE across the nine study

areas. Average squared differences were tested for signifi-

cance with a t-test of log-transformed estimates (Lin,

Hedayat, Sinha, & Yang, 2002). Confidence intervals

(95%) of MAD absolute difference were determined as

outlined by Lin et al. (2002). Estimated precision (root mean

square errors) of estimates of cover type extent were com-

pared and tested for statistical significant differences with a

randomization test (Good, 1993). Wilcoxon’s signed rank

test statistic (zw) for paired observations (Conover, 1980) was

computed after each round of randomization of the precision

estimates. The probability of obtaining the observed zw value

under the null hypothesis was estimated as the relative

frequency by which the test statistic under randomization

exceeds the observed value.

MLE and MAP estimates of cover type extent were also

compared to their corresponding FI benchmarks in order to
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gauge accuracy, and also against the reference sample

estimates (S) in order to gauge the overall gain in precision

attributable to either the ML classifications or to the MAP

predictions. Statistical inference for these comparisons was

the same as outlined above. The agreement between FI and

MAP (viz. MLE) estimates was quantified by both the

concordance correlation coefficient (0V qcV 1) and the

coefficient of accuracy (0V qaV 1) measures of reproduc-

ibility and accuracy of a method (Lin et al., 2002).
3. Results

3.1. Intensive reference sampling

Examples of the MAP cover type maps obtained after

200 SIS with collocated indicator cokriging predictions of

cover type are provided in Fig. 1. Kappas of MAP

predictions for pixels not included in the reference sample

were, as expected, greater than Kappas of the ML classi-

fication. The Kappa of each of the nine MAP cover type

maps was higher (0.23–0.45) than the corresponding Kap-

pa of a ML classified map (P < 0.01). The mean of the

former was 0.60F 0.04, while the mean of latter was

0.42F 0.05. The improvement in the per-pixel accuracy

achieved by the use of the reference sample in SIS is

manifested. Related to the increased accuracy of the MAP



Table 2

Average relative frequencies of left-to-right joined pixels with identical

cover type (5% reference sampling)

el sh tb tc tm wa cp X̂2a

FI 0.02 0.05 0.25 0.23 0.17 0.16 0.12 na

MAP 0.02 0.05 0.26 0.23 0.14 0.16 0.14 88

ML 0.03 0.04 0.31 0.24 0.08 0.19 0.11 359

a v2 statistic of squared deviations from the true distribution.

Fig. 3. Mean spatial autocorrelation of MAP cover type class prediction

errors between pairs of pixels (Pearson correlation coefficients) plotted

against the distance (Dist.) separating them (Dist. is measured in pixels with

a nominal side length of 30 m). Standard errors of the means are indicated

by the vertical error bars. Results are based on a simple random sample of

1500 pairs of pixels located no more than 8 pixels apart.
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cover type maps is an improvement in the predicted

frequency distribution of joined (left-to-right) pixels with

the same cover type (Table 2).

Fig. 2 shows examples of the spatial distribution of the

relative frequency of prediction of a MAP cover type.

Although the fine detail has been suppressed, it is clear that

the distribution is not uniform across a study area. A patchy

mosaic of higher and lower relative frequencies is the norm.

This mosaic only partly reflects the joint effects of the spatial

distribution of cover types and the cover-type-specific ML

classification accuracies. Across all pixels the relative fre-

quency of a MAP prediction was about 0.08 higher than that

of the ML classification. As expected, a MAP prediction for

a pixel next to a reference sample pixel was, in general, more

accurate (2–30%) than a prediction made for pixels further

away from a reference sample pixel. MAP prediction errors

tend to increase along FI boundaries between two cover

types due to the smoothing of local variability.

MAP cover type prediction errors were, as expected,

spatially correlated. The extent of the spatial covariance of

prediction errors is illustrated in Fig. 3 by means of average

standardized covariances (Pearson correlation coefficients)

plotted against the distance (in pixels) between the pairs of

pixels for which the predictions are made. Predictions appear

to be independent once the separating distance is more than

three to five pixels. A correlation as high as 0.20–0.30 was

only observed for pixels separated by less than two pixels

(approximately 60 m). This coincides with an observed

median run lengths of about four pixels with the same land
Fig. 2. Relative frequency of MAP cover type class predictions in three study areas

a relative frequency of 1.0.
cover type (range for individual study areas was 2 (exposed

land) to 16 (crops)). The trend in spatial autocorrelation of

prediction errors appears to depend on the cover type.

