THE FIRE HISTORY TABULATOR

J.E. Maloney

J.B. Todd

Forest Fire Research Institute Canadian Forestry Service Department of the Environment Nicol Building 331 Cooper Street Ottawa, Ontario KIA OH3

TABLE OF CONTENTS

Introduction .		1
Input Data Requ	uired	1
Fire Hours	· · · · · · · · · · · · · · · · · · ·	2
User Options .	•••••••••••••••••••••••	3
Weather		4
Discussion		4
Appendix A Ta	abulator Tables	5
Appendix B Ex	xplanation of Terms Used	35
Appendix C Ex	xamples of Tabulator Tables	37
Appendix D Ex	examples of Used Input Classes	45
Appendix E Ma	aximum Values of Classes	49

<u>Page</u>

요즘 아이는 것 같아. 이 같아. 아이는 것 않아. 아이는 것 같아. 아이는 것 않아. 아이는 것 않

INTRODUCTION

Forest fire control agencies in Canada keep records of fire occurrences. Generally, these records summarize the characteristics of individual forest fires and are often stored on a computer-oriented device, usually magnetic tape. From these records, a computer program can accumulate and analyze the fire data and can generate fire distribution tables. The fire history tabulator program (TABULA) was developed to perform such a function.

Information is required for evaluation, planning, and research. TABULA generates information; the number of fires and acreage burned by cause, cover, and detecting agent, as well as fire hour, fire weather, and size class comparisons are typical statistics obtained for areas ranging from individual stations to Provinces. The 460 tables generated provide a fairly complete description of the fire history of the given study area; an information base useful in both fire management and fire research.

The tabulator tables are presentations of facts. The tables can be analysed, compared, and evaluated to assist in determining the following factors:

- the effectiveness of the fire control operations 1)
- the severity of one fire season as related to past periods 2)
- 3) the planning areas that require future concentration
- 4) the trends and patterns of fire occurrence
- 5) the relationships of various fire functions

The fire history tabulator is a modular computer program. It consists of a number of subroutines, each performing distinct and separate functions. The segregation of functions makes the program flexible in that functions may be added or deleted without major modification to the program structure.

Different fire management agencies use different storage formats and retain different information in the records. Thus, the first module in TABULA is a data decoder. A special decoder, which modifies the input data to conform to the requirements of TABULA, is written for each agency using the program. In this way, TABULA is kept as general as possible.

Input Data Required

The program uses the following items from the fire report data:

- 11 Forest location number¹
- District number¹ 2)
- 3) Division number¹
- Ignition time², day, and month Detection time, day, month, and year 4)
- 5)
- Attack (or Suppression Start) time, day, and month 6)
- Control time, day, and month 7)
- 8) Action stop (out) time, day, and month

1. The terminology varies between agencies.

2. Time on the 24-hour clock; i.e., 2:25 = 14:25.

- 9) Detection area³
- 10) Attack area
- 11) Control area
- 12) Final area
- 13) Cause
- 14) Cover (fuel types)
- 15) Detecting agency
- 16) Fine fuel moisture code (FFMC) *
- 17) Drought code (DC)
- 18) Initial spread index (ISI)
- 19) Adjusted duff moisture code (ADMC)
- 20) Fire weather index (FWI)
- 21) Bearing from nearest forestry station⁵
- 22) Distance from nearest forestry station⁵
- 23) Total cost
- 24) Total damage

In many cases, a complete set of these statistics is not available from agency records. In these instances, the decoder module bypasses the data and the associated tables cannot be generated. For example, if the fire weather index codes (items 16-20) are not available, the program cannot produce tables dealing with these codes.

Fire Hours:

There is no completely acceptable measure of the severity of a fire season. The common measures - acres burned, estimated monetary damage, number of fires, size of fires, growth of fires, etc. - all have limiting shortcomings, particularly when applied in specific cases. For example, two seasons may have the same number of fires but differ markedly in acreage burned or in estimated monetary damage. There is no clear answer as to which was the more severe, although it is clear that they differed in severity.

