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Abstract

Efficient identification of forest age is useful for forest management and ecological applications. Here we propose
a user-assisted method for determining forest age using high spatial resolution remotely sensed imagery. This
method requires individual trees to be extracted from imagery and represented as points. We use a local maximum
filter to generate points that are converted to Voronoi polygons. Properties of the Voronoi polygons are correlated
with forest age and used to aggregate points (trees) into areas (stands) based on three forest age classes. Accuracy
of the aggregation ranges from approximately 68% to 78% and identification of the mature class is more
consistent and accurate than the younger classes.
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1. Introduction

Automated techniques for extracting features from high spatial resolution remotely sensed
imagery are increasingly common and allow detailed information to be collected over
large areas. While many ecological and management applications benefit from detailed
data, the size of these data sets can lead to difficulties with data storage and may have
limitations when attempting to understand general landscape trends. Therefore, methods
to efficiently aggregate features provide a mechanism for generalizing detailed data and
add flexibility to data sets generated by automated feature extraction.

One approach for extracting individual tree locations from high spatial resolution
imagery is local maximum (LM) filtering [13], which represents trees as points.
Commonly, however, forest information is presented as polygons. A technique to convert
individual trees (points) into homogenous forest stands ( polygons), allows the detailed
data to be stored in a more traditional and, in some cases, a more efficient format.
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In this paper, we focus on a method for generating polygons of homogenous forest age.
Forest age mapping is useful in applications such as ecology and forest management. For
instance, forest age mapping is used to predict susceptibility of forest stands to pests, such
as the mountain pine beetle, which generally attack older trees [6], [8].

The spatial distribution (spatial pattern) of tree stems is one aspect of forest structure
that has been shown to have an association with forest age [2], [5], [11]. The relationship
between the spatial distributions of tree stems and forest age is best documented in
literature of forest canopy gaps. For example, it has been shown that in coastal Douglas-fir
forests, mature stands have a significantly higher number of gaps than younger stands [7].
Forest canopies of mature coastal Douglas-fir are also more open and heterogeneous than
in younger stands [2]. The correlation between canopy openness and forest maturity can be
related to changes in the spatial pattern of stems that occur as forests age. As forests
mature, individual trees become larger requiring more space and therefore are found at
lower densities than when stands are young. Eventually old trees die, due to small
disturbances or inter-species competition, and new canopy gaps provide sufficient light
and resources for younger trees to emerge [5], [12]. The emergence of younger trees
increases the stem density of the forest. Therefore, under natural conditions, as a forest
matures, individual tree density will first decrease and then increase slightly.

Relationships between the spatial patterns of stems and forests age are useful for
aggregating individual tree locations, extracted from remotely sensed imagery, into
polygons of homogenous forest age. In a previous study [9], forest age polygons were
generated from points representing tree locations using a method based on nearest
neighbor distances. Although the nearest neighbor method proved useful, here we improve
the approach by using a set of techniques involving Voronoi polygons (VPs). In particular,
the VP approach permits the automated conversion of points to polygons and also
simplifies the delineation of non-forested areas.

In this study individual trees were extracted from a 1m spatial resolution IKONOS
satellite image using a LM filter and represented as points; points were then converted to
VPs. Next, forest inventory data were used to identify training areas for nine inventory age
classes. Summaries of VP area and perimeter attributes were calculated for age stratified
training areas to determine the correlation between VP attributes and forest age. Age
summaries of VP attributes were used to determine possible forest age classes and VP
attribute thresholds for aggregation. Subsequently, individual trees were aggregated into
three classes: Young (1-20 years), Intermediate (21-120 years), and Mature (> 120
years). Finally, the accuracy of this aggregation was determined with reference to forest
inventory data. While we demonstrate this method with trees in a forestry context, it can be
applied to spatial distributions of other point objects.

