Information Report $\mathrm{FF}-\mathrm{X}-51$ January 1975

DYNAMIC PROGRAMMING SUBROUTINES BASED ON THE DIJKSTRA ALGORITHM FOR FINDING MINIMUM COST PATHS
 IN DIRECTED NETWORKS

by

Gary H. Elsner, Michael R. Travis and Peter H. Kourtz


```
Canadian Forestry Service
Department of the Environment
Nicol Building
331 Cooper Street
Ottawa, Ontario
K1A 0H3
```


Authors

Gary H. Elsner and Michael R. Travis are with the Forest Recreation and Landscape Management Research Work Unit of the Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture in Berkeley, Calif. Peter H. Kourtz is with the Forest Fire Research Institute, Canadian Forestry Service, Department of the Environment, in Ottawa, Ontario.

INTRODUCTION

Dijkstra's (1959) tentative labeling algorithm has proved highly useful in solving a variety of network problems. These have ranged from prediction of the "flow" of fire along arcs in a dense network to estimation of travel times between population centers.

O'Regan, et al. (1973) predicted the future perimeter location of a forest fire by forecasting the time it took a fire to travel between node pairs. Travel time was calculated from data on fuel type, fuel moisture content, slope along an arc, wind speed, and wind direction. In a large network, a fire could take many possible paths to each node. The minimum time needed for it to reach a particular node was computed by applying the Dijkstra algorithm.

Elsner (1971) estimated minimum travel distances from population centers to recreation areas in California. These travel times were then used as a major variable in predicting ski usage of large resorts in the State.

While working with the Dijkstra algorithm, we soon realized that it had many other possible applications. This report describes two computer subroutines based on the algorithm. The subroutines are useful in finding the shortest path between a selected node and other nodes, or in finding all shortest paths in a directed network. They are also useful in determining minimum cost paths in transportation networks and in other, broader decision-making problems.

The algorithm assigns temporary and permanent labels (values) to the network nodes. A temporary node value represents an upper bound on the minimum time (or distance or cost) to go from the starting node to a particular node; a permanent label is the minimum time to reach that node. An iterative process is used to relabel nodes from temporary to permanent, and the process stops when either the particular node or all nodes are labeled permanent. Thus, the algorithm can be used to find the minimum time path between two network nodes or the minimum time from a specific node to all others in the network.

The steps of the procedure are:
(a) Assign to the starting node a permanent label value of 0 and to all other nodes the temporary value of infinity.
(b) Reassign values of those temporarily labeled nodes that are connected by arcs to the last permanently labeled node by adding to that permanent value the time associated with traveling along each arc.
(c) Scan all temporary node values and assign the one with the smallest value a permanent label. (In practice, only nodes adjacent to permanent nodes need to be scanned).
(d) Repeat steps b and c, until either the node of interest or all nodes have been permanently labeled.

We have not compared the computational efficiency of this algorithm with many others, but Dreyfus (1969) indicated that no more efficient algorithm existed at the time of his review. We did find the Dijkstra algorithm superior to both the Cascade algorithm (Farby, et al. 1967) and a "bends in the path" dynamic programming algorithm that was custom designed for use in a fire model.

To demonstrate an application of these subroutines, we present an illustrative network and data matrix with costs for each arc in the network (Fig. 1). The flows are directed and in this example, the cost of going from node I to node J may not be equal to the cost of going from node J to node I (Fig. 2).

The first subroutine (DIJKST) and corresponding illustrative calling routine (Appendix I) are appropriate for the case in which only minimum costs from a starting node to all others are required and the corresponding paths are not required. The second subroutine (DIJKS2) and corresponding illustrative calling routine (Appendix II) are for the situation in which the definition of the minimum paths is also required. This second routine requires additional computer storage space equal to the total number of nodes in the network.

The computer output for each of these programs includes results from a starting node to all other nodes. This is the structure of the problem that the Dijkstra algorithm is designed to solve. But by simply treating each node as a starting node and employing the algorithm as many times as there are nodes, one can easily determine minimum costs or routes or both between all pairs of nodes in the network. (The solution to this type of problem is illustrated in Appendix I and II.) It should be noted, however, that Floyd's (1962) algorithm and Dantzig's (1966) algorithm for solving all possible pairs in a network are more efficient than Dijkstra's algorithm for this purpose (Minieka, 1974).