This measurement difficulty arises, in part, from attempting to measure a multi-dimensional situation with a one-dimensional yardstick. Just as a cube has length, width, and height, so does a fire season have temporal length, number of fires, intensity of fires, and distribution of fires. Any of these fire season dimensions affects the performance of the fire management agency and thus reflects, to some degree, the severity of the season relative to the continuing capabilities of the agency.

A part of the motivation which led to TABULA was to evaluate a "fire hour" measure of season severity. We assume four significant time periods in the history of a fire. These are:

- 1. FH4 the time (in hours and tenths of hours) from ignition to time of detection.
- 2. FH3 the time from detection to attack.
- 3. FH2 the time from attack to control.
- 4. FH1 the total time from ignition to control.

- 4. Fire weather indices are from the nearest weather station.
- 5. Computed as necessary within TABULA.

^{3.} Area is in acres and tenths of an acre.

Several sets of tables generated in TABULA provide information regarding fire hours relative to locations or to other, more conventional measures of season severity. Although such data may be of little current use to the operating fire manager, further analysis mav well lead to improved measures of fire season severity.

User Options:

The TABULA user can specify a variety of data classes in the program and, in this way, has the flexiblity to tailor the program to meet the needs of his area. The usual terms used are defined in Appendix B and typical examples of class specifications are given in Appendix D.

The classes which are user-specified include:

- 1. Number of stations
- 2. Cause classes
- 3. Cover (fuel type)
- 4. Detecting agent
- 5. Size classes
- 6. Elapsed Times
- 7. Months desired
- 8. Periods desired
- 9. Distance classes
- 10. Sector classes
- 11. FFMC classes
- 12. DC classes
- 13. ISI classes
- ADMC classes
 FWI classes

TABULA produces 460 tables. These are divided into sixteen sets: each set describes a general area of fire distributions. For example, set 12 analyzes fire weather indices by station while set 15 analyzes fire cost data under several classifications. A list of tables available is shown in Appendix A.

All possible tables need not be printed in each run of TABULA. The user can set parameters to obtain:

- all tables 1)
- 2) any combination of sets of tables
- any individual tables 3)
- any combination of the above 4)

Examples of tables which can be generated are given in Appendix C. Each table contains both the information requested and a count of the total entries in the table relative to the total number of fire reports searched.

Weather

Much of the program section dealing with weather analysis is based on an earlier program written by Dr. P.H. Kourtz⁶ of the Forest Fire Research Institute. Although the Kourtz⁶ program was extensively modified to adapt it to the modular form, the underlying logic remained unchanged.

Discussion

The program was designed to run on a large computer such as the Univac 1108 and requires approximately 50,000 storage locations. In a test run in which 780 fire reports were processed and all the tables were generated, the total cost was about \$35.00. Since the program was designed to provide a year-end fire history summary, this is a reasonable cost level.

The Tabulator program is available for use. A technical manual and deck listing will be published shortly. In the interim, any interested fire control agency can contact the Forest Fire Research Institute for further information or for technical assistance in putting TABULA on line.

^{6.} A computer program to summarize forest fire report data - designed to assist in detection system evaluation and planning. Information Report No. FF-X-31. (1971)

APPENDIX A

THE TABULATOR TABLES

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
1	1	1	Station versus hour of ignition
		2	" " " hour of detection
		3	" " " hour of attack
		4	" " " hour of control
1	2	1	Detecting agency versus hour of ignition
		2	" " " " " hour of detection
		3	" " " " " hour of attack
		4	" " " " hour of control
1	3	1	Cause versus hour of ignition
		2	" " hour of detection
		3	" " hour of attack
		4	" " hour of control
1	4	1	Cover versus hour of ignition
		2	" " " hour of detection
		3	" " " hour of attack
		4	" " hour of control
1	5	1	Control size versus hour of ignition
		2	" " " " hour of detection
		3	" " " " hour of attack
		4	" " " " hour of control

NOTE: The values of KDIVIS, ISECT, and ITABLE are parameters, that are used to obtain individual tables and sets of tables.

