T IMTSNTAMTATIAT ATATAATALT AAYARTAL
Ll LAl LVaAE D COVOVGo L LWUWAUALOO

Al
~
=

2 N mTI mrTN pr A . T oY NDNTNTAM
(398) A COMPARATIVE STUDY OF MODELS TO PREDICT
~
N

HYDROGEOLOGICAL RESPONS

by

Teja Singh

Infiltration is an important hydrogeologic characteristic
of a basin because of its influence on interflow, groundwater recharge
and overland flow. The rate at which water.enters thé soil surface is
the integrated net result of the many edaphic and vegetative influences

that are often superimposed on the inherent geology of a watershed.

The present study was conducted in Streeter Basin, an
experimental watershed situated in the southern foothills of Alberta,
Canada. Tne bedrock, of Porcupine Hills sandstone, is overlain with
silty to sandy till of varying thickness. Infiltration runs of 3-hour
duration were obtained by using constant head double ring infiltrometers
on 48 plots. A total of 13 edaphic and vegetative variables known to
have influence on water intake rates of the soil surface were measured
concomitantly at each plot. Such determinations were also repeated
on another 80 plots in similar vegetation types in the vicinity to
provide test of the predictor quality of the models. Stepwise
regression and varimax rotation of the factor weight matrix were used
to determine relative importance of the variables. Multiple linear
regression models and principal components regression models were
derived for extrapolation purposes.

Principal components prediction was better than or at least
as good as the multiple regression prediction. Allied with the
decision on the total number of variables is the equally important
consideration regarding the total number of components to be included
in the model. Optimum choice can make the difference in the
superiority of one model compared with the other.
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hydrogeologic proc
variables operate concurrently in such systems. Simple de
"cause-znd-effect” relationshins are easy to discern waen
nydrogeologic problems are isolated and considered in relatively

small segments. However as the number éf variables. increases
considerably, numerous interactions and partial dependencies complicate
the picture and blur the sharpness of the classical cause-and-effect
approach (Krumbein, 1969), meking it exceedingly difficult to detefmine'
precisely what actually "drives" the system. |

One possible solution to such complex situations, of course,
is to select a minimum number of the most importént operative variables
and to confine thé study to a few interactions and combinations.
Further, as in é greenhouse study, some of the variables can be kept .
constant and others allowed to vary according to. the range of
observations needed on each input variable. Quite oftén such
mechanisms do.not have counterparts in nature where most of the
environmental factors change frequently and concurrently.

Multivariate data analysis provides a possible alternate
analytical tool to deal with complex ecosystems. The variables can
easily be considered concurrently and can .be allowed to be numerous,
subject to the data handling capacity of the modern age.computers.

s

By using information on a large number of variables it is possible
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The purpose of this study is vo compare the multivariate

models in predicting hydrogeological response in areas similar

nose from which they are derived. The study weas conducted in Streeter

ct

Basin, a gauged watershed established for studying the hydrology of

aspen forests and associated grasslands of southern Albertea (Jeffrey,l965).
METHODS

Constant head, double ring infiltrometers were used to obtain
direct measurements of water intake at each site during a 3-hour
ruan. A number of concomitant measurements were also made on edaphic
and vegetative variables as listed in Appendix 1. Sixteen sites were
teken in each of the eight vegetation types (Appendix 2) present on
the watershed. As the entrance of water at the soil surface is
primarily determined by the conditions existing near the surface layer
most affected.by management practices, the edaphic variables included
in the study were those measured within the top 3 inches of the mineral
soil.

Vegetation units 3, 4, and 8, each with 16 samples, were used
in the deriyation of models. Stepwise regression and varimax rotation
procedures were used to assess the relative importance of variables

included in the study. Multiple linear regression models were obtained
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combination of the three sub-sets when grouped into a single set
representing the aspen parkland vegetation in general. In the latter

ne

(@]
H-
(@]
o
.l..h
Q
m
ct
(¢¥)

case dummy variables GR, SH, FOR were included ©
presence or absence of the vegetation type represented by each.

