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Abstract. Unsupervised classification has emerged as a common method for mapping the land cover of large areas with
satellite data. Typically, clusters generated by an unsupervised algorithm, such as the K-means, are merged and labelled
using a combination of manual and automated methods. Topographic shadows found in areas of high relief, particularly in
areas with low sun angles, increase the complexity of land cover classification, as a single land cover class may have very
different spectral responses in shadowed and nonshadowed areas of the image. Methods to increase classification accuracies
in areas with severe topographic shadows are required for Canadian large area land cover mapping projects. In a standard
supervised classification, increases in land cover map classification accuracy have been obtained by including topographic
attributes as inputs to the classification algorithm. In this study we investigate the potential of such data as a means to
increase the accuracy of an unsupervised land cover classification in a high-relief area in central British Columbia, Canada.
Separate datasets were used in cluster labelling and accuracy assessment. Four classification trials were completed: (i) using
a standard approach without the addition of topographic attributes, (ii) using elevation data as an additional input to (i),
(iii) prestratifying the image into shadow and nonshadow areas prior to clustering, and (iv) combining the methods used in
(ii) and (iii). The latter provided the highest level of overall attribute accuracy at 80.1%, with a 95% confidence interval of
73.6%–88.6%. This is an improvement over the standard approach, which produced an overall attribute accuracy of 68.7%,
with a 95% confidence interval of 59.8%–77.6%. We concluded that the prestratification of an image into areas of shadow
and nonshadow prior to clustering in conjunction with the use of elevation data as an input to the clustering process is a
practical method to increase classification accuracy in areas of high relief where topographic shadow is problematic.

Résumé. La classification non dirigée est devenue une méthode courante pour la cartographie du couvert à l’aide de
données satellitaires dans les régions de grande étendue. Typiquement, des groupements générés par un algorithme non
dirigé, comme la méthode des K centroïdes, sont intégrés et étiquetés à l’aide d’une combinaison de méthodes manuelles et
automatisées. Les ombres topographiques rencontrées dans les régions de haut relief, en particulier dans les régions
caractérisées par de faibles angles solaires, accroissent la complexité de la classification du couvert étant donné qu’une
même classe de couvert peut présenter des réponses spectrales très différentes selon qu’on se situe dans des zones
ombragées ou non ombragées de l’image. Il est nécessaire de développer des méthodes pour améliorer la précision de
classification dans les régions avec des ombres topographiques importantes pour les projets canadiens de cartographie du
couvert couvrant de grandes étendues. Dans une classification dirigée conventionnelle, les améliorations de la précision de
classification dans le contexte de la cartographie du couvert ont été obtenues grâce à l’ajout à l’algorithme de classification
d’attributs topographiques à titre d’intrants. Dans cette étude, nous examinons le potentiel de telles données comme moyen
d’accroître la précision d’une classification non dirigée du couvert dans une zone de haut relief dans le centre de la
Colombie-britannique, au Canada. Des ensembles de données distincts ont été utilisés pour l’étiquetage des groupements et
l’évaluation de la précision. Quatre essais de classification ont été complétés : (i) utilisation d’une approche conventionnelle
sans l’ajout d’attributs topographiques, (ii) utilisation de données d’altitude comme intrant additionnel à (i), (iii) pré-
stratification de l’image en zones ombragées et en zones non ombragées avant le processus de groupement, et
(iv) combinaison des méthodes utilisées en (ii) et (iii). Cette dernière a fourni le plus haut taux de précision globale des
attributs à 80,1% avec un intervalle de confiance de 95% de 73,6% à 88,6%. Ceci représente une amélioration par rapport à
la méthode conventionnelle qui a produit une précision globale des attributs de 68,7% avec un intervalle de confiance de
59,8% à 77,6%. Nous avons conclu que la pré-stratification d’une image en zones ombragées et zones non ombragées avant
groupement conjointement avec l’utilisation de données d’altitude à titre d’intrant à la procédure de groupement constitue
une méthode pratique pour accroître la précision de classification dans les régions de haut relief où l’ombre topographique
est problématique.
[Traduit par la Rédaction]

149Introduction

The classification of the land cover of large areas with
remotely sensed data is an operational application of satellite
image technology (Cihlar, 2000; Franklin and Wulder, 2000).
Large regions (Homer et al., 1997), nations (Loveland et al.,
1991; Fuller et al., 1994; Cihlar and Beaubien, 1998),
continents (Stone et al., 1994), and the entire globe (Loveland
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and Belward, 1997; Loveland et al., 2000; Hansen et al., 2000)
have been mapped with a diverse range of satellite data inputs
and spatial resolutions. Unsupervised classification approaches
are the most common in these large area land cover
classification projects (Franklin and Wulder, 2000).

