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Abstract. In the context of Landsat TM images forest stands are a cluster of
homogeneous pixels. Contextual classification of forest cover types exploits
relationships between neighbouring pixels in the pursuit of an increase in
classification accuracy. Results with six contextual classifiers from two sites in
Canada were compared to results with a maximum likelihood (ML) classifier.
The comparisons were done at three levels of spectral class separation. Training
and validation data were obtained from single-stage cluster sampling of
2 km62 km primary sampling units (PSU) located on a 20 km620 km grid. A
strong relationship between contextual and ML classification accuracy was
explored with logistic regression analysis. Effects of contextual classification
were predicted for given levels of ML accuracy. Estimates of the spatial
autocorrelation of reflectance values within a PSU were deemed consistent with
a first-order autoregressive process. Iterative Conditional Modes (ICM) was the
best contextual method; it improved the overall accuracy by four to six
percentage points (statistically significant) when ML accuracy was between 50%
and 80%. A relaxed ICM and a smoothing algorithm were second and third best.
Contextual classification is most promising when an ML accuracy is around
70%. ICM results were sensitive to the level of spatial autocorrelation of ML
classification errors and to the homogeneity of a PSU.

1. Introduction

Forest cover type maps are composed of polygons or forest stands with a

content, structure and composition matching a type description. In a Landsat TM

image with a nominal pixel size of 30 m a forest stand occupies anywhere from a

few to several hundred or even thousands of pixels. Spectral reflectance values of

pixels in close spatial proximity within a given stand tend to be similar. Conversely,

the prevalence of spatially contiguous stands improves the likelihood that adjoining

image pixels belong to the same cover type class. Contextual classification exploits

these relationships among neighbouring pixels as opposed to a per-pixel

classification which derives a cover type from the information linked to a single

pixel. Stable, consistent, and predictable relationships among neighbouring pixels

can be quantified and used to improve the classification accuracy. Switzer (1980)

pioneered the use of spatial smoothing in a classification context. Checkered

agricultural landscapes were especially amenable to contextual classification

(Goldberg and Goodenough 1978). Since then a large array of contextual methods
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derived from Markov random fields, spatial statistics, Bayesian methods, fuzzy

logic, segmentation, texture, or neural nets have emerged. When tried on fixed

binary images degraded by random noise, these methods have been very effective at

restoring the original image (Ripley 1985). Practical experience with these methods

under realistic conditions in a forest inventory context remains scant, but published

studies indicate an increase in accuracy after including context in the classification

schemes (Palubinskas et al. 1995, Slaymaker et al. 1996, Flygare 1997, Stuckens

et al. 2000, Hubert-Moy et al. 2001).

Context in this study is restricted to mean a neighbourhood of pixels.

Integrating information from neighbouring pixels into a classification scheme is

more complex and time-consuming than a per-pixel classification. These efforts

have to be justified by a commensurate increase in accuracy. To assess whether

contextual classification is an attractive option for forest type classification of

satellite images, this study compared the performance of six contextual methods to

a maximum likelihood per-pixel classification in two contrasting forested

landscapes, and at three levels of spectral class separation. Our approach to

statistical inference is design-based (Gregoire 1998). Results are obtained from a

random sample of 2 km62 km primary sample units.

2. Material and methods
2.1. Study sites

Contextual and per pixel classification accuracy was compared with data from

two study sites, one in New Brunswick and one in Saskatchewan (figure 1). The

forested landscape in the New Brunswick site appears more fragmented than the

Saskatchewan site due to a larger population density and longer history of

anthropogenic influence. Forest stand polygons in the New Brunswick site have a

mean size of 5.2 ha compared to 6.5 ha in Saskatchewan. Both study sites are

relatively flat (average slope was 2% in New Brunswick and 0.6% in Saskatchewan)

with an inter-quartile altitude range of 70–120 m in New Brunswick and 500–600 m

in Saskatchewan.

2.2. Landsat TM image data

Landsat TM images used for classification are detailed in table 1. The TM

scenes were co-registered to distinct ground control points (37 in New Brunswick

and 86 in Saskatchewan). Ground control points were transferred from a 1 : 50 000

National Topographic Series map (New Brunswick) and 1 : 12 500 ortho-rectified

aerial photos (Saskatchewan) to their respective Landsat scene. Estimated rms

positional error determined with a second-order polynomial and cubic resampling

was 0.46 and 0.76, respectively (unit: pixel). Channels used were 2, 3, 4, 5, and 7.

Atmospheric corrections were done according to Richter (1990). Correlation of

reflectance values between TM channels was reduced to zero via a transform based

on a Cholesky decomposition of the covariance matrix of the reflectance data

(Cressie 1991: 202–203). Visual inspection of histograms of reflectance data

indicated that the assumption of a multivariate Gaussian distribution was tenable.

Yet, formal testing (D’Agostino et al. 1990) rejected the null hypothesis of

normality of the transformed reflectance data due to an excess of kurtosis in all

channels ( pv0.01).
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2.3. Forest inventory data

Forest cover type maps obtained from interpretation of aerial photography served

as ground truth for the training and validation of the classifiers. Years of photography

were 1993–1994 in New Brunswick (New Brunswick Department of Natural Resources

and Energy), and 1994–1996 in Saskatchewan (Forest Management Branch and

Saskatchewan Environment and Resource Management, Forestry Branch, Inventory

Unit). Cover types and their definitions are listed in table 2.