. -

Prediction capability of the derived models was tested

o

when applied to the experimental data obtained for the remaining
5 vegetation units (1, 2, 5, 6 and 7). Prediction errors and related
statistics were calculated to determine the extrapolation capacity of

the models in each case.
RESULTS AND DISCUSSION

Table 1 provides a summary of data from the three vegetation
units (3, 4, and 8) each representing a main vegetation type of the
aspen parkland on the watershed. Multiple correlation éoefficient (R)
and standard error of estimate for the models derived from these units
are listed in Table 2. R ranged from 0.96 to 0.99 for the stratified
populations, aﬁd 0.80 to 0.81 for the combined units using, in addition,
the 3 dummy variables. Without the dummies, the R is 0.73 for aspen
parkland vegetation when so grouped. Errors of estimate were lower for
stratified than combined populations. High ﬁ and low errors of’
estimate for the stratified populations actually did suggest that these
would be good models for extrapolation, although the regression

coefficients are likely to be relatively unstable because of the few
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rank in Table 3. Obviously the rank is inTluenced by the vegetation
unit to wnich stepwise regression is applied because in each of these
types the variables are ranked differently. This 1s mainly due to the
multicollinearities existing among the independent variables
(Cavadias, 196L4) as evident from some of the eigenvalues of the
unrotated factor weight matrix (Table L) which are zero or estimates
of zero (Krumbein and Graybill, 1965). Components 12 to 16 taXen
together, for example, contain less than 1% of the total information
content of all the variables.

Tables 5, 6 and 7 present the results obtained,using the.
models derived from vegetation units 3, 4 and 8, when extrapolated
to vegetation units 1, 2, 5, 6 and 7. Klthough they @iffer
considerably in terms of predictions within and among the five
vegetation units, a comparison can be made of the mean error terms

(i.e. average prediction error per observation unit for a total of

80 such units):

Model Mean prediction error
Absolute Actual
A. Stratified multiple regression 30.5 -16.5

3. Combined multiple regression
(including 3 dummy variables) 9.2 + 4.0

C. Combined multiple regression
on principal cowponents

(including 3 dummy variables) yils - 2.9
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models. As DreclLetlion error 18 vie driierence oetween Lae actual and

the predicted value (Y-Y), the positive errors represent an under-
estimate and the negative -errors an overestimate. The difference
between the average predicted value and the actual value is a
measure of bias and the results therefore show that the.model with
least bias in the present case 1s that incorporating regression on
principal components.

Varimax rotvation of the principel compoﬁent (factor weight)
metrix showed that three variables, namely SAND, SILT, and CLAY, can be
onitcted without any adverse effect on the predictive quality of the
models. The mean predictiocn error when this was done amounted to:

Mean prediction error

fodel _ Absolute Actual
A. Stratified multiple regression 6.1 - k4.5

B. Combined multiple régression
(including 3 dummy variables) TT - 2.7

C. Combined multiple regression on
principal components (including 3
dummy variables) TT ~ 2.7
Although individual predictions were not identical, the models
B and C gave equal mean prediction errors when rounded and these were
superior in prediction to models containing all the variables.
Using a different total number of components obviously gives
erent estimates of the mean prediction error for the same number of

veriables in tThe model., Prediction of the principal component model was



ase of the first category of models (Table 7) where all variables
had been included in the model building process. Evidently much
depends on the choice'éf the total number of components to bé‘
incorporated in the predic
Thus, gliied with the decision as to the number of
variables to be used in the predictor model is the equally important
consideration regarding the choice of the total number of components
to be retained in the model. Leaving more components out means loss

in total information content and consequently a reduction in

nd including more than the

w
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extrapolative power to some extent,
optimum necessary has a deleterious rather than z useful effect)
increased use of multivariate technigues in future will undoubteély
le=d to dévélopment of more exacti and rigorous criteria to decide
this critical question. Wallis (1963), for example, has suggested
that most experimental hydrologic data have sufficient multi-col-
linearity for the 0.995 explained information content (variance)
to.be effective. This appears to hold'good in the study reported
here. Including less than the optimum number of comppnents would
generally make the principal component prediction inferior to that
of the multiple regression.

A wide range of models is currently being investigated

and are expected to shed further light on improved criteria to do

an effective prediction job while extrapolating.
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X2 AM

X3 GL Ground litter (fresh cdecomposed material on grass and
forest lands, expressed as perceantage of ground
surface)

x4 BA Basal area of grasses and forbs expressed as percent
proportion of ground suriace

X5 ce Canopy cover (percent proportion of ground surface
covered by the vertical projection of live aerial
parts) of grasses and forbs '

X6 oM Organic matter (%) in soil

X7 WHC Water holding capacity: moisture content (%) of
an undisturbed and saturated soil after free
drainage has practically  ceased

X8 . . WP Wilting point: moiscure content (%) of a soil
sample after reaching ll“Drlu“ with an annlled
pressure of 15 atmosnne*es 5

X9 BED Bulk density

X10 Sand sand % (0.05-2.0 mm)

X11 gilt silt % (0.002-0.05 mm)

n2 Clay Clay % (less than 0.002 mm)

