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INTRODUCTION

Dijkstra's (1959) tentative labeling algorithm has proved highly
useful in solving a variety of network problems. These have ranged
from prediction of the "flow" of fire along arcs in a dense network
to estimation of travel times between population centers.

O'Regan, et al. (1973) predicted the future perimeter location of
a forest fire by forecasting the time it took a fire to travel
between node pairs. Travel time was calculated from data on fuel
type, fuel moisture content, slope along an arc, wind speed, and wind
direction. In a large network, a fire could take many possible paths
to each node. The minimum time needed for it to reach a particular
node was computed by applying the Dijkstra algorithm.

Elsner (1971) estimated minimum travel distances from population
centers to recreation areas in California. These travel times were
then used as a major variable in predicting ski usage of large
resorts in the State.

While working with the Dijkstra algorithm, we soon realized that
it had many other possible applications. This report describes two
computer subroutines based on the algorithm. The subroutines are
useful in finding the shortest path between a selected node and other
nodes, or in finding all shortest paths in a directed network. They
are also useful in determining minimum cost paths in transportation
networks and in other, broader decision-making problems.

The algorithm assigns temporary and permanent labels (values) to
the network nodes. A temporary node value represents an upper bound
on the minimum time (or distance or cost) to go from the starting
node to a particular node; a permanent label is the minimum time to
reach that node. An iterative process is used to relabel nodes from
temporary to permanent, and the process stops when either the
particular node or all nodes are labeled permanent. Thus, the
algorithm can be used to find the minimum time path between two
network nodes or the minimum time from a specific node to all others
in the network.

The steps of the procedure are: ‘
(a) Assign to the starting node a permanent label value of 0 and to
all other nodes the temporary value of infinity.

{(b) Reassign values of those temporarily labeled nodes that are
connected by arcs to the last permanently labeled node by adding

to that permanent value the time associated with traveling along
each arc,

(c) Scan all temporary node values and assign the one with the
smallest value a permanent label. (In practice, only nodes
adjacent to permanent nodes need to be scanned).



(d) Repeat steps b and c, until either the node of interest or all
nodes have been permanently labeled.

We have not compared the computational efficiency of ‘this
algorithm with many others, but Dreyfus (1969) indicated that no more
efficient algorithm existed at the time of his review. We did find
the Dijkstra algorithm superior to both the Cascade algorithm (Farby,
et al. 1967) and a "bends in the path" dynamic programming algorithm
that was custom designed for use in a fire model.

To demonstrate an application of these subroutines, we present an
illustrative network and data matrix with costs for each arc in the
network (Fig. 1). The flows are directed and in this example, the
cost of going from node I to node J may not be equal to the cost of
going from node J to node I (Fig. 2).

The first subroutine (DIJKST) and corresponding illustrative
calling routine (Appendix I) are appropriate for the case in which
only mninimum costs from a starting node to all others are required
and the corresponding paths are not required. The second subroutine
{DIJKS2) and corresponding illustrative calling routine (Appendix II)
are for the situation in which the definition of the minimum paths is
also required. This second routine requires additional computer
storage space equal to the total number of nodes in the network.

The computer output for each of these programs includes results
from a starting node to all other nodes. This is the structure of
the problem that the Dijkstra algorithm is designed to solve. But by
simply treating each node as a starting node and employing the
algorithm as many times as there are nodes, one can easily determine
minimum costs or routes or both between all pairs of nodes in the
network. (The solution to this type of problem is illustrated in
Appendix I and II.) It should be noted, however, that Floyd's (1962)
algorithm and Dantzig's (1966) algorithm for solving all possible
pairs in a network are more efficient than Dijkstra's algorithm for
this purpose (Minieka, 1974).

The interpretation of the minimum path costs is straightforward,
i,e., in the example problem the minimum cost of going from node 3 to
node 9 is 11 units.

The interpretation of the routing list is not so straightforward,
but is quite attractive in terms of defining all the minimum routes
in a small amount of space. The Ith element of the routing list
contains the node number from which node I was reached on the minimum
path from the chosen starting node to node I, For example, in the
problem using DIJKS2, if we pick the starting node as node 1, then to
get to node 10 by way of a minimum path we came (interpreting the
routing list backwards) to node 10 from node 9, then to node 9 from
node 8, to node 8 from node U4, and to node 4 from node 1., The
corresponding link costs for this route add up to 17 as shown in the
minimum path cost matrix.