Visual inspection of an overlay of TM and inventory data identified clusters of

pixels where the inventory cover type label was dated due to a significant change

since the inventory was completed. We masked these pixels (y1%) from the

analyses. TM reflectance values deviating more than three standard deviations from

their cover type conditional mean (v1%) were also masked as they were visible

outliers.

Figure 1. Location map of study sites (black boxes) in New Brunswick and Saskatchewan.

Table 1. Landsat TM data.

Landsat TM scene New Brunswick Saskatchewan

Acquisition date July 1995 July 1994
Track 9 37
Frame 28 22
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2.4. Training and validation data

Training (fitting) and validation of classifiers was done within the context of a

one-stage cluster sampling (Cochran 1977) with 2 km62 km primary sampling units

(PSU) on a 20620 km grid (Magnussen et al. 1998). Each PSU contained

approximately 4300 30 m630 m co-registered pixels (secondary sampling units)

from the TM image and the rasterized forest cover type maps. The New Brunswick

site had 57 PSUs and the Saskatchewan 81 PSUs. The PSUs on each site were split

equally into one of three sets (SET1, SET2, SET3) by random assignments. Each

set was used once for training with the remaining two site-specific sets serving

validation. Thus the scheme generated three sets of validation results.

2.5. Three levels of spectral class separation

The effect of contextual classification was expected to depend on the spectral

class separation. With a low separation the confusion of classes will be high and a

contextual classification may only degrade an already low accuracy, and vice versa

for a high separation. The results of a comparison of contextual and per-pixel

classification would therefore depend on the spectral separation of the adopted

cover types. To generalize our results we manipulated the TM reflectance data to

obtain three levels of class separation (SEP1, SEP2, and SEP3). SEP1 corresponds

to the original TM data. Datasets SEP2 and SEP3 were generated by adding a

class-dependent offset to TM channels 2 and 3. Offsets for SEP2 and SEP3 were

chosen to give a minimum Mahalanobis distance (McLachlan 1991) in class mean

reflectance of 1.25 and 1.5, respectively. Offsets are listed in table 3 and the

corresponding Mahalanobis class mean distances are given in table 4.

2.6. Maximum likelihood classification (ML)

All pixels in a validation set were classified to a cover type class (C, C~1, …, K )

by an ML classifier. With the assumption of multivariate normal (transformed)

reflectance data, the class predicted for pixel i was the class with the highest

Table 2. Forest inventory cover types.

Cover type Definition

Exposed land (el) Non-vegetated polygons (trees, shrubs, herbs, or bryoids
cover less than 5% of the polygon). This type includes
features such as roads, buildings, exposed soil, river
sediments, and rock outcrops.

Shrubs (sh) Vegetation covers at least 5% of the polygon, and is
comprised mainly of shrub species of any height (woody
perennial plants that have a relatively low growth habit and
non-treelike form).

Treed, broad-leaved (tb) Trees cover at least 10% of the polygon, and are comprised
mainly of deciduous species (75% or more of total tree
basal area).

Treed, coniferous (tc) Trees cover at least 10% of the polygon, and are comprised
mainly of coniferous species (75% or more of total tree
basal area).

Treed, mixed-wood (tm) Trees cover at least 10% of the polygon, and are comprised of
both deciduous and coniferous species (less than 75% of
total tree basal area in each species group).

Water (wa) Lakes, rivers, streams and reservoirs.
Crop/Pasture (cp) Cultivated land, fields, pastures, and agricultural land.
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conditional log likelihood (LL). Specifically, the cover type class Ci predicted for

pixel i in a validation set was the class that minimized

{LLi Ci~kð Þ~ 1

2
yi{

*mkð Þ’eSS{
k yi{

*mkð Þz 1

2
log

*
S

k

�
�
�
�, k~1, . . . , K , ð1Þ

Table 3. Offsets added to TM channel 2 and 3 reflectance values to achieve a minimum
Mahalanobis distance between class mean reflectance values of 1.25 (SEP2), and 1.50 (SEP3).

SEP2 SEP3

Channel 2 Channel 3 Channel 2 Channel 3

New Brunswick Exposed land 0.75 3.53 1.29 6.09
Shrubs 20.06 1.36 20.11 22.31
Treed, broad-leaved 21.36 21.25 22.37 22.16
Treed, coniferous 20.15 0.94 20.26 1.63
Treed, mixed-wood 20.15 20.35 20.26 20.61
Water 1.37 23.02 2.37 25.21
Crop/pasture 20.38 1.50 20.66 2.58

Saskatchewan Exposed land 20.14 3.15 20.26 5.90
Shrubs 0.01 20.85 0.01 21.59
Treed, broad-leaved 20.64 20.87 21.19 21.63
Treed, coniferous 20.46 21.60 20.86 22.99
Treed, mixed-wood 20.46 21.60 20.86 22.99
Water 1.55 0.95 2.91 1.77

Table 4. Mahalanobis distances of mean spectral reflectance between two cover type classes
at three levels of class separation (SEP1, SEP2, SEP3). Cover type abbreviations are
defined in table 2.