<u>SET 2</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
2	1	1	Station versus fires by elapsed time to detect (FH4)
		2	" " " " fires by elapsed time to attack (FH3)
		3	" " " " fires by elapsed time to suppress (FH2)
		4	" " " " fires by elapsed time to control (FH1)
	2	1	Detecting agency versus fires by elapsed time to detect (FH4)
		2	" " " " " " fires by elapsed time to attack (FH3)
		3	" " " " " " fires by elapsed time to suppress (FH2)
		4	" " " " " " fires by elapsed time to control (FH1)
	3	1	Causes versus fires by elapsed time to detect (FH4)
		2	" " " " fires by elapsed time to attack (FH3)
		3	" " " fires by elapsed time to suppress (FH2)
		4	" " " fires by elapsed time to control (FH1)
	4	1	Cover versus fires by elapsed time to detect (FH4)
		2	" " " fires by elapsed time to attack (FH3)
		3	" " " fires by elapsed time to suppress (FH2)
		4	" " " fires by elapsed time to control (FH1)
	5	1	Control size versus fires by elapsed time to detect (FH4)
		2	" " " " fires by elapsed time to attack (FH3)
		3	" " " " " fires by elapsed time to suppress (FH2)
		4	" " " " fires by elapsed time to control (FH1)

1

a harris

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
3	1	1	Station versus fires by size at detection
		2	""" " " fires by size at attack
		3	" " " " fires by size at control
	2	1	Detecting agency versus fires by size at detection
		2	" " " " " " fires by size at attack
		3	" " " " " " fires by size at control
	3	1	Causes versus fires by size at detection
		2	" " " " fires by size at attack
		3	" " " fires by size at control
	4	1	Cover versus fires by size at detection
		2	" " " fires by size at attack
		3	" " " fires by size at control
	5	1	Control size versus fires by size at detection
		2	" " " " fires by size at attack

<u>SET 4</u>

\$

KDIVIS	ISECT	ITABLE			TA	BLE	DES	CRI	PTION				
4	1	1	Stat	ion	ver	sus	FH4	by	size	at	detect	ior	1
		2	11	11	11	11					detect		
		3	11	11	11	11		-			detect		
		4	**	"	11	11	FH1	by	size	at	detect	ior	1
		5	Stat	ion	ver	sus	FH4	by	size	at	attacl	ζ	
		6	**	11	11	11		•			attacl		
		7	11	11	11	**					attacl		
		8	11	11	11	11		•			attacl		
		9	Stat	ion	ver	sus	FH4	bv	size	at	contro	51	
		10	11	11	11	11					contro		
		11		11	11	11		-			contro		
		12	**	11	11	**		•			contro		
	2	1	Dete	ctir	nσa	gen	cv v	ersi	us FH4	4 bv	, size	at	detection
	2	2		11		11	•			-			detection
		3	11	**	11	17	11	•• •		•			detection
		4	11	11	11	"	11	•• •					detection
		r	D - 4 -							4 1		- 4	
		5 6	Dete		ng a	.gen	•						attack
		7	11	11	11	11							attack
		8	11	11	11	11				-			attack attack
		0							1.11	r Dy	3120	aı	attack
		9	Detec	tin	g ag	genc	у ve	rsu	s FH4	l by	size	at	control
		10	11	11	11	11	11	,, ,	" FH	3 by	v size	at	control
		11	11	**	11	"	11	11	'' FH	2 by	/ size	at	control
		12	**	11	11	11	11	11	'' FH	1 by	/ size	at	control

KDIVIS	ISECT	ITABLE				TABI	LE DI	ESCI	RIPTIC	<u>N</u>	
4	3	1	Cau	se	ver	sus	FH4	by	size	at	detection
		2	11	11	11	11	FH3	by	size	at	detection
		3	**	11	11	11	FH2	by	size	at	detection
		4	11	11	11	**	FH1	by	size	at	detection
		5	Cau	se	ver	5115	FH4	bv	size	at	attack
·		6	11			11		•			attack
		7		11	11	**		•			attack
		8	**	11	11	11					attack
		-				•		- 1			
		9	Cau	se	ver	sus	FH4	by	size	at	control
		10	**	11	11	11	FH3	by	size	at	control
		11	**	11	11	11	FH2	by	size	at	control
		12	*1	11	11	11	FHL	by	size	at	control
	4	1	Cov	er	ver	sus	FH4	by	size	at	detection
		2	11	11	11	11	FH3	by	size	at	detection
		3	**	11	11	11	FH2	by	size	at	detection
		4	**	11	**	**	FH1	by	size	at	detection
		5	Cov	er	ver	sus	FH4	by	size	at	attack
		6	11	11	**	11	FH3	by	size	at	attack
		7	11	**	11	**	FH2	by	size	at	attack
		8	**	11	11	11	FH1	by	size	at	attack
		9	Cov	er	ver	sus	FH4	by	size	at	control
		10	11	**	11	11	FH3	by	size	at	control
		11	**	11	**	Ħ	FH2	by	size	at	control
		12	11	11	11	**	FH1	by	size	at	contro1