2. Study area and data
The study area is located in the Sooke Watershed, 40 km northwest of Victoria, British

Columbia, Canada (48° 34’ N, 123° 42’ W). The Sooke Watershed is dominated by coastal
Douglas-fir (Pseudotsuga menziesii). Stand age ranges from 0 to > 250 years [4],
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although there are no stands aged 120—141 years and few stands exist between 60 and 100
years due to harvesting operations. The forest stands younger than 120 years are managed
plantations, while the older stands are naturally occurring.

The forest information required to develop the aggregation technique and perform
accuracy assessments was obtained from the Sooke Watershed forest inventory map (scale
1:15000) [4]. This map was generated via airphoto interpretation in 1991, at which time
stand age attributes representing the age expected in 1998 were predicted. As with all of
British Columbia Ministry of Forests’ inventory data, age is represented with nine classes
(table 1) [3].

The locations of individual trees were extracted from a panchromatic IKONOS image
with 1 m spatial resolution. This imagery was collected on June 3, 2000 at 11:05 PST and
covers an area of approximately 8 km?. The upper left corner of the image is 441962E,
5386346N and the lower right corner is 451162E, 5377371N.

Tree locations were isolated from the IKONOS imagery using the well-documented LM
filter [13]. Our goal is not to revisit the LM technique, but rather to develop an approach
for generalizing a variety of objects identified with different feature extraction approaches.
Therefore, our description of the LM filter is brief and we refer readers to the cited
reference for further details. The LM filter locates individual trees based on the assumption
that tree crowns are convex. If this assumption is correct, the approximate tree apex should
occur where image radiance values are the highest and radiance values should decrease
towards the edge of a tree crown [13]. Using a moving window, the LM filter locates a tree
only if the radiance value of the central pixel is greater than all other pixels in the window.
For this study a 3 by 3 window was used as it best represents the size of mature Douglas-fir
tree crowns. To reduce image noise, which causes trees to be falsely identified, the
IKONOS image was smoothed using a 3 by 3 averaging filter prior to feature extraction. A
drawback to smoothing an image is the reduced likelihood of finding trees with small
crowns.

Details of feature extraction results and accuracy can be found in Nelson et al. [9] where
it was demonstrated that 70% of mature trees were identified correctly, while only 37% of
young trees were accurately located. Less than 1% of trees located by the LM filter were
false.

Table 1. British Columbia ministry of forests’ inventory age classes.

Forest Inventory Age Class Age (years)
1 1-20
2 21-40
3 41-60
4 61-80
5 81-100
6 101-120
7 121-140
8 141-250
9 > 250
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3. Methods

An overview of VP methods for aggregating trees into forest polygons based on tree age
can be seen in table 2. First, LM points were converted to VPs. Given a set of points in a
continuous space, VPs partition the space so that all locations in the space are associated
with the closest point [10]. VPs are advantageous for spatial analysis of point patterns
since their construction automatically defines spatial relationships between the points even
if the pattern is not homogeneous (e.g., neighboring points can always be defined as those
points whose VPs share a common edge regardless of variations in the density of the points
across space). As well, attributes of the VPs, such area and perimeter, can be assigned to
the points. Area and perimeter attributes are particularly useful in this context as they are
inversely related to the density of objects.

Successful aggregation of trees into forest age polygons requires analysis to determine
which, if any, VP attributes are sensitive to changes in forest age. In order to determine

Table 2. Overview of methods for aggregating individual trees into forest age polygons using VP techniques.

Task Task Description Task Goal

LM filtering A 3 x 3 LM filter is run on an IKONOS image Find all individual trees and represent

smoothed with a 3 x 3 averaging filter.

VPs are generated for all trees
identified via LM filtering.

A forest inventory map is used to identify
(50 x 50m) training areas for each of the
nine forest inventory age classes. These
areas are selected throughout the entire
IKONOS image.

VP attribute values, based on area and
perimeter, are summarized for the age
stratified training areas.

Generating VP

Select training
areas

Assessing the
relationship
between VP
attributes and
forest age

Select sub-areas
for aggregation

Three sub-areas (average area = 633 sqm)
are selected from the IKONOS image and
used for aggregation.

locations with points.

Use VP attributes to aggregate individual
trees into forest age polygons.