Class pair

New Brunswick Saskatchewan

SEP1 SEP2 SEP3 SEP1 SEP2 SEP3

el, sh 1.73 5.42 8.49 2.28 4.50 7.06
el, tb 2.46 6.32 9.72 2.93 4.78 7.34
el, tc 2.38 3.87 5.44 2.89 4.50 6.87
el, tm 2.26 4.81 7.22 2.48 5.23 8.39
el, wa 5.81 8.83 12.15 6.47 6.76 7.51
el, cp 1.35 3.01 4.53 n.a. n.a. n.a.
sh, tb 0.91 1.81 2.68 1.93 2.05 2.30
sh, tc 1.29 2.56 3.83 1.69 1.72 1.80
sh, tm 0.81 1.25 1.75 0.89 1.24 1.83
sh, wa 5.31 5.83 6.51 6.14 7.28 8.66
sh, cp 1.49 3.11 4.70 n.a. n.a. n.a.
tb, tc 1.30 3.08 4.72 2.31 2.36 2.44
tb, tm 0.64 1.93 3.02 1.39 1.63 1.95
tb, wa 5.59 6.67 8.03 6.73 8.02 9.71
tb, cp 2.17 3.82 5.55 n.a. n.a. n.a.
tc, tm 0.68 1.44 2.18 1.23 1.65 2.14
tc, wa 4.46 6.16 8.11 4.63 6.05 7.77
tc, cp 2.66 2.71 2.81 n.a. n.a. n.a.
tm, wa 5.03 5.95 7.11 5.84 7.61 9.73
tm, cp 2.25 2.87 3.67 n.a. n.a. n.a.
wa, cp 6.29 7.91 9.92 n.a. n.a. n.a.

mean 2.71 4.26 5.82 3.32 4.36 5.70
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where yi is the vector of transformed reflectance values for pixel i, emmk is the

generalized mean of transformed reflectance values for class k, and eSSk is the

generalized covariance matrix of transformed reflectance values for class k. A’
denotes a transpose of a vector or a matrix, W2 is the generalized inverse of W, and

Wj j is the determinant of W. Class dependent means and covariance were obtained

from the training data. The cluster sampling of training data necessitates the use of

generalized means, variances and covariance, as ordinary maximum likelihood

estimates of the same would ignore the spatial covariance of observations in a PSU

(Cressie 1991), resulting in a biased classification (McLachlan 1991). Details on

estimation of the generalized means, variance and covariance are in the Appendix.

The multivariate normal density function implicit in (1) was chosen despite

significant departures from normality in the training data. However, since a non-

parametric classifier (McLachlan 1991) gave no improvement we opted for the

multivariate normal model due to simplicity of computation.

2.7. Contextual classifiers

2.7.1. Iterated Conditional Modes (ICM)

Besag (Besag 1986) formulated a pseudo likelihood of images based on a locally

dependent Markov random field (MRF) in which, a priori, the class membership

probability of a pixel i is proportional to the number of pixels with the same class

prediction in a nearest neighbour clique (NNi) surrounding pixel i. In ICM all

pixels, in a randomly chosen sequence, are reclassified to the class that minimizes

the energy function E (Geman and Geman 1984) in (2). This process is iterated until

the number of pixels that change class between two iterations has become

negligible:

E Ci~k C
j
NNi

�
�
�

� �

~{LLi C~kð Þ{bk|g k,C
j
NNi

� �

, k~1, . . . , K, j~0,1,2,3, . . . , ð2Þ

where C
j
NNi

is the set of class predictions for NNi after the jth iteration of ICM,

g k,C
j
NNi

� �

is the number of class k predictions in C
j
NNi

, and bk is a class-specific

‘temperature constant’ estimated from the training data. ICM was stopped when

less than 0.02% of the pixels changed class during an iteration. The median number

of iterations was 3 (min 2, max 6). C0
NNi

was obtained from the initial ML

classifications. NNi pixels located outside a PSU were imputed by a wrap-around of

the PSU on a torus (Ripley 1985).

According to the ICM model we have (McLachlan 1991: 430 (equation 13.6)):

prob Ci~kjC j
NNi

� �

!Exp bk|g k,C
j
NNi

� �h i

, k~1, . . . , K , j~0,1,2,3, . . . ð3Þ

Estimates of bk were obtained by ordinary least squares linear regression with the

logarithm of the relative frequency of class k pixels in the training data that have nk

class k nearest neighbours as the dependent variable and nk as the predictor.

Relative frequencies of zero were replaced by a value of 1022.61 which is 26.0 on a

logarithmic scale. Estimates of bk varied from 0.28 to 0.61 with a mean of 0.48.