One robust unsupervised classification method is known as
hyperclustering and labelling and involves the generation of
many more clusters than expected in the data. The objective of
hyperclustering is to ensure that clusters form naturally relative
to the spectral information present in the image and are not
forced by the restriction to a small number of classes (Swain
and Davis, 1978). Following the hyperclustering, a cluster-
merging process is developed, which may be manual
(supervised) or automated. Once the cluster merging is
complete, a labelling process is undertaken. The labelling of
classes is at present a manual exercise, requiring an
experienced analyst with specific knowledge of the area being
mapped and with access to photographic or other spatial data as
supporting information. Once all clusters have been labelled,
the thematic classified map is complete and an accuracy
assessment is undertaken (Czaplewski, 2003). A process of
relabelling clusters using additional ancillary information or
revisiting common areas of confusion may be implemented
until the accuracy of the classification exceeds a user-defined
threshold.

Additional ancillary data, which are complementary to the
spectral information in the image data and may improve the
quality of the maps developed, are required to provide final
map accuracies that are acceptable for many applications. For
instance, the inclusion of texture (Kushwaha et al., 1994),
vegetation indices (Asner et al., 2003), and multitemporal data
(Dymond et al., 2002) has been used to increase supervised
land cover classification accuracy. In many environments,
digital elevation models (DEM) are an obvious choice for use
in classification of land cover (Strahler et al., 1978), as
discrimination of cover types whose distributions are
influenced by variation in elevation is improved with the
inclusion of the DEM in the classification (Franklin and
Peddle, 1989; Franklin et al., 1994; Franklin et al., 2000a;
2000b). One approach is to use the DEM data, or derivatives
such as aspect and slope, as supplemental logical channels in
the classification input data (Strahler et al., 1978; Strahler,
1981, Hutchinson, 1982); another is to stratify the image data
using the DEM (Skidmore, 1989; Franklin, 1991); another is to
modify classifier prior probabilities (Strahler, 1981); and still
another is to employ rule-based or expert systems logic
(Desachy et al., 1996).

Improved classification accuracies have been reported with
the direct incorporation of a DEM into an unsupervised
classification approach. Elumnoh and Shrestha (2000) used an
ISODATA algorithm with 13 land cover classes in forested
highlands and agricultural lowlands in Thailand. Their study
site had an elevation range of 15–1671 m. Classification
accuracy improved from 65.3% (without the DEM) to 72.4%
(with the DEM). The largest improvement was found in
discriminating lowland agriculture fields from highland forest

classes. Shadow, however, was not a factor in their study area
but has been noted by many authors as a major source of
classification error in other mountainous regions. For example,
Sader et al. (1989) attempted to determine the relationships
among tropical forest biomass, successional age classes, and
the normalized vegetation index (NDVI). They found that the
low sun angle and the resulting cast shadows on steep north-
and west-facing slopes reduced the reflectance recorded by the
Landsat thematic mapper (TM) sensor and thereby impacted
the calculation of the NDVI. They concluded that, as a result of
shadow, the methods they developed could not be successfully
applied to high-relief tropical forests. Similarly, McGuffie and
Henderson-Sellers (1986) recommended that land surface
classification for snow budget studies be undertaken with
extreme care in high-latitude areas with extreme topographic
relief, where low sun angles exacerbate shadow effects.
Topographic shadows, combined with other factors, were
problematic for snow mapping algorithms using Landsat TM
data in their arctic study area.

There are two issues associated with land cover classification
in areas of large topographic variability that are relevant to this
study: the topographic effect and cast shadows. The
topographic effect is defined as the artificial variability in
spectral response for a given land cover class, resulting from
variations in slope and aspect that is further intensified under
conditions of low sun angle and extreme topographic relief
(Civco, 1989). When a topographic feature in a mountainous
area of high relief blocks direct solar radiation, a cast shadow
may result on the adjacent surface, exacerbating the
topographic effect. Numerous methods for normalizing the
effect of topography, and consequently reducing or removing
the impact of shadows, have been presented in the literature
(Teillet et al., 1982; Leprieur et al., 1988; Civco, 1989; Colby,
1991; Itten and Meyer, 1993; Meyer et al., 1993); however,
methods of topographic normalization cannot be applied to
areas of cast topographic shadows because assumptions
regarding slope-aspect relationships are violated (Giles, 2001).