A slight modification to the Dijkstra algorithm offers a
possibility of improving its efficiency under special conditions. A
bi-directional search 1/ procedure (Pohl 1971) can be used, if (a)
both the starting and ending node are known, (b) the minimum path is
significantly less costly than others, and (c) the costs associated
with each arc are independent of the path to the adjacent nodes.
That is, the Dijkstra algorithm is applied simultaneously at the
start and end nodes. (The end node is treated as if it were the
beginning.) The algorithm is applied to two distinct sets of
permenent and temporary labels alternately. The process stops as
soon as a node has two permanent label values. The minimum cost is
the sum of these two permenent values and the route associated with
-this value can be found by decoding the network in both directions to
the start and end nodes,

Another method for improving the efficiency of the algorithm is
to incorporate special computer storage and searching techniques.
O'Regan, et al, (1973) and Yen, (1972) describe special hashing,
linking, and storage procedures that are useful for large networks.
However, computer programs incorporating the bi-directional search
method in the specialized storage and searching techniques are not
sufficiently general to warrant inclusion in this report. '

1/ 1In the fire perimeter problem, for example, the time for the fire
to cross an arc depends partly upon the time that the fire
reaches the arc of interest.
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Fig. 1 Network for Illustrating Application
of the DIJKSTRA Algorithm
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Fig. 2 Directed arc "travel” costs for the
illustrative network,
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Appendix I

DIJKST Subroutine and Illustration for Finding
Minimum Cost Routes in a Directed Network

SUSRNUTINFE NIUKSTICOST o ToFIL AR JNST7F oNoISTART)
OROGBAM DIJKST = MINTMIIM PATH SOLUTTIAN RY DTJUKSTRA
TFNTATIVFE LARFL A{GORTTHM
SEE:
NTJUKSTRA EoWoes A NOTE ON TWO PRORLFMS IN CONNEXTON wITH
ARAPHS,
NUMFOISCHE MATHEMATIK 1:2A9-727]1 (1959)

OROGRAMMED RY MIKF TRAVIS. JINF 1970
INTFGFR COST(MSTIZFel) T (1)
(A NFGATIVF VALUF MEANS INFINITF COST)
LOGICAL FLAG (M) oFNIIND
rOST(TeJ) = 0nST OF GOING FOOM NONE T TH NODF J
T(I) = TOTAL c0OST OF GOING FPOM STARTING POINT T0 NODF 1
FLAG(I) = JFAISE, IF T(I) 1S TENTATIVFe ,TRUF, TF PFRMANFNT
DATA LABGF /999999,
IMITIALTZE TOTAL €£NSTS ANMD FLAGS
NN 100 I=1.N
T(1)=LARGE
100 FILAG(I)=,FALSE,
SFT STARTING NODF LAaFL
T(ISTART)=n
QFGIN = FIND SMALLFST TFMP, LARFL
1 ISMALL=LARGF
FOUNN= (FASF,
nD 200 1=1eN
IF(FLAGUT) JOR, T (1) ,GF,TSMALL)YGOTN 200
TSMALL=T ()
1]=1Y
FOULN=TRUF
200 CONTINUF
NONF IF ALL LARELS ARE PERMANENT
IF (JNOT L FOUNDYGOTO 2
MAKF PFOMANFNT THF SMALLEST TEMP | ARFL
FIAG(IS)=,TRUF, -
UPDATE LABELS ON NONPFRMANENT CONNECTFD NODES
NO 300 I=1.N
IF(FILAG(T) ,OR.COST(ISsI) LT.0)GBOTA 300
IT=T(IS)+rnST(TSeT)
IF(ITLTT(INI T =IT
300 CONTTINUF
RFPFAT
nnTn |}
COMPLETFD
2 FONTINUF
RE TUIRA
Frn
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DNEMOLISTRATF NTJKSTRA ALAGORTTHM MINTMIIM PATH SNELUTTOM,
MIKF TRAVIS 1S FNRFST SFRVICF uFRKFFY
MET(Ted) IS THF COST OF THF PATH FROM NONF T TN NODF
MIN(J) RETURNG THFE MINIMIM £OST To NODF ) FROM THF NFCIGNATFD
STARTING NODF,
ARRAY TIF HOLNS FLAGS DUHRING JTFERATION.,

NIMFNCTION MET(1010) oMINC]I0)

NIMENSTON TF(1M)

- - - -t - T i i e W D W B S o WP D S o e B e m e e e W W R W o e W
e s e e I e e s T I T T T T S T S T I NN R RS R RSN TR IRNIRIRNI=T= e

DEAD TN THF NFTWORK OF PATHS
MOTF THAT - .
A NFARATIVF COST IS TAKFN TN MFAN INFINTTF (NN CONMECTION)
NFT(TeJ) NFFD NOT EQUAL NFT(JeT)
NN 1 1=149,2
1 RFAD 104 (NFT(T o) eJ=1910) o (NFT(T¢1eJ)e.i=10e10)
1IN FARMAT(72014)
PRINT OUT THF NETWNRK
PRINT &
4 FORMAT (1H]1,'COST ARRAY /)
nn 2 I=1eln
? PRINT Se(NFT(Te))eJ=1410)
S FORMAT(IX.1016)