KDIVIS	ISECT	ITABLE			<u>T/</u>	ABLE	DES	SCRII	PTIC	DN		
4	5	1	Cont	rol	size	ver	sus	FH4	by	size	at	detection
		2	11	11	11	11	11	FH3	by	size	at	detection
		3	**	11	11	11	11	FH2	by	size	at	detection
		4	**	11	11	**	**	FH1	by	size	at	detection
		5	Cont	rol	size	ver	sus	FH4	by	size	at	attack
		6	11	11	**	. 11	**	FH3	by	size	at	attack
		7	11	11	11	11	11	FH2	by	size	at	attack
		8	11	11	11	**	11	FH1	by	size	at	attack

÷

KDIVIS	ISECT	ITABLE					TABLE	DESCRIPT	ION
5	1	1	Stat	ion	ver	sus	average	FH4/fire	by size at detection
		2	**	#1	11	11	-		by size at detection
		3	11	**	**	11	average	FH2/fire	by size at detection
		4	**	11	**	11	•		by size at detection
		5	Stat	ion	ver	sus	average	FH4/fire	by size at attack
		6	**	11	11	11	-		by size at attack
		7	**	11	11	11	-	-	by size at attack
		8	11	11	11	**			by size at attack
		9	Stat	ion	ver	sus	average	FH4/fire	by size at control
		10	11	**	**	11	average	FH3/fire	by size at control
		11	11	**	**	11	average	FH2/fire	by size at control
		12	**	**	**	11	average	FH1/fire	by size at control
	2	1	Dete	ctir	ıg a	igen	cy versus	average	FH4/fire by size at detection
		2	"	ii.	11	11	11 11	average	FH3/fire by size at detection
		3	**	11	11	11	11 11	average	FH2/fire by size at detection
		4	"	11	**	*1	** **	average	FH1/fire by size at detection
		5	Dete	ctir	ng a	igen	cy versu	s average	FH4/fire by size at attack
		6	**	11	11	11	11 11	average	FH3/fire by size at attack
		7	**	11	**	11	** **	average	FH2/fire by size at attack
		8	11	11	11	**	11 11	average	FH1/fire by size at attack
		9	Dete	ctir	ng a	igen	cy versu	s average	FH4/fire by size at control
		10	11	**	**	11	11 11	average	FH3/fire by size at control
		11	**	**	**	11	11 11	average	FH2/fire by size at control
		12	**	11	**	11	** **	average	FH1/fire by size at control

ISECT KDIVIS ITABLE TABLE DESCRIPTION 3 1 Cause versus average FH4/fire by size at detection 5 2 11 11 11 ** average FH3/fire by size at detection 3 11 average FH2/fire by size at detection ** 11 4 average FH1/fire by size at detection 5 average FH4/fire by size at attack Cause versus 6 average FH3/fire by size at attack 7 11 ** 11 ** average FH2/fire by size at attack ** 11 11 11 8 average FH1/fire by size at attack 9 Cause versus average FH4/fire by size at control ** 11 ** average FH3/fire by size at control 10 11 11 11 11 average FH2/fire by size at control 11 11 11 11 average FH1/fire by size at control 12 4 1 Cover versus average FH4/fire by size at detection 2 ** 11 ** ** average FH3/fire by size at detection 3 average FH2/fire by size at detection 11 11 ** 11 ** 11 11 ** average FH1/fire by size at detection 4 5 Cover versus average FH4/fire by size at attack 6 average FH3/fire by size at attack 11 11 ** 7 11 average FH2/fire by size at attack 8 11 11 11 average FH1/fire by size at attack 11 9 Cover versus average FH4/fire by size at control 10 11 11 11 average FH3/fire by size at control 11 11 average FH2/fire by size at control 11 11 11 12 11 average FH1/fire by size at control