2.7.2. Modified Iterative Conditional Modes (MICM)

Chou and Brown (1990) and others criticized ICM for heavy dependence on the

initial classification. They proposed modifications towards a more flexible

classification that takes into consideration the degree of risk involved in classi-

fication. Van Deusen (1995) proposed a modified ICM which he called ‘modified
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highest confidence first classification’ that we shall call MICM. MICM introduces

an ‘energy differential’ (DE) to quantify the uncertainty of a classification. The

energy differential of a pixel i is defined as the difference in energy (e.g. equation

(2)) between the class with the lowest energy and the class with the next lowest

energy. Pixels with a low DE have uncertain class predictions, and pixels with an DE

below a certain threshold, say DEc, should not be allowed to influence the class

prediction of a neighbouring pixel. The MICM classification followed the steps

recommended by Van Deusen:

1. Calculate DE from equation (2) with bk~0 for all pixels. Equate DEc for a

given validation set to the 30th percentile of the DE values in the

corresponding training dataset.

2. ML-classify all pixels with DEoDEc, remaining pixels are classified as

‘unknown’.

3. ICM-reclassify pixels with an energy differential computed for the current

iteration (DEj) larger or equal to DEc as outlined in §2.4.1 but discard pixels

labelled as ‘unknown’ in step 2 from any nearest neighbour clique.

4. Increase bk to 1.0 for all classes and repeat step 3.
5. With bk fixed at 1.0 lower DEc to DEc6221 and repeat step 3.

6. With bk fixed at 1.0 lower DEc to DEc6421 and repeat step 3.

7. ML-classify all remaining pixels with class ‘unknown’

Step 3 excludes pixels with uncertain class predictions from influencing the

classification of a neighbour, and it can raise the energy differential of some pixels

based on nearest neighbour information to levels above the threshold which would

trigger an ICM cover type prediction. Steps 4–7 are designed to gradually reclassify

all pixels in the unknown category in order of prediction certainty.

2.7.3. Directional Neighbourhood Approach (DNA)

Press (1996) proposed a dynamic data-driven choice of neighbour pixels to be

included as predictors for pixel i (i.e. NNi). A fixed NNi for all pixels can be sub-

optimal in boundary regions between classes and blur edges between cover types. In

DNA a set of distinct cliques is considered as predictors each time a prediction is to

be made for a pixel; each time, the clique with the highest degree of homogeneity is

chosen. A homogenous NN clique consists of pixels with identical cover type.

Table 5 lists the set of 21 neighbourhood cliques considered for each prediction.

An index of homogeneity (IH ) was computed for each clique, and the clique

with the highest IH score was chosen as NNi for the current prediction. After

exploring several homogeneity indices (see Press (1996) for a list of alternatives) we

Table 5. Neighbourhood cliques in DNA.
A. Numbering convention for pixels in a 565 window around a pixel to be classified (pixel 0).

1 2 3 4 5
6 7 8 9 10
11 12 0 13 14
15 16 17 18 19
20 21 22 23 24
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chose the following index for clique m given pixel i to be classified (m~1, …, 21):

IHm ij~PDOMm ij|W {0:5| yi{eyym ij

� �
’eSS{1

Ci
yi{eyym ij

� �h i

|

E
j[m

sup
k

Exp LLj

� �
Cj~k
�
�

� �
� 	


Tr ŜSm ij
� �

|
vm

8

ð4Þ

where PDOMm|i is the relative frequency of the most common ML-predicted cover

type in clique m, ~yym ij is the generalized mean of the (transformed) TM reflectance

values of pixels in clique m, ŜSCi
is the generalized covariance matrix of reflectance

values for class Ci, W is the distribution function of a Gaussian normal distribution,

E
j[m

sup
k

Exp LLj

� �
Cj~k
�
�

� �
� 	

is the average maximum likelihood of the ML

classifications in m, vm is the number of pixels in m (max(vm)~8), ŜSm ij is a

vm6vm matrix of average covariance (averaged across TM channels) of reflectance

values in m, and Tr is the trace operator (Searle 1982). If more than one clique had

the highest IH value, then the final choice of clique was based on a random draw.

The highest IH values are obtained for cliques with a single ML class, spectral

reflectance values close to those of pixel i, and low variance of reflectance values.

The factor vm in equation (4) corrects for the intrinsic tendency of smaller cliques to

have higher IH values than a larger cliques. Estimation of IH values was restricted

to cliques entirely inside a PSU. Once the clique with the highest IHm|i value was

identified the pixel (i) was classified with the classifiers MATT, SMOOTH, and

DOM described next. The clique with the highest IHm|i and augmented by pixel i is

henceforth denoted by NN�i and the number of pixels in this augmented clique is

denoted by v�m. We extend the concept of local spatial continuity (Switzer 1980) to

NN�i and assume accordingly that all pixels in NN�i belongs to one class only.

B. DNA neighbourhood cliques.

Clique# Pixel positions Compass direction

1 4,5,8,9,10,13 North-east
2 9,10,13,14,18,19 East
3 13,17,18,19,23,24 South-east
4 16,17,18,21,22,23 South
5 12,15,16,17,20,21 South-west
6 6,7,11,12,15,16 West
7 1,2,6,7,8,12 North-west
8 2,3,4,7,8,9 North
9 1,2,3,6,7,8,11,12 North-west quadrant

10 3,4,5,8,9,10,13,14 North-east quadrant
11 11,12,15,16,17,20,21,22 South-west quadrant
12 13,14,17,18,19,22,23,24 South-east quadrant
13 2,3,4,m7,8,9,12,13 Northern block
14 6,7,8,11,12,15,16,17 Western block
15 8,9,10,13,14,17,18,19 Eastern block
16 12,13,16,17,18,21,22,23 Southern block
17 7,8,9,12,13,14,17,18,19 Central block
18 3,8,17,22 North to south
19 11,12,13,14 East to west
20 1,7,18,24 North-west to south-east
21 5, 9, 16, 20 North-east to south-west

,
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2.7.3.1. MATT. Klein and Press (1989) showed that if the class conditional data

vectors yi Cij ~k

� �

are multivariate normal in distribution, spatially autocorrelated,

and the pixel (i) to be classified is located in a locally continuous clique of

pixels of the same class, then the posterior probability of Ci~k is proportional

to a matrix T density (Dickey 1967):

prob Ci~k yi, NN�i
�
�

� �
!