Training areas stratified by forest age are
required to test the relationship between
VP attributes to forest age.

Identify which VP attributes are most
capable of producing forest age
polygons and determine age classes
and attribute thresholds for aggregation.

Due to the IKONOS image size, attributes
are generated for three selected sub-areas.

Generating VP attributes shown to be the most sensitive VP attributes sensitive to forest age are
attributes to forest age are generated for all trees in required for aggregation.
the sub-areas.
Aggregation Using age classes and thresholds suggested Generate forest age polygons.
by analysis of the relationship between VP
attributes and forest age, trees are aggregated
into age polygons.
Aggregation By comparing the aggregated sub-areas with ~ Determine the accuracy of the
accuracy forest inventory polygons two accuracy aggregation technique.
assessment assessments are performed. The first

assessment is at the VP scale and the
second at the forest inventory polygon scale.
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how well VP attributes reflect forest age 50 by 50 m training areas were selected for each
of the nine inventory age classes based on the forest inventory map. For each age class,
three to six training areas were used; more training areas were selected when age classes
were well represented throughout the study area. We tested how well VP attributes
correlated to forest age using both smoothed and unsmoothed attributes. To smooth VP
attributes, all values within a neighborhood defined for VP i were averaged and the new
value assigned to VP i. Two neighborhoods were defined for smoothing. Lag 1
neighborhoods include VP i and all adjacent VPs, whereas lag 2 neighborhoods also
include all VPs adjacent to the lag 1 neighborhood. When attributes were smoothed,
additional polygons outside the study area were used in neighborhood definition when
necessary.

Smoothing the attributes compensated for variability in the training data, which was
expected for two reasons. First, even within stands of a single age, variability in the
distances between trees will occur due to factors such as soil moisture, soil nutrients, and
competition. Second, training locations were selected from forest inventory polygons,
which when created using traditional techniques such as airphoto interpretation, are
considered homogeneous based on a set of characteristics such as age, species, height, and
crown closure [3]. Consequently, single attributes, such as forest age, may vary slightly
throughout the polygon.

The smoothed and unsmoothed area and perimeter attribute values were summarized for
each of the forest inventory age classes (see tables 4 and 5 in Sections 4 and 5). By
interpreting the summarized values, we determined which attributes were the most
sensitive to forest age. Using natural breaks in the age stratified summaries of lag 2 VP
attributes, we identified the number of age classes, range of each age class, and attribute
thresholds to use for aggregations (see table 3). In this way, three age classes were created:
Young (1-20 years), Intermediate (21-120 years), and Mature (> 120). Non-forest areas
were excluded from the aggregation by disregarding all VPs that intersected roads, water,
and other non-forested areas by at least 50%.

To assess the accuracy of the aggregation procedure three sub areas, having an average
area of 633 m?, were selected as representative of forest ages within the Sooke Watershed.
In each sub area a digital version of the forest inventory polygons was overlain with the
aggregation results and the accuracy assessment was conducted at two spatial scales. The
first assessment was based on VPs where the age class assignment of each VP was
compared with the forest inventory data. The second assessment was based on forest
inventory polygons. For each forest inventory polygon we determined the assigned age
class of all intersecting VPs. The modal age class of the intersecting VPs was then

Table 3. VP attribute thresholds used for aggregation. Units are in meters.

Age Class Lag 2 Area Lag 2 Perimeter
Young <50 <28
Intermediate 50-72 28-34

Mature > 72 > 34
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compared to that of the forest inventory polygon and the percentage of instances where the
age classes were the same was calculated.

4. Results and discussion

The sensitivity of VP attributes to forest age is summarized in tables 4 and 5. Both VP area
and perimeter are correlated with forest age, with attributes smoothed with a lag 2
neighborhood being the most sensitive to changes in forest age. Although area and
perimeter seem approximately equal in their sensitivity to forest age, perimeter attributes
have less within class variation.