In the context of an unsupervised classification process
where a nonparametric clustering algorithm is used, there is no
need to account for the topographic effect and normalize the
spectral response of land cover classes. The existence of
topographic shadows (originating from the topographic effect
and from adjacent terrain features) will impact the formation of
clusters, and it is therefore necessary to account for the
presence of shadows, either through prestratification or through
the use of additional ancillary inputs to the clustering process
that will improve the partition of measurement space (Strahler,
1981).

To meet provincial, national, and international monitoring
and reporting needs, the Canadian Forest Service, in
partnership with the Canadian Space Agency, is developing a
land cover map of the forested area of Canada as a component
of the Earth Observation for Sustainable Development of
Forests (EOSD) program (Wulder et al., 2003). Canada is a
large and geographically diverse country. Stratification of a
DEM of Canada with the Landsat Worldwide Referencing
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System illustrates, on a scene basis, the degree and spatial
distribution of topographic variability (Wulder and Seemann,
2001). Large ranges in elevation characterize much of British
Columbia, with 65% of the 75 Landsat scenes covering the
province having elevation ranges greater than or equal to
2000 m. These large elevation ranges equate to a number of
radiometric and topographic issues and, when coupled with a
low sun angle at the time of satellite overpass, create significant
shadowing effects in the data. At present, areas of topographic
shadow are identified as a separate class within the EOSD
classification system, with no effort to further characterize
them (Wulder and Nelson, 2001; Wulder et al., 2002). Based on
the predominance of areas with high topographic variability in
British Columbia, large areas of land may be unaccounted for
in the EOSD land cover mapping program. The purpose of this
research is to address the problem that topographic shadows
pose in an unsupervised land cover classification process
(Wulder et al., 2002) and to examine the increase in
classification accuracy that can be obtained by including a
DEM or its derivatives in an unsupervised cluster and labelling
approach for land cover mapping of a predominantly forested,
high-elevation area in central British Columbia.

Study area
The study area is located in central British Columbia,

Canada, approximately 100 km northeast of Prince George
(Figure 1). Located in the foothills of the Hart Ranges of the
Rocky Mountains, the elevation varies from 660 to 2450 m. The
main climax tree species are hybrid white spruce (Picea
glauca × engelmannii) and subalpine fir (Abies lasiocarpa).
Seral species such as lodgepole pine (Pinus contorta) and
Douglas fir (Pseudotsuga menziesii) are also common in
mature forests. Lodgepole pine occupies the drier, nutrient-
poor sites, and Douglas fir is less common and requires dry,
rich soil. Other common tree species in the area are black
spruce (Picea mariana), trembling aspen (Populus
tremuloides), balsam poplar (Populus balsamifera), and paper
birch (Betula papyrifera). The climate of the region is
continental and is characterized by cold, snowy winters with
short, warm, moist summers. There is moderate precipitation,
440–900 mm each year, with 25%–50% of the precipitation in
the form of snow. Forest harvesting is the primary human
disturbance activity in this area for dense coniferous forest
types.

Image and ancillary data
The Landsat-7 enhanced thematic mapper plus (ETM+)

image utilized in this research (path 48, row 22) is centred at
54°17′13.3 ′′5 N latitude, 121°8′54.7 ′′0 W longitude and was
acquired on 23 September 2000. The imagery was orthorectified
in Universal Transverse Mercator (UTM) zone 10 (North
American Datum of 1983 (NAD 83)) to a 30 m pixel spacing
with a root mean square (RMS) error of less than 0.5 pixels in

both x and y directions. The imagery was calibrated and
converted to top-of-atmosphere radiance values following the
theory of Markham and Barker (1986) and described in Peddle
et al. (2003). The final preprocessing step was the creation of
an analysis subset of a 1050 pixels × 1050 pixels (31.5 km ×
31.5 km) area.