All MAP estimates of relative cover type extent were

within 0.02 of their corresponding FI benchmarks, overall,

the average bias was 0.01 (Table 3). MLEs were, as a rule,

slightly closer to their FI benchmarks (max absolute

deviationV 0.01). Yet only the MAP estimate of exposed

land deviated significantly (P= 0.04) from the FI bench-
(same as in Fig. 1). Pixels included in the reference sample are identified by



Table 3

Summary statistics of relative cover-type extent (p) for the 5% reference sampling

el sh tb tc tm wa cp

pFI 0.03F 0.03 0.05F 0.07 0.25F 0.16 0.23F 0.17 0.18F 0.09 0.14F 0.19 0.12F 0.14

p̂s 0.03F 0.03 0.05F 0.07 0.26F 0.16 0.23F 0.17 0.18F 0.10 0.14F 0.19 0.13F 0.15

p̂MLE 0.03F 0.03 0.05F 0.07 0.24F 0.16 0.23F 0.17 0.18F 0.10 0.13F 0.19 0.13F 0.16

p̂MAP 0.03F 0.03 0.05F 0.09 0.26F 0.19 0.24F 0.19 0.16F 0.10 0.13F 0.18 0.13F 0.16

t̂Ap̂S � pFIA
a 1.53 (0.16) 0.52 (0.61) 0.22 (0.83) 0.87 (0.21) 0.77 (0.23) 0.37 (0.72) 1.31 (0.23)

t̂Ap̂MLE � pFIA
b 1.72 (0.12) 0.65 (0.54) 0.67 (0.52) 0.31 (0.76) 0.35 (0.73) 2.21 (0.06) 1.98 (0.08)

t̂Ap̂MAP � pFIA
c 2.61 (0.04) 0.13 (0.90) 0.73 (0.49) 0.79 (0.45) 1.05 (0.33) 1.84 (0.10) 2.21 (0.06)

t̂Ap̂MAP � p̂MLEA
d � 1.48 (0.18) 0.46 (0.65) 1.33 (0.11) 0.87 (0.41) 1.33 (0.22) 1.31 (0.23) 1.13 (0.15)

t̂(p̂S � pFI)
2
e 0.11 (0.91) 0.08 (0.94) 0.26 (0.80) 0.19 (0.85) 0.15 (0.88) 0.17 (0.87) 0.16 (0.87)

t̂(p̂MLE � pFI)
2
f 0.10 (0.93) 0.15 (0.88) 0.30 (0.77) 0.16 (0.88) 0.15 (0.88) 0.09 (0.93) 0.19 (0.86)

t̂(p̂MAP � pFI)
2
g 0.18 (0.87) 0.24 (0.82) 0.46 (0.66) 0.33 (0.75) 0.47 (0.65) 0.20 (0.85) 0.22 (0.83)

t̂(p̂MAP � p̂MLE)
2
h 0.29 (0.78) 0.15 (0.88) 0.53 (0.61) 0.37 (0.72) 0.48 (0.64) 0.25 (0.81) 0.33 (0.75)

Number following a ‘F ’ is the standard deviation of individual study area results.
a Student’s t-test statistics for hypothesis Ap̂S� pFIA= 0 probability of t-test statistics is in brackets.
b As footnote a for the hypothesis Ap̂MLE� pFIA= 0.
c As footnote a for the hypothesis Ap̂MAP� pFIA= 0.
d As footnote a for the hypothesis Ap̂MAP� p̂ MLEA= 0.
e Student’s t-test statistics for hypothesis Ap̂s�pFIA

2 = 0 probability of t-test statistics is in brackets.
f As footnote e for the hypothesis Ap̂MLE� pFIA

2 = 0.
g As footnote e for the hypothesis Ap̂MAP� pFIA

2 = 0.
h As footnote e for the hypothesis Ap̂MAP� p̂MLEA

2 = 0.