Exp LLi C~kð Þ½ �
eSSkz Y�NN{ eMM�

k

� �

R̂R�NN{ Y�NN{ eMM�
k

� �
’

�
�
�

�
�
�

v�m=2
, k~1, . . . , K, ð5Þ

where Y�NN is a 56v�m matrix of (transformed) TM reflectance values of pixels in

NN�i , eMM�
k is a 56v�m matrix of class k generalized mean reflectance values, and

R̂R�NN is the v�m6v�m matrix of the expected average (across TM channels) spatial

autocorrelation coefficients between pixels in NN�i (see the Appendix for details

on estimation of autocorrelation coefficients). The class that maximized equation

(5) was chosen as the MATT class prediction for pixel i.

2.7.3.2. SMOOTH. In SMOOTH the clique NN�i is classified and the class predicted

for NN�i is assigned to pixel i. For classification of a clique of spatially auto-

correlated pixels the generalized mean of their (transformed) reflectance values

provides the best predictor (Flygare 1997, Switzer 1980, Mardia 1984, 1987).

The generalized mean of y in NN�i was estimated from:

~yy�NN~ 1
v�m

Y�NN|R̂R�NN
{|1v�m , ð6Þ

where 1v�m is a v�m61 vector of ones. Pixel i was then reclassified by the ML

classifier in equation (1) with eyy�NN replacing yi.

2.7.3.3. DOM. In DOM pixel i was reclassified to the most frequent ML predicted

class in NN�i . Ties were broken by random equal probability draws.

2.7.4. Mixed method (MIX)

The increase in classification accuracy anticipated from the use of contextual

information may be class and method dependent. Hence, a hierarchical set of

classification rules that attempt to combine the apparent class-specific strength of

different classifiers could be superior (Jia and Richards 1998, Leblanc and

Tibshirani 1996). Based on the class-specific classification accuracies achieved

during the training phase with the classifiers described so far, we developed a mixed

hierarchical classification rule. Let Ci|method be the class predicted for pixel i with a

given method (method~(ML, ICM, MICM, MATT, SMOOTH, DOM)). For the

New Brunswick site the MIX rules were:

Ci MIXj ~

wa if Ci MATTj ~wa

tm if Ci SMOOTHj ~tm

Ci ICMj in all other cases

8
><

>:

ð7Þ

The expected superiority of MATT to classify wa and SMOOTH to perform well

for tm pixels is exploited in this rule set. For the Saskatchewan site the MIX rules
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were:

Ci MIXj ~

wa if Ci MATTj ~wa

tb if Ci MATTj ~tb

tc if Ci DOMj ~tc

tm if Ci MLj ~tm

Ci ICMj in all other cases

8
>>>>>><

>>>>>>:

ð8Þ

Here the expected superiority of MATT, DOM, and ML to classify, respectively,

wa, tb, and tm is captured by the rules. In these rule sets the topmost of two rules

takes precedence in the case of a rule conflict (e.g. if Ci|DOM~tc and Ci|ML~tm

then application of the precedence rule gives Ci|MIX~tc).

2.8. Performance criteria

The one-stage cluster sampling design of validation data allows statistical

inference of the effect of contextual classification on classification accuracy. ML

results serve as benchmark and the significance of an improvement is gauged by

one-sided t-tests under the null hypothesis of no improvement (Miller 1980). Since

the accuracy achieved with the contextual classifiers depends on the ML accuracy,

we estimated the expected (conditional) improvement in classification accuracy by a

contextual classifier at five pre-specified levels of ML accuracy (0.5, 0.6, …, 0.9).

The conditional expectations were obtained by logistic regression analysis (Lloyd

1999) as the logarithm of the odds of a correct contextual classification was strongly

and positively correlated (rw0.95) with the corresponding odds of a correct ML

classification. Estimates of conditional expectations were bias-corrected (Wiant and

Harner 1979).

The impact of spatial homogeneity and spatial autocorrelation of ML

classification errors on the performance of contextual classifiers was explored.

Spatial homogeneity has been known to impact on the performance of a contextual

classifier (Moody and Woodcock 1996, Moody 1998, Foody 1999, Franklin 2000,

Hubert-Moy et al. 2001). Entropy is an indicator of spatial homogeneity (Moody

1998). An estimate of entropy (E) was obtained for each PSU from the inventory

data. As per Gonzales and Woods (1992) the entropy for a PSU was computed as:

ÊE~{1
0

K|P̂P|log P̂P
� �

|1K ð9Þ

where P is a K6K matrix of relative frequencies of the K2 ordered pairs of cover

type classes observed in left-to-right adjoining pixel pairs in a PSU. Random

admixtures of small distinct areas have high entropies, and conversely, a mosaic of

large homogeneous areas, a low entropy. A minimum is reached if a PSU contains

only a single cover type.