The interpretation of the minimum path costs is straightforward, i.e.. in the example problem the minimum cost of going from node 3 to node 9 is 11 units.

The interpretation of the routing list is not so straightforward, but is quite attractive in terms of defining all the minimum routes in a small amount of space. The Ith element of the routing list contains the node number from which node I was reached on the minimum path from the chosen starting node to node I. For example, in the problem using DIJKS2, if we pick the starting node as node 1, then to get to node 10 by way of a minimum path we came (interpreting the routing list backwards) to node 10 from node 9, then to node 9 from node 8, to node 8 from node 4, and to node 4 from node 1. The corresponding link costs for this route add up to 17 as shown in the minimum path cost matrix.

A slight modification to the Dijkstra algorithm offers a possibility of improving its efficiency under special conditions. A bi-directional search 1/ procedure (Pohl 1971) can be used, if (a) both the starting and ending node are known, (b) the minimum path is significantly less costly than others, and (c) the costs associated with each arc are independent of the path to the adjacent nodes. That is, the Dijkstra algorithm is applied simultaneously at the start and end nodes. (The end node is treated as if it were the beginning.) The algorithm is applied to two distinct sets of permenent and temporary labels alternately. The process stops as soon as a node has two permanent label values. The minimum cost is the sum of these two permenent values and the route associated with this value can be found by decoding the network in both directions to the start and end nodes.

Another method for improving the efficiency of the algorithm is to incorporate special computer storage and searching techniques. o'Regan, et al, (1973) and Yen, (1972) describe special hashing, linking, and storage procedures that are useful for large networks. However, computer programs incorporating the bi-directional search method in the specialized storage and searching techniques are not sufficiently general to warrant inclusion in this report.

1/ In the fire perimeter problem, for example, the time for the fire to cross an arc depends partly upon the time that the fire reaches the arc of interest.

1. Dantzig, G., 1966. All Shortest Routes in a Graph, Theories des Graphes, Proc. Internat. Symp., Rome. Dunod, Paris, p. 91-92.
2. Dijkstra, E.W., 1959. A note on Two Problems in Connexion with Graphs, Numerische Mathematik, Vol. 1, pgs. 269-271.
3. Dreyfus, S., 1969. Appraisal of Some Shortest-Path Algorithms, Journal of Operations Research Society of America, Vol. 17, pgs. 395-412.
4. Elsner, Gary H., 1971. A Regression Method for Estimating the Level of Use and Market Area of a Proposed Large Ski Resort, Journal of Leisure Research, Vol. 3, No. 3, Summer 1971, pgs. 160-167.
5. Farby, B.A., A.H. Land, and J.D. Murchland, 1967. The Cascade Algorithm for Finding All Shortest Distances in a Directed Graph, Management Science, Vol. 14, No. 1.
6. Floyd, R.W., 1962. Algorithm 97: Shortest Path, Communications of the Association for Computing Machinery, Vol. 5, p. 345.
7. Minieka, E., 1974. On Computing Sets of Shortest Paths in a Graph, Communications of the Association for Computing Machinery. Vol. 17, No. 6., pgs. 351-353.
8. O'Regan, W.G., S. Nozaki, and P.H. Kourtz, 1973. A Method for Using Directional Rates of Spread to Predict Forest Fire Configurations. WSS/CI Paper No. 73-17.
9. Pohl, Ira, 1971. Bi-Directional Search. Machine Intelligence, Vol. 6.
10. Yen, J.Y., 1972. Finding the Lengths of all Shortest Paths in N-Node Nonnegative Distances Complete Networks Using $1 / 2 \mathrm{~N}^{3}$ Additions and N^{3} Additions and N^{3} Comparisons. Journal of the Association for Computing Machinery, Vol. 19. No. 3.