Fig. 4. Scatterplot of MAP (vertical axis) and MLE (horizontal axis) study

area specific errors of predicted relative extent of land cover type classes.

An ordinary least-squares regression line with a slope of 0.94 is indicated

by the dashed gray line.
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mark while bias in MAP estimates of relative crop extent

approached the 0.05 level of significance due to a single

large deviation of 0.04 in study area number 5 (row 2 in Fig.

1). The significant MAP bias for exposed land was no

surprise. String-like structures (e.g. roads) with a distinct

direction of maximum spatial continuity are generally un-

suited for the type of isotropic spatial prediction embodied

in our SIS model.

MAP estimates of relative cover type extent were, across

the nine study areas, strongly and positively correlated with

their corresponding MLEs and FI benchmarks (q ẑ 0.92).

The reproducibility of MAP estimates, as measured by the

concordance correlation coefficient, was only slightly lower

(avg. 0.02), indicating a consistent and high coefficient of

accuracy of MAP predictions (Lin et al., 2002). The length

of the 95% confidence interval for the absolute mean

difference between a MAP estimate and a MLE was always

below 0.02. MAP estimates were, overall, slightly (approx-

imately 15%) more variable than corresponding MLEs.

Area-specific MAP prediction errors of relative cover

type class extent were, on average, slightly (5%) below their

bias-corrected MLE counterparts. Although the two sets of

predictions errors were positively correlated (Fig. 4) the

correlation (0.68) was weak. Statistical tests indicated that

the relationship could be adequately described by a straight

line through origo and a slope of 1 without significantly

(P= 0.89) increasing the sum of squared residuals of a linear

regression fit with an intercept of 0.0004 (P= 0.91) and a

slope of 0.936. Adding a quadratic term to the linear

regression would not significantly improve the fit (P= 0.77).

A MAP estimate of the extent of a cover type class

within a polygon of interest was superior to a localized MLE

in terms of absolute deviations from the FI benchmarks

(Table 4). Mean absolute deviation of MAP estimates from
the FI values was 20% versus 33% for localized MLEs

(P= 0.03) and 25% for estimates derived directly from

reference sample points inside the polygon (SIP). Relative

root mean square errors followed the trends for absolute

deviations and were, on average, 18% for MAP, 31% for

localized MLEs, and 22% for SIP. Although the MAP root

mean square error of prediction was the lowest in six of nine

polygons, a signed rank test comparison failed to identify

any significant method-dependent differences (P>0.07).

Average length of a 95% confidence interval of a MAP

estimate was only about one-third as long as that of a

localized MLE or a SIP estimate.



Table 4

Estimates of cover-type extent (P) in polygons of interest (5% reference

sampling)

Polygon

areaa (ha)

Cover

type

PFI

(ha)

PSIP

(ha)

PMLE

(ha)

PMAP

(ha)

19 cp 6.7 5.3F 2.0 2.7F 4.0 4.7F 1.9

16 tm 4.5 6.5F 2.5 1.6F 2.9 2.5F 2.0

29 tm 9.7 9.0F 2.0 10.4F 0.7 6.4F 3.3

35 tc 11.4 10.1F 2.4 13.3F 1.8 11.2F 0.2

42 tm 13.1 12.6F 2.2 9.3F 3.8 9.8F 3.3

105 tb 36.2 35.5F 3.6 43.2F 7.0 32.5F 3.7

20 sh 3.6 0.0F 3.6 2.8F 0.9 3.6F 0.2

71 tc 18.5 16.1F 3.5 10.5F 8.0 15.6F 2.9

23 el 6.2 8.3F 2.7 1.5F 4.7 4.1F 2.1

Estimated root mean square prediction error follows the ‘F ’ sign.
a One polygon per study area.