X13 PORS Porosity (total pore volume): percent by volume of
total pore space of a soil sample, calculated from
bulk censity and specific gravity:

Snecific gravity - BD
PORS = e x 100
Specific gravit]
511 edoniaic variables were Getermined from sampling within the top

- .

o
3 incnh of minerali soil
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Pnor a greassland sup-type coanrined to
W L oocracaland ib=-tvne occecurrinz on slomes and
' A grassdian SUD-UyD occuy ng I 520DES O
= = B ! s 2y AR " oy b
neving a prominent Iord { ecs ) couwponent

Depa-Feid A grasslend sub-type coniined primarily to ridge
i - ¢ s
U

=
ops and dominated by Darthnia payril and Festuca
S

Sal-Beoc A shrub type dominated by Szlix spo. and Betula
occidentalis : e
Potrich A forest sub-type dominated by black poplar

. (Populus trichocarpa)

Potr-Ros A forest sub-type dominated by aspen (Populus
© tremuloides) and an undersiorey vegetation
consisting primarily of rose (Rosa acicularis and
Rosa woodsii)

Potr-Caca A forest sub-type domineted by aspen and an under-
storey primarily of reed grass (Calamagrastis
canadensis)

Potr-Asco- A forest sub-type dominated by aspen and having an

Epan . nderstorey consisting primarily of showy aster
(Aster conspicuus) and fireweed (Epilobium
augustifolium)




Table 1.

Summary of data from which models derived

Variable Minimom Maximuin Mean

- .mGrassland Forest | Shrub | Grassland |I'orest lShrub Grassland [lorest [E@rub

ST 4.0 0.9 | 3.5 17.5 .| 19.0 11.9 10.8 9.1 5.8
Al 19.5 0.6 38 100 83.1 ] 88.2 522 58.8 50.2 2.2
GL 62.5 1.0 1.4 92.5 98.5 | 95.0 8.1 96 .4 90,1 10.2
i 5.0 1.1 | 2.3 20.0 5.0 | 22.% 9.3 3.2 9.6 3.7
616 30.0 1.2 1.1 90.0 8.8 1 90.0 56.3 h3.7 3.3 18.8
oM 9.1 2.8 2.1 15.4 ¥5:% { 15,2 13.2 12,2 10.8 1.7
VHC 46.7 2.3 1.9 106.2 208.0 |235.6 0.5 81.6 87 .4 X7 5
WP 225 2.3 0.4 64 .0 86.5 | 95.0 41.8 k5,2 ho.7 10.4
BD | 0.3 0.2 0.3 1.0 1.0 1.9 0.7 0.6 A 0.2
SAI'D .35.0 2.1 0.3 71.0 60.0 | 62.0 51.3 L7.0 L2 10.0
STLT 15.0 1.9 0.5 52.0 54.0 | 6.0 37.6 40.0 | k1.5 10.0
CLAY 8.0 1.5 0.3 18.0 19.0 | 24,0 11.2 13.0 1h;3 2.5
PORS 56.0 1.2 0.3 86.0 89.0 | 86.0 68.1 73.1 69.5 745
INF13 17 1.7 1.7 10.8 | 38.6 | 20.5 5.1 18.2 12.0 '2.7

O\
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= 16 variables

13 variables

13 + 3 dummies
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= 13 variables
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Individual and eumulative contribution of principal components

:

]
Principal component % 2 3 L 5 6 7 8 | 10 |
: |
|
AJl variables § l
included: i !
Figenvalue 5.05/ 3.24 2.88] 1.82f 0.78] 0.67| o0.k2! 0.38' 0.30! 0.19!
. . ! @
Contribution (%) 31.6 |20.2 {18.0 |11.4 | 49| 4.1 | 2.6 | 2.4 1.9 1 1.2 |
Cumulative (%) 31.6 {51.8 |69.8 [81.2 {86.1 {90.2 |92.8 [95.2 | 97.1 (98,3
All except SAND,
STLT and CILAY:
Figenvalue h.56] 2.86[ 2.14 1.49| 0.67| 0.44| 0.32| 0.20! 0.16] 0.11
Contribution (%) 35.1 |21.9 {16.5 |11.5 | 5.2 | 3.3 | 2.5 | 1.6 1.2 ] 0.8
cumulative (%) 35.1 |57.0 |73.5 |85.0 |90.2 |93.5 [96.0 |97.6 | 98.8 [99.6

0.

100.