Spatial autocorrelation of ML classification errors are expected (Congalton

1988, Masselli et al. 1994). The clustering of these errors is likely to impact on the

performance of a contextual classifier (Ripley 1985). To quantify this potential

relationship we computed a lag one correlation coefficient of (binary) ML errors for

each PSU and transformed it to a correlation coefficient of a normal variate

(Kedem 1980).
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3. Results

The relationships between the accuracy of a contextual and the ML classifier are

illustrated in figures 2 and 3. Gains in accuracy due to contextual classification are

largest when the ML accuracy is around 70%. Reclassification by ICM achieved the

best results on both sites (table 6). Given an ML accuracy between 50% and 80%,

ICM improved the accuracy by four to six percentage points ( pv0.05). For ML

accuracies below 40% the ICM, gains were negligible and non-significant. PSU-

specific ICM gains in accuracy were negatively correlated with the entropy of a

PSU (r̂r~{0:30) and the spatial autocorrelation of ML classification errors in a

PSU (r̂r~{0:28). The MICM was a close runner up in terms of accuracy gain but

with a tendency to be more variable in performance (20% higher standard error of

predicted accuracy gain). ICM was, in relative terms slightly less effective in the

Saskatchewan (1%) than in the New Brunswick study ( p~0.01). A stronger positive

spatial autocorrelation of ML classification errors in Saskatchewan (0.57¡0.02

versus 0.47¡0.02 in New Brunswick) probably contributed to this site effect.

SMOOTH results were, as a rule, slightly inferior (1–2%) to those of ICM and

MICM ( pw0.05); yet SMOOTH did better than ICM and MICM in Saskatchewan

Figure 2. Overall classification accuracy (ACC) of the contextual classifiers (ICM, MICM,
MATT, SMOOTH, DOM, and MIX) in the New Brunswick study site plotted
against the accuracy of the ML classification (ACCML).
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Figure 3. Overall classification accuracy (ACC) of the contextual classifiers (ICM, MICM,
MATT, SMOOTH, DOM, and MIX) in the Saskatchewan study site plotted against
the accuracy of the ML classification (ACCML).

Table 6. Predicted overall accuracy (ACC ) of six contextual classifiers (ICM, MICM,
MATT, SMOOTH, DOM, MIX) at given levels of ML classification accuracy
(ACCML ). All table entries are in per cent. Standard errors of predictions are in
parentheses. Accuracies significant greater than ACCML (pf0.05, t-test, Miller (1980)
are in bold.

ACCML 0.5 0.6 0.7 0.8 0.9

New Brunswick ICM 54 (1) 65 (1) 76 (1) 85 (1) 94 (2)
MICM 51 (2) 63 (2) 74 (2) 84 (2) 93 (3)
MATT 50 (1) 61 (1) 71 (1) 81 (1) 91 (1)
SMOOTH 54 (2) 64 (2) 74 (1) 84 (2) 92 (2)
DOM 52 (2) 63 (1) 74 (1) 84 (1) 93 (2)
MIX 54 (2) 65 (1) 75 (1) 85 (1) 93 (1)

Saskatchewan ICM 54 (2) 64 (1) 74 (1) 84 (1) 92 (1)
MICM 53 (2) 64 (2) 74 (2) 84 (2) 93 (2)
MATT 48 (2) 59 (2) 69 (1) 80 (1) 90 (2)
SMOOTH 58 (4) 65 (4) 73 (3) 81 (3) 89 (4)
DOM 51 (2) 62 (2) 72 (1) 82 (1) 91 (2)
MIX 51 (1) 61 (1) 71 (1) 81 (1) 91 (1)
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when ML accuracy dropped below 60%. DOM produced results at par with those

of SMOOTH, and, with one exception in Saskatchewan, there was no significant

difference ( pw0.05) between the two methods. MATT was only slightly (1%) more

effective than ML ( pw0.05), and MIX did no better than ICM/MICM in New

Brunswick and failed to produce any significant gains in Saskatchewan.

Gains in cover-type-specific classification accuracy by contextual classification

were highly variable. Figures 4 and 5 display a select sample of the best results for

the purpose of demonstrating the potential of contextual methods. ICM was most

consistent across cover types with positive accuracy gains for ML accuracies

between 60% (tm) and 80% (el). MICM was generally characterized by negative

gains for ML accuracies below 50% and positive (5–12%) but highly variable gains

for ML accuracies above 70%. MATT consistently improved classification of water

bodies (6–7%) when ML accuracy was between 40% and 90%. However, MATT

results for non-water cover types were site-specific, gains would range from 9% to

14% but losses up to 10% were not uncommon either. SMOOTH and DOM either

improved or worsened the classification accuracy of a given cover type. MIX was

clearly a hybrid with an intermediate performance.