Fig. $1 \begin{aligned} & \text { Network for Illustrating Application } \\ & \text { of the DIJKSTRA Algorithm }\end{aligned}$

Fig. 2 Directed arc "travel" costs for the illustrative network.

```
                    Appendix I
    DIJKST Subroutine and Illustration for Finding
        Minimum Cost Routes in a Directed Network
    GIJQROUTTAFE NIJKGTICOST,T,FL\triangleG.NSITF,N.ISTART)
C DRORDAM DIJKST - MTNTMIIM PATH SOI:UTION AY DIJKSTRA
C TFNTATIVF L\triangleRFL AIGODITHM
C GEE:
C DIJKGTQA.E.W. A NOTF ON TWO PPORLFMS IN CONNFXTON WITH
C. TRADHS.
C NUMMFOISCHE MATHEMATIK 1:PGQ-P71 (1959)
r
C JQOGRAMMED RY MIKF TRAVIS. .IJNF 1970
        INTFGFR ROGT(NCITF.I).T(1)
C (A NFGATIVF VALUF MFANG INFINITF COCTI
        LOGICAL FLAG(N) &FOIINO
r. ROST(I*J) = ROST OF GOING FDOM NONE I TO NODF J
C T(I) = TOTAL COST OF GOING FPOM STADTING DOINT TO NONF I
C FLAGII) =.FAICE. IF T(II IS TENTATIVF. .TRUE. IF PFRMANFNY
        DATA LADGF/999999/
C INITIALIZE TOTAL COSTS ANO FLAGS
        n\cap 100 I=1.N
        T(I)=LARGE
    100 FIAG(I)=.FALSE.
C SFT STARTING, NODF LAGFL
        T(ISTART)=0
C GFGIN = FIND GMALLFST TFMD. LAGFL.
    1 ISMALL=LAORF
        FOUNIN=, FAISE.
        nO 200 I=1.N
        IF(FIAG(I).OR.T(I).GF.IGMALL)GOTO 2OO
        TCMALL=T(|)
        IC=1
        FOUA,N=.TRUF.
    2On rONTTNUF
C OONF IF ALL LARELS ARE PERMANENT
                IF(.NOT,FOUNO)GOTO ?
C MAKF PFDMANFNT THF SMALLEST TEMP LAAFL
                FI.AT(IS)=.TPUF.
C IJPDATE LABELS ON NONDFRMANFNT CONNECTFO NODES
                nO 300 I=1.N
                IF(FI, AG(I) ,OR.OOSTIIS.I).LT.O)GOTN 3nn
                IT=T(IS)+rnST(TS.T)
                IF(IT.LT.T(I))T(I)=IT
    3OO CONTYNUF
C DFOFAT
                O\capTO 1
r COMPIETFD
        OONTINUF
                qE TIIRAl
                E.jn
```

```
C DFMOIISTOATF NIJKSTDA ALTOOPTHM MYMIMIM DATH SOIIITIDN.
C. MIKF TDAVIS IJC FORFST SFRVICF UFDKFIFY
```



```
r. UFT(I,J) IS THF COST OF THF PATH FROM NONF I TO NODF J.
C MTN(J) DFTIJQNE THF MINIMIMM COST TO NONF I FQOM THF NFEIGNATFI,
c. STARTINR NODF.
C APRAV IF HOLDC FI,ARS DIIRINTG ITFQATION.
    OIMFNCION NFT(10.10),MIN(10)
    IIMFNSION IF(1N)
```



```
C DFAO IN THF NFTWODK OF PATHS
C NOTF THAT -
C NFGATIVF COST IG TAKFN TO MFAN INFIMITF (NO CONNFCTION)
    MFT(I.J) NFFU NOT EOUAL NFT(J.I)
    nn 1 I=1.9.2
```



```
    1\cap FORM\triangleT(POT4)
r. PRINT OIST THF NETWORK
    DDINT 4
    4 FORMAT(IHI.'COST ARRAYI//)
        n\cap 2 I= 1.1n
        ? PDINT 5:(NFT(I*.J),J=1.10)
        5 FODMAT(IX.IOIK)
```



```
C CHONSE POINT F AS A STARTING POTNT
    1ST\Delta|T=3
r PFRFORM MINIMIIM PATH ANALYSIS
r ---
    CALL DIJKCTINFT.MIN,IF,10.10.ISTACTT)
r =--
r. DHINIT MINIMA
    DOTNIT S
        G FODMATIIHI//ZX.ONODE..7X.:MINTMUM PATH COSTS:I
        POINT 65
        65 F\capOMAT(1x.9(6H---m--))
        PRTMIT 6K. (K.K=1.1N)
        GK F\capOMAT(10X.10I4)
        PRINT 65
        PQINT 11,ISTART,MIN
        1) FODMAT(1X, I4,5x,10\4)
```



```
C. JF CAN O\cap ALL NODFG RY ITFPATING OVEP THF STADTTNG DOTNT
    DPINT }
    PRINTT 65
    DDINT 6G.(K,K=1.10)
    PRINT 65
    n\cap 100 IS S=1.10
C ---
    CALL DIJKCT(NFT,MTN.IF,10,10.YC)
r ---
    PDIN:T 11.IS.MTA
    InO rOMTINUF
```



```
C FIND OF NFMONSTQATION
    STOP
    F*|!
```

\[

\]