CHONSE POINT 21 AS A STARTING POINT
1STADLT=]
PFRFNRM MINIMIIM PATH ANALYSIS

CALL DIJUKST(NFToMINeIFo10¢10471STACT)
OPIMNT MINIMA
POINT 6
A FOPMAT (1HT1//2XetNODE Y ¢ TX ¢ SMINTIMUM PATH CNSTSH)
PRINT 65
AQ FNRMAT(1X 49 (bHmmwu==))
PRIMT 6K4(iceK=10410)
Ah FNOMAT(10X.1074)
PRINT 6§
PRIMT 11+18TARTMIN
11 FORMAT(I1XeT4sSXe1014)
-+t 2+ 3 1 2 5+t 2+ 2+ 4+ + 2 2 ¢4+ 4+ 4+ 2 S S22 2 2442+ 42 2+ S 2 2 3 2 L+ 2 2 222 S 242424 5 3]
WF CAN DN ALL NODFS RY ITFRATING OVER THF STABTING DOOINT
PRINT 6
PRTMT 65
PRINT 664 (K sK=1410)
PRINT 65
noo100 IS=1.10
CALL DIJUKST(NFTMINGIF41041047%)
PRIMT 11elSeMIN
100 COMTITNUF
FND OF NDFMONSTRATINN
STNP
Fr0
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NODE MINIMUM PATH COSTS

1 ? 3 4 S 6 7 8 9 10

3 25 15 0 26 18 1n 7 23 11 13

10



NODE

meqvhwum’

MINMNIMUM PATH COSTS

7 3 S R ]
20 S 1 21 13
23 8 4 24 16

7 15 17 3 12
14 10 12 15 7
19 13 9 20 12
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Appendix II

DIJKS2 Subroutine and Tllustration for Finding Minimum
Costs and Route Definitious in a Directed Newtwork

STRENUTINME NIJKS2 (COSTaToIReFLAGHSIZF NS ISTART)
PROGRAM DIJKST = MINIMUM PATW SALUHTINAN AY DIJKSTRA
TENTATIVF LARFL AL GORPTTHM

VFRSTINM ? = GFNERATES THE ASSOCTATEN ROUTING VFCTOR,
QFF 2

DIJKSTRAS E.W,e A NOTF ON TWh PPORLEMS IN CONNFEXTON WTTH
ARAPHS,

NUMEOTSCHE MATHEMATIK 1:2A9«271 (1959)

OROGRAMMED RY MIKF TRAVIS, JUNF 1970
INTFGER COSTI(NSTIZFE 1) T ())
(A NFGATIVF VALUF MEANS INFIMITF €OST)
LNGTICAL FILAG(N) ¢FNUND
COST(TeJ) = £aST OF GOTNG FROM NANF T TO NONF J
T(I) = TOTAL rOST OF GOING FROM STARTING POINT TH NONF 1
FLAG(T) = FALSE, IF T(I) 1S TENTATIVF, .TRUF, TF PFOMANFNT
NIMENSION TR I(N)
IR(I) CONTAINS THF INDEX NOF THF NODF FROM WHICH NODF T waS
RFACHED ON THF MINIMUM PATH FROM THE CHOSFN STASTING NONE TO
NODE 1.
SO IF IR(I) CNANTATINS. SAY, Jo CONSULT IR(J) TO FIND THE NEXT NODF INWARD
TNOWARD THE START, RFPEAT UNTIL WF RFACH THFE STARTING NODF ,
(IR(ISTART) 16 AL wWAYS 0 )
NDATA |ARGF/G99999G,
INITIALTIZE TOTAL COSTS AND FLAGS
NO 100 I=1.MN
T(I)=LARGF
100 FILAG(I)=,FALSF,
SFT STAPTING NNDE LARFL
T(ISTART) =n
IR(ISTART)Y=0
RFGIN = FIND <MALLFST TEMP, LARFL
1 ISMALL=LARAGE
FOUND=QFALQFO
NN 200 T=1.N
TFE(FLAG(T) JOR T(1).GE,ISMALLIGOTO 200
TEMALL=T ()
1e=1
Founnz ,TRyF,
200 FONTINUF
NONE TF ALL LARELS APE PFRMANFNT
TF (LNOTFOLNDYGNTO P
MAKF PFOMANFNT THF SMALLFST TFMP LARFL
FLAG(IS)=,TRUF,
HIPDATE LARFLS AN MONPERMANFNT CONNFCTED MODES
NN 300 T=1.M
TFIFLAG(])Y ,OR,CNSTIISWT) L T.N)GOTO 300
1T=T(IS)+rnST(1SeT)
TFUIT.GF,T(I))GNTN 300
T(TYy=17
12t =18
INO CONT TNUF
AFOFAT
AnNTN |
rfOMDL FYED
2 CONTIMUFE