SET 5

<u>SET 5</u>

KDIVIS	ISECT	ITABLE						TABLE DI	ESCRIPTIO	<u>N</u>			
5	5	1	Cont	rol	size	ver	sus	average	FH4/fire	by	size	at	detection
		2	11	**	"	"	11	average	FH3/fire	by	size	at	detection
		3	**	11	**	**	**	average	FH2/fire	by	size	at	detection
		4	. 11	*1	11	**	11	average	FH1/fire	by	size	at	detection
		5	Cont	rol	size	ver	sus	average	FH4/fire	by	size	at	attack
		6	**	11	"	11	11	average	FH3/fire	by	size	at	attack
		7	**	11	11	11	11	average	FH2/fire	by	size	at	attack
		8	**	**	**	**	11	average	FH1/fire	by	size	at	attack

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
6	1	1	Station versus fires by detecting agency
		2	" " " fires by cause
		3	" " " fires by cover
		4	" " " fires by month
	2	5	Detecting agency versus fires by cause
		6	" " " " " " fires by cover
		7	" " " " " " fires by month
	3	8	Cause versus fires by cover
		9	" " " "fires by month
	4	10	Cover versus fires by month
	5	11	Control size versus fires by month

<u>SET 7</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
7	1	1	Station versus FH1 by detecting agency
		2	" " " FH1 by cause
		3	" " " FH1 by cover
		4	" " " FH1 by month
	2	5	Detection agency versus FH1 by cause
		6	" " " " " " FH1 by cover
		7	" " " " " " FH1 by month
	3	8	Cause versus FH1 by cover
		9	" " " FH1 by month
	4	10	Cover versus FH1 by month
	5	11	Control size versus FH1 by month

<u>SET 8</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
8	1	1	Total number of fires/station
		2	Total number of FH4/station
		3	Total number of FH3/station
		4	Total number of FH2/station
		5	Total number of FH1/station
		6	Average FH4/fire/station
		7	Average FH3/fire/station
		8	Average FH1/fire/station
	2	1	Station versus number of fires by period classes
		2	" " " per cent of fires by period classes
		3	" " " " FH1 by period classes
		4	" " " " per cent of FH1 by period classes
		5	" " " average FH1/fire by period classes
	3	1	Station versus number of fires by distance classes
		2	" " " " per cent of fires by distance classes
		3	" " " FH1 by distance classes
		4	" " " per cent of FH1 by distance classes
		5	" " " average FH1/fire by distance classes
	4	1	Station versus number of fires by sector classes
		2	" " " per cent of fires by sector classes
		3	" " " " FH1 by sector classes
		4	" " " per cent of FH1 by sector classes
		5	" " " average FH1/fire by sector classes

K	DIVIS	ISECT	ITABLE	TABLE DESCRIPTION								
	9	1	1	Fire	acr	eage	compa	ris	ons	by	station	
			2	11	**	11	**	**	11	by	periods	
			3	11	11	11	**	**	11	by	month	
			4	**	11	**	11	11	11	by	cover	
			5	11	**	**	**	11	11	by	cause	
			6	11	11	11	11	11	**	by	detecting agency	
		· ·	7	**	11	11	11	**	11	by	control size	