The Base Mapping and Geomatics Services Branch (1996)
supplied the gridded DEM product. The grid spacing is 25 m
and the DEM was created from the 1:20 000 scale Terrain
Resource Information Management (TRIM) DEM. The DEM
was resampled to correspond to the 30 m image spatial
resolution. Aspect and slope (in degrees) were derived from
this DEM using standard methods. These data were scaled to
the same numerical range as that of the imagery (0–255) to
ensure that all input channels had equal weighting in the
clustering procedure (Strahler, 1981). The importance of
scaling these data prior to inputting them into the K-means
clustering algorithm is essential and is often not reported in the
methodologies of studies that incorporate these data for the
purpose of improving discrimination between land cover
classes. The K-means clustering algorithm is designed to
minimize cluster variability, and cluster variability is measured
with respect to the mean values of the classifying variables. If
multiple variables are used to define the clusters, the
dissimilarities between the clusters are measured in
multidimensional space using Euclidean distance (Tou and
Gonzalez, 1974). A higher variance in one input variable will
force the clusters to be partitioned more discretely in that
dimension of measurement space than in the dimensions
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Figure 1. Location of the study area, �100 km northeast of Prince
George, British Columbia, Canada. The 31.5 km × 31.5 km study
region is centred at 54°17′13.3 ′′5 N, 121°8′54.7 ′′0 W.



corresponding to the other inputs (Strahler, 1981). Figures 2A
and 2B illustrate the effect that including the unscaled elevation
data has on the formation of the clusters in two different
subregions of the study area. Inputs to the clustering in this
example included the six optical Landsat channels and an
intrapixel variance channel, all having a digital number range

of 0–255, and the unscaled elevation channel, which has a
range of 650–2500. The higher variance in the unscaled
elevation data is clearly dominating the clustering process.
Figures 2C and 2D show the same areas clustered with the
elevation data scaled to the same range and the image and
intrapixel variance channels (0–255). As a result of this effect,
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Figure 2. Differences in output K-means cluster shape when the DEM is not scaled to the same
range as that of the image data (A and B) and when the DEM is scaled to the same range as that
of the image data (C and D).



all of the topographic variables used in this study were scaled to
the same range as that of the image data.

The reference data used for the accuracy assessment were
generated from the provincial forest inventory data and are
current to 1999 conditions. There was no additional forest
harvesting between the date of the last forest inventory update
in 1999 and the Landsat ETM+ image acquisition date in
September 2000. The forest inventory attributes were used as a
proxy for the EOSD classification, and classes were
constructed using the EOSD membership rules. The forest
inventory data were collected from 1:15 000 scale air
photographs and are considered a reliable source of validation
for the classified image products.

Methods
Preliminary analysis indicated that the majority of land cover

classes within the study area were not normally distributed for
elevation, aspect, and slope, primarily because of the
predominance of topographic shadow in the image and the
broad spectral nature of the classes. Logistic regression models
verified that land cover classes did not vary systematically with
elevation, aspect, and slope, when considered singularly and in
all possible combinations (Strahler, 1981). Thus, there was no
evidence to suggest that a model that incorporated any or all
three topographic features into the clustering process would
directly result in a more accurate classification.

Based on this analysis, effort was focused on alleviating the
impact of shadow rather than attempting to build a model
around nonexistent relationships between the classes of interest
and topographic variables. A strategy for addressing the
problem of shadow in the Landsat-7 ETM+ image resulted in
the completion of four classification trials as outlined in
Table 1. The initial classification trial was the control and was
conducted using the current methodology implemented by the

EOSD land cover mapping program, as outlined in Wulder et
al. (2002). This classification procedure involves prestratifying
each image into four broad categories based on an NDVI. Each
stratum is then processed separately using a K-means
clustering algorithm. The input variables for the classification
included the six Landsat ETM+ optical bands and one texture
measure. The intrapixel texture measure is computed from a 3 ×
3 variance of the 15 m resolution panchromatic ETM+ channel
(Wulder et al., 2002). The intrapixel texture is resampled to
match the 30 m spatial resolution of the optical channels prior
to inclusion in the clustering algorithm. Based on these inputs,
a hyperclustering approach was used to generate a maximum of
241 initial clusters. These clusters were then aggregated to
seven of the 21 broad land cover classes relevant to the area
(Wulder and Nelson, 2001) using ancillary data (e.g.,
provincial vegetation inventory maps developed from air
photograph interpretation and field visits). The list of land
cover classes included rock, water, tall shrub, low shrub,
coniferous open, coniferous sparse, and mixedwood open. The
only deviation from this methodology was in the manner with
which shadows were classified. Rather than assigning classes
to shadows, attempts were made to assign clusters found in
these areas to relevant land cover classes.