Generally, VP area and perimeter increase with forest age. The main exception to this
trend is forest age class 9, which tends to have lower attribute values than age class 8. This
trend reflects expected changes in the spatial pattern of trees as forests age. A natural stand
is likely to self-thin once it reaches maturity (age class 8); eventually smaller trees will
regenerate in the gaps causing the average spacing between trees to decrease (age class 9).
While a similar trend is seen for class 6, it is likely an artefact of few training areas in this
age class, which was not well represented in the study area.

Stratifying VP attributes by age allowed us to identify natural breaks in the relationship
between VP attribute value and forest age, particularly when attributes are smoothed. For
example, lag 2 area VP attributes show natural breaks between forest age classes 1 and 2, 3
and 4, and between 6 and 8. These natural breaks, as mentioned in the methods, became
the aggregation thresholds; the threshold between forest age classes 3 and 4 was not
applied due to a lack of forest representing age classes 4 to 5 in the study area. Similar age
class thresholds were applied when aggregation was based on VP perimeter.

Aggregation results for the three sub areas are shown in figures 1-3. Aggregations were
based on both lag 2 area and perimeter attributes, however only perimeter is shown as

Table 4. Comparison of mean values generated for each age class using the 50 x 50 m sub-areas. Area —
Single Tree = average values calculated based on the area of the VP of each tree. Area — Lag 1 = the average
area of the VP of each tree and the VPs of its lag 1 neighbors. Area — Lag 2 = the average area of the VP of each
tree and the VPs of its lag 1 and 2 neighbors.

Area — Single Tree Area — Lag 1 Area — Lag 2

Fl-Age Mean cv Mean cv Mean Cv

1 41.6 38.3 42.8 23.1 43.6 16.6
2 46.5 41.1 494 234 51.1 15.9
3 51.2 42.7 53.4 27.6 54.7 213
4 50.9 353 53.8 21.0 66.0 13.2
5 61.8 36.2 64.7 224 65.6 18.8
6 58.5 39.0 62.3 212 65.3 16.1
8 83.6 443 89.5 23.6 91.6 15.5
9 83.9 414 84.9 23.6 90.9 17.3

Notes. F1 =forest inventory; CV = coefficient of variation.
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Table 5. Comparison of mean values generated for each age class using the 50 x 50 m sub-areas. Perim —
Single Tree = average values calculated based on the perimeter of each tree. Perim —Lag 1 = the average
perimeter of each tree and its lag 1 neighbors. Perim — Lag 2 = the average perimeter of each tree and its lag 1 and

2 neighbors.

Perim — Single Tree Perim — Lag 1 Perim — Lag 2

Fl-Age Mean cVv Mean cVv Mean cv

1 25.8 17.8 26.1 11.7 26.3 10.1
2 26.9 19.2 27.6 11.9 28.2 7.7
3 28.1 20.5 28.7 14.3 29.0 11.1
4 28.5 16.1 29.2 10.2 29.8 7.6
5 31.8 16.5 323 11.2 32.6 9.5
6 30.8 17.8 31.6 10.7 323 8.1
8 36.2 18.8 37.3 11.1 37.8 7.8
9 355 22.0 36.2 13.2 36.6 10.6

Table 6. Percentage of VPs accurately classified. Each VP is assessed to determine if it was assigned to the

correct age class.

Young Intermediate Mature
Age Area Perimeter Area Perimeter Area Perimeter
Young 42.5 423 48.8 50.1 8.7 7.6
Intermediate 20.6 20.5 572 58.4 32.1 31.1
Mature 0.4 0.3 11.7 12.5 88.0 87.2

Table 7. Percentage of forest inventory polygons correctly classified. Aggregation based on the lag 2 perimeter

attribute.

Age Young Intermediate Mature
Young 50.0 50.0 0.0
Intermediate 6.3 68.8 25.0
Mature 0.0 8.3 91.7

there are no visible differences. The VP level accuracy assessments are shown in table 6.
Using the lag 2 area attribute, 67.9% of VPs were accurately classified. The corresponding
value for the lag 2 perimeter was 68.3%. The Mature class was the most accurately
classified and the Young class was the least accurately classified. Confusion in the
classification occurred between Young and Intermediate classes, and Intermediate and
Mature classes. This is not surprising as the VP attributes suggest the Intermediate class
acts as a transition between the Young and Mature classes.
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Figure 1. Site 1 IKONOS imagery is presented in the upper pane for comparison to the aggregation results,
based on the average perimeter of polygons in lag 2 neighborhoods, in the lower pane. (White = young forest.
Light gray = intermediate aged forest. Dark gray = mature class. Black =roads and non-forested areas. Numbers
represent British Columbia Ministry of Forests” Inventory age classes.)