NODE	MINIMUM PATH COSTS									
	1	$?$	3	4	5	6	7	9	9	10
1	0	8	10	6	12	20	17	9	14	17
2	24	0	$?$	25	17	12	9	??	10	13
3	25	15	n	26	18	10	7	23	11	13
4	4	12	14	0	15	10	21	3	9	11
5	7	3	5	A	0	15	12	5	10	13
6	20	5	1	21	13	\cdots	8	18	6	3
7	23	8	4	24	16	$?$	n	21	9	6
8	7	15	17	3	12	1 A	19	0	5	8
9	14	10	12	15	7	11	14	1 ?	0	3
10	19	13	9	20	12	R	11	17	5	0

DIJKS2 Subroutine and Tllustration for Finding Minimum Costs and Route Definitius in a Directed Newtwork

```
    GMLOOUTIAF DIJKS?(COST.T.IP.FI_AG.FISITF.N.ICTAPT)
C DPOROABA DIJKST - MINIMIJM PATH GOLIITION AY DIJKGTRA
C TFNTATTVF LARFL MLGOOITHM
C VFRSIOA ? - GFAIERATES THF ACSOCIATFN ROIITING VFCTOR.
C EFF:
C DIJKGTPA. E.W.. A NOTF ON TWO PDORLEMS IN CONNFXION WITH
C. TRADHS.
C NUMEOISCHE MATHEMATIK 1:PKO-271 (1959)
C ORORQAMMED QY MIKF TPAVIG, JIJNF 1070
    INTFGER COGT(NSIZF.I).T(1)
C (A NFGATIVF VALUF MFANS INFINITF COST)
    LOGTCAL FIAG(N) .FOIJND
C COSTIT.JI = ROST OF ROING FROM NIONF I TO NONF J
6. T(I) = TOTAL ROST OF GOING FROM GTARTING DOINT TO NONF I
C FLARII) = .FALSE. IF T(I) IS TENTATIVF..TRUF. IF PFDMANFNT
    OIMFNSION TR(N)
C IR(I) CONTAINC THF INDEX OF THF NONF FROM WHICH NODF I WAS
C. DFACHED ON THF MINIMIM DATH FROM THE CHOSFN STAOTING NONE TO
C. NODE I.
C SO IF IR(I) CONTATNS. SAY. J. CONSULT IRIJ) TO FIND THE NEXT NODF INWARD
C TOWARD THE STAQT. RFPEAT IJNTIL WF RFACH THE STAOTING NONF.
C IIR(ISTARTI IS ALWAYG 0,
    OATA LARGF/999999/
C INITIALIZE TOTAL COSTS AND FLAGG
    OO 100 I=1.N
    T(I)=LARGF
    10\cap FIAT(I)=,FAl SF.
P SFT STAPTING NDDE LARFL
    T(TGTART)=0
    IO(ISTART)=0
C. AFGIN - FIND GMALLFST TEMP. LAREL
    1 ISMALL=LAPTE
        FOUNO= *ALCF.
        On 200 l=1,N
        IF(FI.AG(I).OR.T(I).GE.IGMALL)GOTO 20!
        ICMALL=T(1)
        IC=1
        FO|ININ=.TRUF.
    2On rONTINUF.
C OONE IF \triangleLL LARELS ADE PFRMANFNT
            IF(.NOT.FO|NI)GOTO ?
C. MAKF DFDMANFNT THF SMALLFST TFMD LAAFL
            FLATIIS)=.TPUF.
c. IIPDATE LABFLS ON MONDFRMANFNT CONNFCTEN MIODES
            O\cap 30\cap I=1.N
            IF(FLAGII).OR.COST(IS.II.I.T.O)ROOTO 30n
            IT=T(IS)+r^ST(TS.T)
            IF(IT.GF.T(I)IGOTO 300
            T(I)=TT
            TO(I)=IS
    3n\cap rOnTYNUF
r OFDFAT
            ronta l
r COMDIFTEN
        P CONTIMUF
            Q=T11んN
            EN:O
```



```
C COST ANO QOIITM!IF DQORIFM.
C. ATKF TPAVIS IJE FORFGT SFOVTCF JFOKFIFY
```



```
C "FT\,J IS TUF COST OF THF PATH F&OW NONF I TS MONF I.
C MIN(J) OFTIIPNG THF MTNTPAIMM ROST TO NODF JFQOM THF NFCIGNATFO
c. STADTIMIG NOIF.
    CTMFNSION NFT(10.10).MIN(10)
C ARQAY IF HOING FI.AFS OUDINR, ITFBATION.
    OIMFNSION IF(1N)
C IDOIITF DETIJPNS THF ROIJTING, INFOOMNTION \triangleSSOCIATEN WITH A
r. MINIMIJM DATH EOLIHTION.
    NTAFNGION TQOITF(1O)
```



```
C DFAN IN THF NFTWOOK OF PATHG
C NOTF THAT =
C. A NFGATIVF COST IG TAKFN TO MFAN INFINITF (NO CONAFCTION)
C. MET(T:J) NEED NOT FOIIAL NFT(J,I)
    n\cap 1 I= 1,0.2
    1 pFAO 10.(NFT(I:J):J=1,10).(NFT(I+1,J).J=1.10)
    10 FORMAT(2014)
P DOINT OIIT THF NETWORK
        DRINT 4
    4 FOPMAT(1HI.'COGT APDAY'//)
        \cap\cap ? T=1.1n
    ? PRINT 5.(NFT(I.J).J=1.10)
    5 FORMAT(1X.1016)
```



```
C CHONGE POINT , AS A STARTING POINT
    ISTADT=3
C PFRFORM MINIMIIM PATH ANALYSIS
C ---
    CALL DIJKS?(NET.MIN.IDNUTF.IF.10.10.1STAOT)
c. --\infty
C PRINT MINIMIUM COSTS AND ODTIMAL DNUTFS
    PPTNT }
    G FOPMAT(IHI//2X. NNODE:.7X. IMINTMIJM PATH COSTS*.TGT.*ROUTING LIST:)
        PRTMT 65, (K,K=1,1\cap):(K,K=1,10)
    65 FORM^T(1X,1G(GH-=----).4H---..
        */10x.10T4,T60.1014.
        $/1X,16(6H-------)
        PRINT 7.ISTART.MIN.IROIITF
        7 FORMAT(1X,14,5X,1014,T60.1014)
```



```
C. WF CAN OO ALL POSSIBIE INTFQCONAFCTIONS RY TTFRATING OVER
C THF STARTING NODF.
    PRINT 6
        PQYNT 65.(K,K=1.10)\cdot(K.K=1.10)
        nO 100 IS = 1.10
r ---
    CALL DIJKSD(NFT.MIN.IDOUTF.IF.10,10.ISI
C -m-
    PRINT 7.IS,MIN.IROIITF
    100 CONTINUF
```



```
c. ENO OF NEMONSTRATTIN
```