4. Discussion

Contextual classification of Landsat TM images to forest cover types is a logical

extension to ML classification. Since the objects to be classified were mostly forest

stands with a size many times exceeding the pixel size, the idea that information

contained in a neighbourhood clique can improve classification has a sound

physical and probabilistic foundation (McLachlan 1991). Most contextual methods

consider a TM scene to be a mixture of a ‘true’ image plus random noise (Pratt

1991) and they aim to reduce the noise (McLachlan 1991). Contextual methods

have been most successful when classes have been well separated, as, for example,

Figure 4. A selection of the best cover-type-specific gains in classification accuracy achieved
with the contextual classifiers in New Brunswick. The dashed gray line is trend
predicted from a logistic regression. The one-to-one line is provided as a reference.
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in a binary image, or when classes have been defined by non-overlapping univariate

class intervals.

Contextual classifiers included in this study represent the basic variants of

nearest neighbour methods. ICM and MICM exploit the differential probability of

occurrence of various neighbourhood configurations; the remaining methods adopt

the concept of local spatial continuity. Working with a fixed neighbourhood

configuration as a predictor of cover type creates a bias along boundaries between

two classes (Dass and Nair 2003). DNA (Press 1996) was designed to avoid this

bias by a data-driven search for the most homogenous neighbourhood clique within

a 565 search window. However, by choosing a homogeneous clique, the likelihood

that the contextual reclassification will be different from the ML classification

decreases. This phenomenon is, in our view, the main reason why MATT failed to

boost overall accuracy. MATT was developed for black and white images.

Accordingly, MATT worked well for the water class where larger water bodies

appear as almost black on a brighter background.

The gain in overall accuracy from a contextual reclassification depends on the

initial classification accuracy (Klein and Press 1992, Ripley 1985). ML accuracies of

about 60% and 80% provide the largest gain. A poor initial accuracy may

deteriorate further in a contextual reclassification. The demonstrated improvements

of 4–6% compare reasonably well with results published elsewhere (Hubert-Moy et

al. 2001). For certain cover type classes the gain in accuracy can be substantial

(10–12%). Combining classifiers in a way that improves overall classification

accuracy has proven difficult (Leblanc and Tibshirani 1996), as confirmed in our

study. The performance of the contextual classifiers is expected to improve under

conditions with more narrowly defined cover types and more distinct demarcations

of forest stands. Many Canadian forest cover types are complex, multi-species,

Figure 5. A selection of the best cover-type-specific gains in classification accuracy achieved
with the contextual classifiers in Saskatchewan. The dashed gray line is trend
predicted from a logistic regression. The one-to-one line is provided as a reference.
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uneven-aged assemblies of tree species and stand boundaries are often fuzzy (Lowell

1994).

Contextual classification goes beyond the use of spectral values and classi-

fication results from neighbouring pixels. Informative priors, such as land

suitability class, elevation, topography, land use patterns, and context knowledge

can improve classification accuracy (Watson and Wilcock 2001). Bayesian methods

(Ripley 1985), fuzzy logic or neural networks (Palubinskas et al. 1995) integrates

prior knowledge into the classifier. Extending a contextual method to include

informative priors is straightforward. Texture methods (Franklin 2000) extend

contextual classifiers by exploiting a suite of descriptive statistics for groups of

pixels considered as an object. Texture ‘signatures’ of known spatial objects

(Shugart et al. 2000) are used for classification of objects created by image

segmentation (Hill 1999). Object-oriented classification effectively removes the ‘salt

and pepper’ effects otherwise seen in most classified images (Stuckens et al. 2000),

but classification accuracy may not improve over and above the accuracy achieved

with a per-pixel classifier (Wilson 1996). Our experience with image segmentation

(eCognition2, Copyright # 2000, Delphi2 Creative Technologies, Ltd) followed by

classification of objects was mixed. Despite obvious improvements in classification

of water-bodies, waterways, and roads, the overall accuracy was only one per-

centage point higher than what was achieved with ML.

Several factors limit the potential of contextual classification methods. They can

only improve the classification of pixels that are not surrounded by pixels of the

same predicted class. In New Brunswick 47% of the pixels were surrounded by eight

pixels of the same inventory (true) class. In Saskatchewan it was 61%. Based on ML

classifications the rates increased to 68% and 78%, respectively. Thus, only 32% of

the New Brunswick and 22% of the Saskatchewan study site may benefit from a

contextual classification. Spatial autocorrelation of classification errors (Wulder

and Boots 2001, Congalton 1988) also diminishes the effectiveness of contextual

classifiers since the chance that a majority of pixels in a neighbourhood may be

misclassified is higher than expected from the overall error rate. When the

contextual information is faulty a contextual classifier will lower the classification

accuracy. Broadly defined vegetation cover classes characterized by a mixture of

multivariate spectral reflectance distributions (Maselli 2001) lowers a priori the

potential. Forest cover types are cases in point. We consider these limitations as

generic and shared by all contextual classifiers. Tree-based classification methods

(Li et al. 2000) are no exception.