Table 6

Estimates of cover-type areas (P) in polygons of interest (2% reference

sampling)

Polygon

area (ha)

Class PFI

(ha)

PSIP

(ha)

PMLE

(ha)

PMAP

(ha)

19 cp 6.7 0.0F 6.7 2.7F 3.9 4.1F 2.5

16 tm 4.5 0.0F 4.5 1.7F 2.8 1.8F 2.7

29 tm 9.7 15.7F 6.3 12.9F 3.3 9.4F 0.3

35 tc 11.4 11.4F 2.0 11.4F 0.2 10.5F 1.0

42 tm 13.1 14.6F 2.7 10.1F 3.1 9.8F 3.4

105 tb 36.2 21.3F 15.2 52.2F 16.0 31.2F 4.9

20 sh 3.6 0.0F 3.6 2.6F 1.0 2.5F 1.1

71 tc 18.5 10.4F 8.4 11.7F 6.8 18.5F 0.2

23 el 6.2 8.1F 2.5 1.8F 6.6 4.0F 3.2
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3.2. Less intensive reference sampling

With a 2% reference sampling, the Kappa coefficient

of accuracy of the MAP cover decreased (mean =

0.50F 0.04) and was only slightly better (mean differ-

ence = 0.08) than that of a ML classified map. Trends

reported for the 5% reference sampling were, otherwise,

largely confirmed, albeit with a general increase in mean

absolute deviations and root mean square errors. MAP

estimates of relative cover type extent of exposed land

and shrubs deviated significantly (PV 0.05) from cor-

responding MLEs (Table 5). Although test statistics of

squared differences were higher than at 5% sampling,

none reached the 0.05 level of significance (Table 5). The

various correlation coefficients between estimates derived

from MAP, MLE, and FI were, apart from a systematic

drop of about 0.02, almost the same as reported for the

5% sampling.

MLE and SIP estimation of the extent of a cover type

within a polygon of interest appears problematic with the

2% reference sampling (Table 6). Their root mean square

error of prediction was, on average, in excess of 40%.

Three of the nine polygons did not contain any reference

sample points. MAP predictions, in contrast, were locally
Table 5

Summary statistics of relative cover-type extent p (2% reference sampling)

el sh tb

pFI 0.03F 0.03 0.05F 0.07 0.25F 0.16

p̂s 0.03F 0.03 0.05F 0.07 0.24F 0.17

p̂MLE 0.03F 0.03 0.05F 0.06 0.23F 0.17

p̂MAP 0.02F 0.02 0.04F 0.05 0.24F 0.15

t̂Ap̂S � pFIA 1.20 (0.28) 0.04 (0.98) 0.54 (0.61)

t̂Ap̂MLE � pFIA 0.29 (0.78) 0.03 (0.98) 0.83 (0.43)

t̂Ap̂MAP � pFIA 3.35 (0.01) 1.66 (0.14) 0.29 (0.78)

t̂Ap̂MAP � p̂MLEA 2.71 (0.03) 2.44 (0.04) 0.33 (0.75)

t̂(p̂S � pFI)
2 0.17 (0.87) 0.15 (0.89) 0.53 (0.61)

t̂(p̂MLE � pFI)
2 0.18 (0.86) 0.19 (0.85) 0.55 (0.60)

t̂(p̂MAP � pFI)
2 0.25 (0.81) 0.23 (0.82) 0.60 (0.56)

t̂(p̂MAP � p̂MLE)
2 0.22 (0.83) 0.64 (0.54) 0.64 (0.54)

See Table 3 for symbol definitions.
more accurate, as expected a priori of kriging-based

predictions.
4. Discussion and conclusions

Integration of cover type reference sample data into a

classified cover type map is needed to achieve compatibility

between the map andMLEs of cover type extent (Card, 1982;

Czaplewski, 1999; McRoberts et al., 2002; Tenenbein,

1972). The integration was accomplished in a MAP cover

type map by the combined use of ‘hard’ and ‘soft’ data in

collocated indicator cokriging predictions of cover type

(Goovaerts, 1997) which also ensures unbiasedness and

minimum variance of predictions. The employed SIS proce-

dure merely organized the production of pixel-specific pre-

dictions into a series of replicate stochastic realizations of the

cover type map. MAP cover type estimates of extent and

precision obtained for the nine study areas were generally

comparable to corresponding MLEs, a result we interpret as

an achievement of the first part of the stated study objective.