<u>SET 10</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION								
10	1	1	FFMC	ver	sus	fires	by	hour	of	ign	ition
		2	DC	**	11	11 11	11	"	11	11	11
		3	ISI	11	11	11 11	11	11	**	11	11
		4	ADMC	11	11	11 11	**	11	11	11	11
		5	FWI	**	11	11 11	**	11	11	11	11
	2	1	FFMC	ver	sus	fires	by	hour	of	det	ection
		2	DC	11	11	11 11	**	**	**	**	11
		3	ISI	**	11	11 11	11	11	11	11	**
		4	ADMC	11	11	11 11	11	11	11	**	**
		5	FWI	11	11	11 11	"	11	11	11	**
	3	1	FFMC	ver	sus	fires	by	hour	of	att	ack
		2	DC	11	11	11 11	11	11	11	11	11
		3	ISI	11	11	11 11	51	11	11	"	11
		4	ADMC	11	11	11 11	11	11	**	11	**
		5	FWI	11	11	11 11	"	11	**	**	11
	4	1	FFMC	ver	sus	fires	by	hour	of	con	trol
		2	DC	11	**	11 11	"	11	11	**	**
		3	ISI	11	**	11 11	11	11	11	11	**
		4	ADMC	11	**	11 11	11	11	"	11	11
		5	FWI		**	11 11	11	**	11	11	11

<u>SET 11</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION										
11	1	1	FFMC	ver	sus	fires	by	cause					
		2	DC	**	11	11	11	*1					
		3	ISI	11	11	11	11	**					
		4	ADMC	11	11	11	**	11					
		5	FWI	11	11	71	11	**					
	2	1	FFMC	ver	sus	fires	by	cover	type	;			
		2	DC	**	11	11	**	11	11				
		3	ISI	*1	11	11	11	**	**				
		4	ADMC	11	11	#	11	11	11				
		5	FWI	11	11	**	11	11	11				
	3	1	FFMC	ver	sus	fires	by	detec	ting	age	ency	r	
		2	DC	17	11	. 11	11	11	11	11	11		
		3	ISI	11	11	11	11	"		11	11		
		4	ADMC	**	11	11	11	**	"	11	11		
		5	FWI	11	11	"	**	**	11	11	11		
	4	1	FFMC	ver	sus	fires	by	month					
		2	DC	11	11	11	**	11					
		3	ISI	**	11	**	**	11					
		4	ADMC	11	11	11	11	**					
		5	FWI	11	11	"	11	"					
	5	1	FFMC	ver	sus	fires	by	elasp	ed ti	ime	to	det	ect
		2	DC	11	**	11	**	11	**	**	**	**	11
		3	ISI	**	11	11	11	11	11	11	11	**	11
		4	ADMC	**	11	11	11	11	**	11	11	**	11
		5	FWI	11	**	11	11	11	17	**	11	11	**

<u>SET 11</u>

KDIVIS	ISECT	ITABLE				TABL	E DI	ESCRIP	TIC	<u>DN</u>				
11	6	1	FFMC	ver	sus	fires	by	elasp	ed	time	to	att	ack	
		2	DC	11	11	11	11	**	11	11	11	11	11	
		3	ISI	11	11	11	11	**	11	**	11	11	11	
		4	ADMC	11	11	11	11	11	11	11	**	"	11	
		5	FWI	11	11	**	**	"	**	11	**	**	**	
	7	1	FFMC	ver	sus	fires	by	elasp	ed	time	to	sup	pre	SS
		2	DC	11	11	11	11	11	11	**	**	**	**	11
		3	ISI	11	11	**	**	**	11	11	11	11	**	**
		4	ADMC	11	11	**	11	11	11	**	**	11	11	11
		5	FWI	11	11	11	**	11	11	11	**	**	"	"
	8	1	FFMC	ver	sus	fires	by	elasp	ed	time	to	con	itro	1
		2	DC	**	11	**	11	**	11	**	11	**	**	
		3	ISI	11	11	11	11	11	**	**	11		11	
		4	ADMC	11	11	11	11	11	11	**	11	11	**	
		5	FWI	**	**	**	**	**	**	11	**	**	11	

1.