The one-stage cluster sampling design with 2 km62 km PSUs and three levels of

ML classification accuracy was well suited to quantify the performance of the tested

contextual methods. The large number of PSUs allowed us to assess the consistency

of the results, and their dependence on ML classification accuracy, spatial auto-

correlation of ML errors in the initial classification, and entropy. Cluster sampling

of training data is practically and economically attractive (Stellingwerf and Hussin

1997) but adds computational complexities associated with the estimation of means

and covariance that are independent of the spatial configuration of the training

data (Klein and Press 1989). Ignoring spatial autocorrelation in training data leads

to an underestimation of their true variance and, conversely, an inflation of the

posterior class conditional probabilities (McLachlan 1991). Generalized variances

were in our study from 15% to 60% higher than directly estimated (least squares)

variances. Autocorrelation of training data will generally inflate the error rate (see
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McLachlan 1991 for further reference) but exceptions have been reported

(Dobbertin and Biging 1996).

5. Conclusions
Reclassification of an ML forest cover type classified image with one of the six

tested contextual classifiers does not appear to be a very promising option from a

cost-benefit perspective. Yet, the potential to improve the accuracy of a single or a

few classes significantly appears to be worth exploiting, especially in conjunction

with application of ‘expert knowledge’. In addition, since the overall classification

accuracy in many cases can be increased by 4–6% with the ICM method, we suggest

that ICM is applied when a ML classified image doesn’t quite meet a predefined

quality criteria (Aronoff 1982). In those situations the added costs and time used on
reclassification are well spent since the benefit could be acceptance instead of

rejection. Although computationally simple, the ICM algorithm adds about 20% to

the time needed to classify about 4000 pixels.

Appendix

A.1. Spatial autocorrelation of reflectance values

Estimates of the expected autocorrelation of reflectance values between pixels

in a neighbourhood clique are needed for estimation of a context-specific class
conditional likelihood (e.g. 5) and for generalizing estimates of class-specific

means, variances and covariance of reflectance values obtained from cluster

sampling (Sherman 1996). The purpose of generalized estimates is to remove a

potential effect of the specific spatial configuration of data used for the training

of a classifier. Scatter plots of the correlation of reflectance values of training

pixels versus the (Manhattan) distance separating them indicated that a simple

power function (first-order autoregressive) described the relationship well. For

pixels in a regular array the Manhattan distance between two pixels is the sum
of the number of rows and the number of columns between them (Upton and

Fingleton 1985). Accordingly, the correlation (r) of reflectance values between

two pixels in locations u and v within a PSU was predicted from the model

r(u,v)~wd(u,v), where d(u,v) is the Manhattan distance between the two pixels

and w is a cover type and TM-channel-specific parameter to be estimated by

nonlinear least squares regression (Gallant 1987). Channel-specific and average

(across TM channels) expected correlation of reflectance values between pixels in

a neighbourhood clique was predicted with these models as were the generalized

means and covariance matrices of reflectance (see §A.2).
For the estimation of w we obtained from the training sets robust cover type,

TM-channel, and PSU-specific estimates of the correlation (Cressie 1991: equation

2.4.17) between pixels separated by a Manhattan distance of 1, 2, …, 20 pixels.

Nonlinear frequency-weighted least squares estimates of w were obtained for each

cover type and TM channel. The regression models were in all cases significant

( pv0.01) with about 80% of the total variation explained by the model. Select

estimates of w are listed in table 7. Note the considerable among-PSU and among-

SET variation in these estimates, an indication of anisotropy in the autocorrelation
process (Cressie 1991, Atkinson and Lewis 2000). In New Brunswick the mixed-

wood class had the highest autocorrelation across a given distance, whereas in

Saskatchewan the broad-leaved class had the highest. Water ‘striping’, caused by

wave actions, may explain the weak correlation of water pixels. Correlations

between pixels of different classes were between one-half and one-third of the
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corresponding within-class correlations. This indicates that the autocorrelation

process across class boundaries is limited to the effects of the point spread function

and mixed pixels (Collins and Woodcock 1999).

A.2. Generalized means and covariance matrices

The generalized mean reflectance value of a TM channel (say t) of a given

cover type class (say i) and PSU (say r) with nir pixels of the ith class was

estimated as a weighted mean with weights proportional to the inverse of the

model-based estimate of the expected autocorrelation between pixels of class i in

the rth PSU (Klein and Press 1990):

eyyi tð Þr~1nir
| R̂R{

i tð Þr|yi tð Þr

� �

| 1nir
|R̂R{

i tð Þr|1nir

� �{1

, ð10Þ

where R̂Ri tð Þr is a nir6nir matrix of model-based estimates of autocorrelation in

channel t reflectance values between class i pixels in the rth PSU. Given the

autocorrelation model in §A.1, the computation of the inverse of R̂Ri tð Þr was

straightforward since the inverse is tri-diagonal with only six distinct elements in

the three diagonals and 0 elsewhere (Guyon 1995). The generalized covariance

matrix (Chilès and Delfiner 1999) of reflectance values for the ith class and rth

PSU was obtained from Klein and Press (1990):

~SSyir
~
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where subscripts u and v refer to the uth and vth class i pixel in the rth PSU,

respectively, and �̂RR�RR
{

ir u, vð Þ is the row-u column-v element of the inverse to the

average (across TM channels) expected correlation matrix of class i pixels in the

rth PSU. SET-specific generalized means and covariance matrices were

subsequently obtained as frequency weighted averages of PSU-specific estimates.
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