The methods used in the second trial were identical to those
in the first trial; however, the scaled elevation data were added
as input to the clustering process. For the third classification
trial, the solar incidence angle was calculated for each pixel in
the image and subsequently used to identify areas of shadow
and nonshadow. The NDVI strata generated as part of the
standard methodology were further partitioned into areas of
shadow and nonshadow, resulting in eight distinct strata that
were each clustered separately. The solar incidence angle is the
angle that a ray of solar radiation makes with a line
perpendicular to the surface and is a function of both solar
direction and local topography. For example, a horizontal
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Classification trial Inputs Methods

(1) Standard EOSD clustering
methodology

Six Landsat ETM+ optical channels and one
intrapixel texture channel (see Wulder et
al., 2002)

Image is stratified using four separate masks generated
from an NDVI (per Wulder et al., 2002); clustering
is done separately on each stratum

(2) Inclusion of elevation data
as an input

Six Landsat ETM+ optical channels and one
intrapixel texture channel (per Wulder et
al., 2002) and elevation (scaled)

Image is stratified using four separate masks generated
from an NDVI (per Wulder et al., 2002); clustering
is done separately on each stratum

(3) Prestratification of imagery
into shadowed and
unshadowed

Six Landsat ETM+ optical channels and one
intrapixel texture channel (per Wulder et
al., 2002)

Image is stratified using four separate masks generated
from an NDVI (per Wulder et al., 2002); these
strata are subsequently divided into areas of shadow
and nonshadow, resulting in eight strata to which
clustering is applied separately

(4) Prestratification of imagery
into shadowed and
unshadowed and the inclusion
of elevation data as an input

Six Landsat ETM+ optical channels and one
intrapixel texture channel (per Wulder et
al., 2002) and elevation (scaled)

This method combines trials 2 and 3; image is
stratified using four separate masks generated from
an NDVI (per Wulder et al., 2002); these strata are
subsequently divided into areas of shadow and
nonshadow, resulting in eight strata to which
clustering is applied separately

Table 1. Inputs and methods for classification trials.



surface that is parallel to the sun would have a solar incidence
angle of 90°. Solar incidence angle is calculated using the solar
azimuth angle, the elevation angle of the sun, and the distance
to the sun at the time of image acquisition (Lillesand and
Keifer, 1987). These variables, exclusive of distance to the sun,
are recorded at the time of image acquisition as a component of
image meta-data. Figure 3 illustrates that for this study area,
incident angles less than 34° were selected to delimit areas of
shadow, based on interactive viewing of areas of the image
with steep terrain as per Strahler (1981). The appropriate solar
incidence values that will discriminate shadow in an image will
vary according to (i) the date of image acquisition and the
location of the study area (related to varying solar azimuth and
elevation angles), and (ii) the nature and orientation of the local
topography.

The fourth classification trial combined the methods used in
the second and third trials: the image was stratified into areas of
shadow and nonshadow, and elevation data were used as one of
the inputs to the clustering process. At the completion of the
labelling process, each result was assessed for accuracy based
on a separate set of randomly selected validation data. A
stratified sample design, as described by Czaplewski (2003),
was adopted and 15 samples in each of the seven class strata
were randomly selected from the polygon centroids of the

existing forest inventory of the study area in which proxy
EOSD land cover class labels had been generated using the
forest inventory attributes. It was determined that a sample size
of 105 would provide confidence thresholds of approximately
72.1% and 93.5% around a desired level of accuracy of 85% (at
the 95% confidence level) (Czaplewski, 2003). The sample size
of 105 is therefore sufficient for estimating the overall accuracy
with confidence and for measuring the relative success of
individual classification iterations at achieving the desired
target level of accuracy. The error matrices and associated
accuracy measures are presented in Tables 2–5. The accuracy
measures were calculated using joint probabilities to ensure
unbiased estimates (Czaplewski, 2003).

Results and discussion
The EOSD land cover mapping project is focused on

mapping the forested area of Canada. The dominant forest
classes found within this study area are open coniferous and
sparse coniferous, occupying 54% and 12% of the study area,
respectively. The other dominant class in the image is rock
(31%). The estimated overall accuracies are summarized in
Table 6. Figure 4A shows an enhanced red–green–blue (RGB)
composite of the study image, and Figure 4B is calculated solar
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Figure 3. Calculated solar incidence angle, with angles less than 34° shown in red.



incidence draped over the DEM. Figures 4C–4G show
examples of the output from each of the four classification
trials in a subarea of the full scene.