Apart from producing estimates comparable to MLEs the

MAP cover type map also enjoys an increase in accuracy vis

a vis the accuracy of a cover type map classified prior to the

sampling of reference data. For the types of forested land-

scapes studied these benefits of a MAP-based approach to
tc tm wa cp

0.23F 0.17 0.18F 0.09 0.14F 0.19 0.12F 0.14

0.23F 0.18 0.19F 0.10 0.14F 0.19 0.12F 0.14

0.23F 0.17 0.18F 0.10 0.13F 0.18 0.14F 0.17

0.24F 0.19 0.19F 0.11 0.13F 0.18 0.14F 0.15

0.17 (0.87) 1.18 (0.28) 0.14 (0.89) 0.00 (1.00)

0.13 (0.90) 0.27 (0.80) 2.23 (0.06) 1.34 (0.22)

1.18 (0.27) 0.70 (0.51) 1.83 (0.11) 1.20 (0.27)

0.96 (0.37) 0.46 (0.66) 1.06 (0.32) 0.18 (0.86)

0.31 (0.77) 0.35 (0.73) 0.18 (0.86) 0.28 (0.78)

0.29 (0.78) 0.39 (0.71) 0.12 (0.91) 0.39 (0.71)

0.36 (0.73) 0.47 (0.65) 0.21 (0.84) 0.54 (0.60)

0.42 (0.69) 0.48 (0.64) 0.26 (0.80) 0.55 (0.60)
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cover type mapping appear to require a fairly intensive

(>3%) sampling of reference data before they emerge as

practically important. The expected large number of pixels

that are surrounded by two or more different FI cover types

(approximately 14%) poses an upper limit to gain in accuracy

that can be achieved by collocated indicator cokriging.

The second part of the study objective, the provision of

global and local estimates of precision was achieved

through the SIS generation of a binary matrix of prediction

errors for every pixel. Only standard matrix operations are

needed to convert these matrices into estimates of precision

of global and local MAP predictions. In small area appli-

cations, MAP estimates appear preferable to more erratic

localized MLEs and to estimates obtained directly from a

small number of reference sample points in the area (SIP).

MAP estimates are, accordingly, less sensitive to the number

of reference points in small areas (Flores & Martı́nez, 2000)

than either localized MLEs or SIP estimates.

Adaptation of the SIS procedure to local circumstances

will be necessary in most cases. We modified the prediction

of the water class to avoid a priori known problems along

edges of water bodies. Related problems inherent in the

kriging paradigm (Goovaerts, 1997) are likely to appear in

practical applications. Variations of the workaround used

here should be easy to implement and can be detailed around

various edge detection methods (Wallerman et al., 2002;

Gonzales & Woods, 1992). Also, instead of using an

omnidirectional variogram as a default for all cover type

classes, local circumstances may dictate the adoption of

anisotropic variogram models.

MAP via SIS is computationally intensive. Exploiting the

Markov–Bayes theorem to decompose the complex sto-

chastic process behind the prediction of a cover type map

into a sequence of independent simpler predictions is

straightforward in the details but does require powerful

computers in practical applications. Potential alternative

methods such as p-field probability simulation and block-

kriging (Goovaerts, 1997; Matern, 1980) would, in our

view, be as computationally demanding as the approach

taken here. Efficient search algorithms and fast routines for

obtaining the indicator predictions are essential to reduce

computing time. A considerable reduction in the time

required to estimate the spatial prediction error of a polygon

or a map can be achieved by subsampling. In our experi-

ence, simple random subsampling of 20–30% of the pre-

diction covariances will provide approximations of the

prediction variances and covariances that are within 5% of

the estimate obtained via exhaustive computations.