 STフP
 EAIn

	None	MIMIMUM PATH COSTS										ROUTINA LTCT									
		1	\geqslant	3	4	5	k	7	8	9	10	1	$?$	3	4	5	6	7	9	9	10
	1	0	-	10	6	12	$3 n$	17	9	14	17	0	1	2	1	1	7	3	4	-	9
	$?$	24	n	2	25	17	17	9	72	10	13	5	0	2	8	9	7	3	5	7	9
	7	25	15	0	26	18	10	7	73	11	13	5	6	0	R	9	7	3	5	3	6
	4	4	12	14	n	15	19	21	3	R	11	4	1	2	0	9	10	3	4	ค	9
	$=$	7	3	5	R	9	15	12	5	10	13	5	5	2	8	0	7	3	5	ρ	9
	6	20	5	1	21	13	\cdots	9	18	6	3	5	6	6	8	9	0	3	5	4	6
	7	23	8	4	3.4	16	7	\bigcirc	>1	9	5	5	6	6	8	9	7	0	5	a	6
	Q	7	15	17	3	12	16	19	0	5	9	4	1	2	R	9	10	10	0	ค	9
	$+$	14	10	12	15	7	11	14	$1 ?$	0	3	5	5	2	\&	9	10	10	5	0	9
\rightarrow	10	19	13	9	20	12	-	11	17	5	0	5	6	6	A	9	10	10	5	10	0