Using the standard methodology in the first classification
trial resulted in an overall classification accuracy of 68.7% for
the seven target classes, with a 95% confidence interval of
59.8%–77.6%. The second classification trial, which added
scaled elevation data as an input to the K-means clustering,
resulted in an overall accuracy of 69.9%, with a 95%
confidence interval of 61.2%–78.7%. The use of elevation data
in the second trial produced superior results for the open
coniferous class, with 80% of this class being mapped correctly
on the image compared with 73% in the first trial. The second

trial estimates the true area of open coniferous from the sample
data to be 51 264 ha, which is only 158 ha more than the actual
area of open coniferous identified in the forest inventory. This
compares with an estimated area for open coniferous in the first
classification of 43 360 ha. The errors of commission for open
coniferous were greater in the second trial as a result of
increased confusion with rock. Figures 4D and 4E illustrate
how the elevation has had a beneficial effect in reducing the
variability in the clusters of the first trial and producing a more
homogeneous result. In addition, elevation provided a splitting
point for cluster “rings” present in the initial classification trial
and that resulted in the open coniferous class being located in
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(A) Count of points from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 12 0 0 1 0 2 0 15
6 10 0 1 0 2 0 2 15
7 6 0 0 0 5 4 0 15
8 6 0 1 2 5 1 0 15

15 1 0 0 0 11 3 0 15
16 2 0 0 0 6 6 1 15
21 4 0 0 0 8 1 2 15
Total 45 6 9 11 52 33 26 105

(B) Estimates (%) from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 24.5 0.0 0.0 2.0 0.0 4.1 0.0 30.6
6 0.8 0.0 0.1 0.0 0.2 0.0 0.2 1.2
7 0.7 0.0 0.0 0.0 0.6 0.5 0.0 1.8
8 0.2 0.0 0.0 0.1 0.2 0.0 0.0 0.5

15 3.6 0.0 0.0 0.0 39.4 10.7 0.0 53.7
16 1.6 0.0 0.0 0.0 4.7 4.7 0.8 11.8
21 0.1 0.0 0.0 0.0 0.3 0.0 0.1 0.5
Total 31.4 0.0 0.1 2.1 45.3 20.1 1.0 100.0

(C) Accuracy measures

Classified image

4 6 7 8 15 16 21 Overalla

Estimated user
accuracy (%)

77.9 na 0.0 3.2 87.0 23.5 6.2 68.7 (59.8–77.6)

Estimated errors of
commission (%)

22.1 na 100.0 96.8 13.0 76.5 93.8

Estimated producer
accuracy (%)

80.0 0.0 0.0 13.3 73.3 40.0 13.3

Estimated errors of
omission (%)

20.0 100.0 100.0 86.7 26.7 60.0 86.7

Reference area (ha) 29 319 1105 1705 492 51 422 11 327 450
Estimated area (ha) 30 129 0 106 2020 43 360 19 242 962

Note: Image classes are as follows: 4, rock; 6, water; 7, tall shrub; 8, low shrub; 15, open coniferous; 16, sparse coniferous; 21, open mixedwood. na, not
applicable.

aEstimated overall accuracy and 95% confidence interval.

Table 2. Error matrices and associated accuracy measures for the unsupervised classification using standard methods with no additional
topographic attributes.



extremely high elevation areas dominated by rock and related
features.

For the third classification trial, the image was prestratified
into areas of shadow and nonshadow prior to clustering.
Shadowed areas accounted for 33% of the total study area. This
trial had an overall accuracy of 75.6%, with a 95% confidence
interval of 67.4%–83.8%. Figure 4F indicates that, although
the stratification of the image into areas of shadow and
nonshadow has improved overall accuracy, the classified output
in this area suggests there is minimal visual difference between
this trial and the first trial. The open coniferous class is mapped
with 93% accuracy in this trial, and the area for this class is
estimated at 59 276 ha. The increase in accuracy for this one
class has resulted in the increase in overall accuracy from the

initial trial. The other dominant class by area is rock, and in this
classification 73.3% of the rock in the study area is classified
correctly on the image. Figure 4F illustrates the
aforementioned cluster rings of open forest that were
problematic in the first classification trial. In an attempt to
overcome this problem, elevation was incorporated into the
method used for this trial as the fourth and final classification
trial.