TR
£ren

12
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OFMOMSTOATFE NTUKSTRA AL GORTTHY SOLIITTIOM TO MINTMiv DrTY
COST AND POUTIMG PROR|FM,
MIKF TRAVIS 1 FNRFSY SFRVICF JFPKFIFY

MET(Te Y IS TWF CNST OF THF PATH FROM NODF T TH NODE |,
MINC D) RFTURNSG THE MINMTMUM rOST TN NANDF ) FROM THWF AFCIGNATED
STARTING NONF,

PIMENSINN NET(10410) «MIN(]0)
ARRAY TF HNLNG FILARS DHURING TTFDATION,

NIMFNSTION TF(10)
IROUTE RETUPNG THF RNAUTING TNFOOMATINN ASSOCTATEDN WITH A
MIMIMUM DATH <NLUTTON,

NT4FNSTINON TROUTF (10)

-+ 32 443 42431332233ttt - - - -2 4 42 2 2 21 22+ 2 2 202 22 2 S22 2 2223 2 22 2 24

READ TN THF NFTWOOK NF PATHS
MOTF THAT =
A NFGATIVE COST IS TAKFN TO MFAN INFINTTF (NN CONNECTINON)
MET(TeJ) NEED NAT FOUAL MFT(Je D)
NO 1 I=1+9,2
1 PFAD 10 INFT(TeJ) e J=1el0) s (NFT(I410 ) e =110}
10 FARMAT(20T4)
PRINT OUT THF NETWORK
PRINT 4
4 FORMAT (1H1.*CNST ARRAY'//)
nn 2 T=1leln
D PRIMT Se(NFT(Te ) ed=1010)
S FORMAT(IX41016)

Pt LT P e P E e R Y I e T I TRt I T e T

CHOOSE POINT 7 AS A STARTING POIMT
1START=13
PFRFNRAM MINIMIM PATH AMALYSTS
CALL NIUKSP (NETeMINSIROUTF+IFe10410+1START)
PRINT MINIMUM COSTS AND OPTIMAL RNUTFS
PRINT 6
6 FORPMAT (IHT/Z/2Xe'NODE « TX o *MINTMUM PATH COSTS1TOIL'ROUTING LISTY)
PRTINT 684 (KoKz=1el0) o (KekK=141n)
AS FORMAT(1X 416 (AHmmemem) sbHoowa,
$/710Xe10T49T60¢10%40
$/1Xe]16(6Heawmew) s4Hm===)
PRINT T+ISTART «MINGIROUTE
T FORMAT (IXoT4eSX01014,T60+41074)

Pttt et L C R E T R P R P R P PR R P 2 2 3 i i it E T

WF CAN DO ALL POSSIBLE INTFRCONMFCTIONS RY TTFRATING NVER
THE STARTINMG NODF,

PRINT 6

PRINT 654 (KeK=1910) o (KeK=)s10)

NN o100 1S=1410

CALL DIUKS2(NFTMINSIROUTF oIFa1049104715)

PRINT 74IS,MINGJIRNUTF

100 CONTINUE

v T . - - - - - Tmm -
I+ 3 ¥ttt 133t 332+ 42+ 2ttt 2 222220222 2 22+ 2 2 22 2 21 2 2 2 22 £ 22 222 £ 22 2 24 S 2 4+ 4

END OF NEMONSTRATTON

STHP
(0]
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COST ARRAY
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NONE MINIMUM PATH €0OSTS ROUTING LTST

1 2 3 4 ) I3 7 L) 9 10 | ? 3 4 5 6 7 ! 9 10
1 0 2 10 6 12 2?2n 17 9 14 17 0 1 2 1 1 7 3 4 a 9
? 24 n 2 25 17 1» S 22 10 13 S 0 2 ] 9 7 3 S > 9
Q 25 15 n 26 18 1n 7T 23 1N 13 ) 6 0 8 9 7 3 s 3 L)
4 4 12 14 n1s 19 21 3 R 11 4 1 2 0 9 10 3 [ R 9
= 7 3 S R n 15 12 S 1n 13 ) s 2 8 n 7 3 S A 9
A 2n = 1 21 13 " ] 1A 6 3 5 6 6 8 9 0 3 5 A 6
7 23 8 4 P4 16 2 n 21 9 [ s 6 6 8 9 7 n 5 [ 6
R 7 18 17 3 12 1s 19 0 5 ] 4 1 2 R 9 10 10 0 ] 9
3 14 1n 12 15 7 1Y la 1? n 3 s 5 2 ] 9 10 19 S ) 9
1~ 19 13 9 20 12 a 11 17 5 0 5 6 6 A 9 10 10 s 1In 0
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