AT



Table 5.

stratified populations

Total and mean prediction errors using 1l3-variable multiple regressio

n prediction models derived from
P

Total prediction error fean prediction error
Vegetation Unit :
+ “ absolutejactual + = Abso-
errors errors sum sum errors| errors! luie| Actual

sum sun

1. Graesland
Valley bottoms 289.3 0 289.3 239.3 | 18.1 0 118.1 18.1
Slopes 127.1 {1084.8 |1211.9 [-957.7{ 7.9 | G7.8 {75.7 | -59.9

IT. Forest
Black poplar 100.8 90.5 191.3 10.3| 6.3 547 12.0 0.6
fspen (rose understory) 29.1 367.7 3906.8 |-338.6 | 1.8 |23.0 24.8 | -21.2
Aspen (pine grass 16.0 339.2 355.2 |-323.2 | 1.0 (21.2 22,2 | ~-20.2
understory)

Mean 112.5 3764 | '488.91 |-263.9 | 7.0 |23.5 30.5 | -16.5

i

3

Model derived Iror

vepebalion unib. 7




Tablz 6. Total and mean prediction errors using a 1l6-variable multiple regression prediction model,

Cumulative prediction error for Mean prediction er:

Der ohse !
the vegetation unit for the vegetation wmit

Vegetation Unit :
-+ - Abselute Actual F - Absoluto
errors errors swmn sum errors CrIrors swn

Vallcy bottoms (Phpr) 161.0 - 165.1 + 156.9 10, 1 0.

)
2]
)
"~

~

Predortinantly Forb 295.9 0 295.9 « 295.9 || 18.5 0

II. Forest

Black poplar 43.3 38.9 82.2 o bk 2.7 2.4 5,1 Lo+ 0,

Aspen with rose wnderstory 21,5 65.0 86.3 - 43.7 1.3 .1 5.4 | - 2.8

Aspen with pine grass under- ' _ ;
story 6.4 97.7 104, 1 - 91.3 0.

C\

=

@)
e

6.5 6.6 2,6 9.2

L
0

Mean | 105.6 L1 6.7

i el




Table 7. 9otal ond mean prediction errors using a principal component model derived from re

o P T -
gression on 106 vorishlas

+
errors

Total prediction error

- Absolute
errors sum

Actual
swmn

+
errors

Mean prediction

errors

Valley bottoms (Phpr)

Predowinantly Forb

L. Porest
Black poplar

Agpen with rose understory

Aspen with pine grass under-

106.8

62.5

12,2

7.8

18.4 125,2

13.7 76,2

96,8 109.0

122.7 1305

+ 88,4
+ 48.8

- 84,6

-114.9

0.8

0.5

story - 0 71,1 k o s -171.1 0 0.7 10.7
Mean 37.9 8.5 r 122.4 - 46,6 2.4 5.3 i

|
i
i 2
H 1 "1.(
|
1
'
H
!
!
5. 9D
- Dis &
i r ry
| ,/ Oy




Table 8.

populations when sand, silt, and clay are excluded.

Totsl and mean prediction errors using 13-variable multiple regression models derived frowm g

Total prediction error

Mean prediction crror

+
errors

errors

Absolute
sum

Actual
sum

_{_
errors

errors

Absolute
sum

Actual
sum

I

Fore

Gragslznd

Valley bottoms

elunes
SLPes

[£25)
i
et

Black poplar

Aepen (rose understory)

spen (pine grass

understory)

274 4
138.9

27.0
21.4

1.6

118.1

321.7
380.0

oTh L

14k .9

145.1
343.1
381.6

27k

132.9

-91.1
-300.3
-378.L

LT oL

Qad

9.1
21.4

23.8

17.1

8.3

5.7
-18.8
-23.6

Mean

92.7

257.9

- 72.5

-iB.3

16,1

Lratified

- Model derived

{rowm
vegetation

unit /6




Table 9 Total and mean prediction errors ugLng a 13-variable multiple regression model when so sill and
cley are excluded
. Total prediction crror Mean prediction errox
Vegetation Unit
+ - ]Ab:;oluLe Actual + - Absolut: hetonl
errors errors' sum sumn errors | errors sum su
T. Crassland
Vaelley bottoms 110.5 11.4 | 121.9 b 891 6.9 0.7 7.6 P 6.2
Slopes 72.9 6.6 19.5 - 66.3 4.5 0.l 5.0 T
IT. Yorest
Blzck poplar 12 .4 99.8 | 112.2 - 87.4 0.8 6.2 7.0 - 5.5
hepen (rose understory) 8.1 121.6 | 129.7 -113.5 0.5 7.6 8.1 7.1
Aspen (pine grass 0 173.8 |-173.8 -173.8 0 10.9 10.9 10.9
understory) o
Mean: | 40.8 82.6 | 123.k - 419 |l 2.5 5.2 .7 - .7
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