The final classification trial, which included stratification of
shadowed and nonshadowed areas and used elevation as input,
provided an overall classification accuracy of 81.1%, with a
95% confidence interval of 73.6%–88.6%. This classification
produced the most consistent estimates of accuracy across all
classes, as indicated by the reporting of accuracy measures and
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(A) Count of points from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 11 0 0 0 2 2 0 15
6 0 4 2 0 6 1 2 15
7 3 0 1 0 8 1 2 15
8 6 0 0 3 2 4 0 15

15 0 0 0 0 12 2 1 15
16 0 0 1 3 6 5 0 15
21 0 0 0 0 9 2 4 15
Total 24 10 11 14 60 33 30 105

(B) Estimates (%) from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 22.4 0.0 0.0 0.0 4.1 4.1 0.0 30.6
6 0.0 0.3 0.2 0.0 0.5 0.1 0.2 1.2
7 0.4 0.0 0.1 0.0 0.9 0.1 0.2 1.8
8 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.5

15 0.0 0.0 0.0 0.0 42.9 7.2 3.6 53.7
16 0.0 0.0 0.8 2.4 4.7 3.9 0.0 11.8
21 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.5
Total 23.0 0.3 1.1 2.5 53.5 15.6 4.1 100.0

(C) Accuracy measures

Classified image

4 6 7 8 15 16 21 Overalla

Estimated user
accuracy (%)

97.6 100.0 11.2 4.2 80.2 25.3 3.1 69.9 (61.2–78.7)

Estimated errors of
commission (%)

2.4 0.0 88.8 95.8 19.8 74.7 96.9

Estimated producer
accuracy (%)

73.3 26.7 6.7 20.0 80.0 33.3 26.6

Estimated errors of
omission (%)

26.7 73.3 93.3 80.0 20.0 66.7 73.3

Reference area (ha) 29 319 1105 1705 492 51 422 11 327 450
Estimated area (ha) 22 039 295 1016 2364 51 264 14 920 3923

Note: Image classes as in Table 2.
aEstimated overall accuracy and 95% confidence interval.

Table 3. Error matrices and associated accuracy measures for the unsupervised classification using the elevation data as an additional
input to the K-means clustering algorithm.



estimated areas in Table 5. The trial resulted in 87% of open
coniferous, 60% of sparse coniferous, and 87% of rock being
mapped correctly. This classification also produced the highest
level of accuracy for the water class at 53.3%. As was the case
for the second classification trial, the elevation data provided a
valuable splitting point for clusters and prevented the
occurrence of open and sparse coniferous classes in extremely
high elevation areas where they are not likely to be found.

Omission errors were greater than 65% for tall shrub, low
shrub, and open mixedwood classes and greater than 50% for
the water class in all of the classification trials. These were very
rare classes in the image, with each representing 1% or less of
the total study area. In addition, the water features in the study
area have unique characteristics that contribute to the low

accuracy for this class. There are 1104 ha of water in the study
area, 234 ha of which are small lakes with an average size of
2 ha; 16 ha of these small lakes were located in areas of
topographic shadow. River segments represented 870 ha, with
an average size of 20 ha. These segments were long, narrow,
and sinuous, with 74 ha of these river segments located in areas
of topographic shadow. Given the unique characteristics of the
water features in this image, it is not surprising that
classification accuracies for water are very low. Commission
errors were high for the sparse coniferous class in all trials,
primarily resulting from confusion with the open coniferous
class, suggesting that within this study area these two classes
may be difficult to separate spectrally.
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(A) Count of points from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 11 0 0 1 2 1 0 15
6 5 6 0 0 2 0 2 15
7 6 0 0 0 8 0 1 15
8 6 0 0 3 2 4 0 15

15 1 0 0 0 14 0 0 15
16 4 0 0 0 8 3 0 15
21 2 0 0 0 7 1 5 15
Total 39 12 7 12 58 25 29 105

(B) Estimates (%) from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 22.4 0.0 0.0 2.0 4.1 2.0 0.0 30.6
6 0.4 0.5 0.0 0.0 0.2 0.0 0.2 1.2
7 0.7 0.0 0.0 0.0 0.9 0.0 0.1 1.8
8 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.5

15 3.6 0.0 0.0 0.0 50.1 0.0 0.0 53.7
16 3.2 0.0 0.0 0.0 6.3 2.4 0.0 11.8
21 0.1 0.0 0.0 0.0 0.2 0.0 0.2 0.5
Total 30.5 0.5 0.0 2.1 61.9 4.6 0.4 100.0

(C) Accuracy measures

Classified image

4 6 7 8 15 16 21 Overalla

Estimated user
accuracy (%)

73.5 100.0 na 4.8 81.0 51.7 36.5 75.6 (67.4–83.8)

Estimated errors of
commission (%)

26.5 0.0 na 95.2 19.0 48.3 63.5

Estimated producer
accuracy (%)

73.3 40.0 0.0 20.0 93.3 20.0 33.3

Estimated errors of
omission (%)

26.7 60.0 100.0 80.0 6.7 80.0 66.7

Reference area (ha) 29 319 1105 1705 492 51 422 11 327 450
Estimated area (ha) 29 256 442 0 2053 59 276 4 381 411

Note: Image classes as in Table 2. na, not applicable.
aEstimated overall accuracy and 95% confidence interval.