The forest inventory polygon based accuracy assessment showed the aggregation to be
78.3% correct (Table 7). The results of aggregations were so similar that the forest
inventory based accuracy assessment was conducted for only the lag 2 perimeter method.
Although the classification accuracy is higher when based on forest inventory polygons,
trends are the same as for the individual VP accuracy assessment.
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Figure 2. Site 2 IKONOS imagery is presented in the upper pane for comparison to the aggregation results,
based on the average perimeter of polygons in lag 2 neighborhoods, in the lower pane. (White = young forest.
Light gray = intermediate aged forest. Dark gray = mature class. Black = roads and non-forested areas. Numbers
represent British Columbia Ministry of Forests’ Inventory age classes.)
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Figure 3. Site 3 IKONOS imagery is presented in the upper pane for comparison to the aggregation results,
based on the average perimeter of polygons in lag 2 neighborhoods, in the lower pane. (White = young forest.
Light gray = intermediate aged forest. Dark gray = mature class. Black = roads and non-forested areas. Numbers
represent British Columbia Ministry of Forests’ Inventory age classes.)
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The accuracy assessment based on forest inventory polygons is subject to the same
difficulties as discussed for the training data. It is possible that the accuracies are actually
higher than reported, as the aggregation results, which are based only on age, are being
compared with the forest inventory polygons that are relatively homogenous for a number
of characteristics.

5. Conclusion

This paper demonstrates a method for extracting individual trees from remotely sensed
imagery and aggregating tree points into forest age classes based on the properties of VPs.
Although the accuracy of this method is similar to aggregations based on nearest neighbor
distances, there are several advantages to using VPs. In comparison with the nearest
neighbor approach [9], the use of VPs reduces the subjectivity of the aggregation method.
For example, the spatial characteristics of VPs discussed above allow the spatial
distribution of the trees to determine both the scale of analysis and neighbor relationships
between trees, whereas aggregation using a nearest neighbor approach requires the scale of
analysis and therefore the neighborhoods to be defined subjectively. Also, removal of non-
forested areas is simplified using VPs. Finally, aggregating VP into classes automatically
produces forest polygons while nearest neighbor methods require a post-processing
technique to generate forest polygons from grouped points.

Our method is most accurate when trees are mature. This is most likely related to the
accuracy of the LM filter, which in this study generally improves as tree size, and therefore
age, increases. The relationship between LM filter success and tree size will change when
using imagery with different spatial resolutions. When extracting individual trees in a
coastal Douglas-fir forest from 1m spatial resolution imagery, the high accuracy of
mapping mature forests suggests that one of the best uses for these methods may be
applications that require identification of broad mature age classes. For example, mountain
pine beetles generally attack forests that are 80 years or older, therefore this method could
be quickly implemented to identify the location of trees in age classes susceptible to
mountain pine beetle attacks.

Our results also contribute to the general debate regarding the representation of forests
using object and field models. Traditionally, forests are mapped as objects or discrete units,
however boundaries in forests are not always crisp and forest polygons not always
homogenous [1]. Using the VP method for generating forest polygons allows the
variability within the crisp objects to be visualized, and may provide a mechanism for
reporting uncertainty and fuzziness within forest boundaries. Further investigation is
required to determine which variations are artefacts of the aggregation procedure and
which represent true variation not reflected in the forest inventory data.

In this paper, we have demonstrated how aspects of the spatial distribution of trees can
be used to generate age based forest polygons. Given that points can be used to represent
many environmental and social objects, these methods may be suitable for other
applications, where spatial distribution of objects is of interest.
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