MAP cover type mapping via SIS is best suited to

quantify risk and uncertainty associated with data derived

from a single or several overlaid maps (De Bruin, 2001;

Hess & Bay, 1997; Kyriakidis & Dungan, 2002; Stehman &

Czaplewski, 1998). The value of a forest will depend,

among other attributes, on its cover type composition. An

estimate of the spatial distribution of cover type prediction

errors enables a decision-maker to obtain a probability
density distribution of the estimated value. Areas less than

100 km2 in size and characterized by a mosaic of spatially

contiguous cover type or land use polygons, each 10–1000

ha in size, are probably best suited for the demonstrated

MAP cover type prediction approach.
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Appendix A

Class and pixel specific estimates of l1 and k2 in Eq. (1)

were solutions to the following system of equations (Goo-

vaerts, 1997, p. 313, Eq. 7.47):

�1 �2V 1

�2 �3 1

1V 1 0

2
66664

3
77775�

l1

k2

v

2
66664

3
77775 ¼

�4

�5

1

2
66664

3
77775 ð2Þ

where &1 is a 8� 8 matrix of distance-dependent class i

indicator covariances between the eight nearest neighbors of

the pixel for which a prediction is to be made, �2 is an 8� 1

column vector of class i distance-dependent estimates of the

covariance between ‘hard’ and ‘soft’ data, �3 is the bino-

mial variance of pi, 1 is a 8� 1 column vector of ones, m is a
Lagrangian multiplier for the sum to one constraints on the

weights l1 and k2. Finally, �4 is a 8� 1 column vector of

class-specific distance-dependent indicator covariances be-

tween the pixel and its eight nearest neighbors, and �5 is the

class-specific indicator covariance between the true and the

conditional class membership probability from the initial

ML classification. For each of the seven cover type classes,

Gaussian elimination techniques were used to solve the 10

equations with 10 unknowns in Eq. (2). Valid solutions were

found for all pixels.

Covariance estimates needed for solving Eq. (2) were

obtained from semivariogram models of indicator covarian-

ces as a function of distance and global estimates of the

indicator covariance between the ML classifier and the FI

cover type class. The 7000 training pixels forming a

contiguous area were used to obtain nonlinear least square

estimates of the semivariogram model parameters and the

global covariance estimates.

The cover-type-specific indicator covariance depends on

the spatial distribution and frequency of the cover type

pixels in the spatial domain of interest (Cressie, 1991). At

distance 0, the class indicator covariance is the binomial

variance of the class frequency. The covariance between

cover type class (i) indicators separated by a distance (Eu-
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clidian) h was estimated from côv(hji) = côv(0ji)� ĉ(hji),
where côv(0ji) is the estimated covariance at zero distance,

and ĉ(hji) is the estimated semivariogram for distance h. The

variogram 2ĉ(hji) for a second-order stationary process is an

estimate of 2(côv(0ji)� côv(hji)) (Cressie, 1991, p. 83, Eq.
2.5.2).

For an ergodic and isotropic process, 2ĉ(hji) is obtained as
the mean squared difference between pairs of cover type i

indicator variables separated by a distance h. The mean is

taken over all possible pairs of cover type i training pixels

separated by a distance h. For indicator variables 2ĉ(hji) is a
measure of the likelihood that two locations separated by a

distance h are of the same cover type (Goovaerts, 1997).

Omnidirectional spherical variogram models (Cressie, 1991,

p. 61, Eq. 2.3.8) for 30 m< h< 2000 m were fitted to values

of 2ĉ(hji) derived from the data used for training the ML

classifier. The omnidirectional spherical variogram models

provided an overall satisfactory fit (they explained >80% of

the variation in the data). The three parameters of the

spherical models (c0 (i),cs (i), as (i) in Eq. (3)) were estimated

by nonlinear least squares techniques (Gallant, 1987).

cðh j iÞ

¼

0 if h ¼ 0

g0ðiÞ þ gsðiÞ�
3h

2asðiÞ
� h3

2asðiÞ3

 !
; if 0<h <asðiÞ

g0ðiÞ þ gsðiÞ; if h > asðiÞ

8>>>>><
>>>>>:

ð3Þ
Indicator cross-variograms between the true cover type

class and the class predicted by the ML classifier were

derived in a similar fashion, except that paired indicator

variables represent an observed and a predicted class,

respectively.

Although visual inspection of the training area and the

nine studied plots may suggest local anisotropy (particularly

for linear elements such as roads), there was no consistent

direction of maximum continuity. Hence, all variograms use

Euclidian distances as the most consistent predictor of

covariance.

Three alternative variogram models (Cressie, 1991) were

compared before choosing the above variogram model but

no practically important difference emerged.
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