Table 4. Error matrices and associated accuracy measures for unsupervised classification using solar incidence angle to stratify image into
areas of shadow and nonshadow.



Conclusions
The combination of solar incidence angle to stratify the

image into shadowed and nonshadowed areas and the use of
elevation data as an input to the K-means clustering process
increased the overall accuracy of land cover classification in
our predominantly forested, high-elevation study area of
British Columbia, Canada. This classification process is simple
to implement, yet provides an increase in accuracy relative to
the standard method where no topographic variables are
included and does not require the user to expend resources
performing complex topographic normalizations or attempting
to determine the relationships between land cover classes and
various terrain attributes. However, stratification by shadow is
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Classification
trial

Estimated overall
accuracy (%)

Confidence intervals
(%)

Lower Upper

1 68.7 59.8 77.6
2 69.9 61.2 78.7
3 75.6 67.4 83.8
4 81.1 73.6 88.3

Table 6. Summary of estimates of overall accuracy and
confidence intervals.

(A) Count of points from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 13 0 0 0 1 1 0 15
6 0 7 2 0 2 2 2 15
7 3 0 2 0 8 2 0 15
8 4 0 1 1 2 7 0 15

15 2 0 0 0 12 1 0 15
16 0 0 0 0 6 9 0 15
21 0 1 0 0 8 2 4 15
Total 26 14 12 9 54 40 27 105

(B) Estimates (%) from stratified sample

Classified image

Reference 4 6 7 8 15 16 21 Total

4 26.5 0.0 0.0 0.0 2.0 2.0 0.0 30.6
6 0.0 0.5 0.2 0.0 0.2 0.2 0.2 1.2
7 0.4 0.0 0.2 0.0 0.9 0.2 0.0 1.8
8 0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.5

15 3.6 0.0 0.0 0.0 46.5 3.6 0.0 53.7
16 0.0 0.0 0.0 0.0 4.7 7.1 0.0 11.8
21 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.5
Total 30.6 0.6 0.4 0.0 54.7 13.4 0.3 100.0

(C) Accuracy measures

Classified image

4 6 7 8 15 16 21 Overalla

Estimated user
accuracy (%)

86.7 94.5 55.8 100.0 85.0 52.9 44.9 81.1 (73.6–88.6)

Estimated errors of
commission (%)

13.3 5.5 44.2 0.0 15.0 47.1 55.1

Estimated producer
accuracy (%)

86.7 46.7 13.3 6.7 86.7 60.0 26.7

Estimated errors of
omission (%)

13.3 53.3 86.7 93.3 13.3 40.0 73.3

Reference area (ha) 29 319 1105 1705 492 51 422 11 327 450
Estimated area (ha) 29 310 546 407 33 52 413 12 843 267

Note: Image classes as in Table 2.
aEstimated overall accuracy and 95% confidence interval.

Table 5. Error matrices and associated accuracy measures for unsupervised classification using solar incidence to stratify the image into
areas of shadow and nonshadow and using elevation as input to the K-means clustering algorithm.



only operationally feasible for those land cover classification
products that are created by processing individual scenes (as
opposed to mosaicking several scenes together and then
classifying them). The methods used could be integrated into
the existing EOSD classification methodology with minimal
effort for those high-relief areas where topographic shadows
are problematic and offer the potential to extract additional
land cover information from areas that would otherwise be
classed only as shadow. Further trials of this methodology are
recommended in areas with (i) greater variation in relief,
(ii) more equitable distributions of land cover classes, and

(iii) different sun angles and on Landsat imagery collected on
different dates.
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Figure 4. (A) Red–green–blue (RGB) composite of the study area. (B) Calculated solar
incidence angle draped over gridded DEM. (C) Enlarged inset from (A). (D) Classification using
standard methods. (E) Classification using elevation as input. (F) Classification using solar
incidence angle to prestratify image into areas of shadow and nonshadow. (G) Classification
combining methods in (E) and (F).
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