SE	Т	12

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION	
12	1	1	FFMC versus fires by station	
		2	DC "" " " " "	
		3	ISI " " " " " "	
		4	ADMC '' '' '' '' '' ''	
		5	FWI " " " " " "	

<u>SET 13</u>

-

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
13	1	1	FFMC versus fires by size at detection
		2	DC "" " " " " " "
		3	ISI " " " " " " " "
		4	ADMC '' '' '' '' '' '' '' ''
		5	FWI II II II II II II II II II
	2	1	FFMC versus fires by size at attack
		2	DC '' '' '' '' '' '' ''
		3	ISI " " " " " " "
		4	ADMC '' '' '' '' '' '' ''
		5	FWI " " " " " " "
	3	1	FFMC versus fires by size at control
		2	DC '' '' '' '' '' '' ''
		3	ISI " " " " " "
	,	4	ADMC '' '' '' '' '' '' ''
		5	FWI '' '' '' '' '' '' ''

<u>SET 14</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION									
14	1	1	FFMC	ver	sus	FH4	by	size	at	dete	ction	
		2	DC	11	11	**	11	**	**	**	**	
		3	ISI	"	11	11	**	**	**	11	11	
		4	ADMC	11	11	11	**	**	**	11		
		5	FWI	11	**	11	11	**	**	11	u	
	2	1	FFMC	ver	sus	FH3	by	size	at	dete	ction	
		2	DC	11	11	11	11	**	11	11	11	
		3	ISI	11	11	**	11	11	**	**	11	
		4	ADMC	11	**	11	11	11	11	11	**	
		5	FWI	**	11	11	11	**	**	11	**	
	3	1	FFMC	ver	sus	FH2	by	size	at	dete	ction	
		2	DC	11	**	11	**	11	11	**	**	
		3	ISI	11	11	11	11	11	"	**	11	
		4	ADMC	11	11	11	**	11	11	**	**	
		5	FWI	11	11	**	**	**	11	**	11	
	4	1	FFMC	ver	sus	FH1	by	size	at	dete	ction	
		2	DC	**	**	11	11	**	11	**	11	
		3	ISI	**	11	**	11	**	**	**	**	
		4	ADMC	**	**	11	**	11	11	11	11	
		5	FWI	11	11	**	**	11	**	11	**	
	5	1	FFMC	ver	sus	FH4	by	size	at	atta	.ck	
		2	DC	**	11	11	11	11	**	11		
		3	ISI	**	**	11	11	11	11	11		
		4	ADMC	11	11	11	11	11	11	**		
		5	FWI	**	11	**	11	*1	11	**		

<u>SET 14</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION								
14	6	1	FFMC	ver	sus	FH3	Ъу	size	at	atta	.ck
		2	DC	11	**	11	11	**	11	**	
		3	ISI	**	**	11	71	11	11	**	
		4	ADMC	11	11	11	11	**	11	**	
		5	FWI	11	11	11	11	11	11	11	r
	7	1	FFMC	ver	sus	FH2	by	size	at	atta	ck
		2	DC	**	**	11	**	**	**	11	
		3	ISI	11	11	11	11	**	11	11	
		4	ADMC	**	11	11	11	**	11	11	
		5	FWI	11	**	**	11	11	**	**	
	8	. 1	FFMC	ver	sus	FH1	by	size	at	atta	ck
		2	DC	11	**	11	11	11	11	11	
		3	ISI	11	11	**	11	11	11	**	
		4	ADMC	11	**	11	11	**	- 11	11	
		5	FWI	11	11	11	11	11	"	**	
	9	1	FFMC	ver	sus	FH4	by	size	at	cont	ro1
		2	DC	**	**	11	11	**	**	**	**
		3	ISI	11	11	11	11	**	11	11	11
		4	ADMC	11	11	**	11	"	**	11	11
		5	FWI	11	**	11	11	**	**	11	11
	10	1	FFMC	ver	sus	FH3	by	size	at	cont	rol
		2	DC	11	11	11	11	11	11	11	**
		3	ISI	**	**	**	11	**	11	11	11
		4	ADMC	11	11	**	11	11	11	11	11
		5	FWI	11	11	11	**	"	"	**	11

<u>SET 14</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION									
14	11	1	FFMC	ver	sus	FH2	by	size	at	con	trol	
		2	DC	11	11	11	11	11	11	11	**	
		3	ISI	**	11	11	11	**	11	11	11	
		4	ADMC	**	11	11	11	**	11	11	11	
		5	FWI	**	11	**	11	**	11	11	11,	
	12	1	FFMC	ver	sus	FH1	by	size	at	cont	tro1	
		2	DC	11	11	**	**	11	11	11	11	
		3	ISI	**	11	11	11	11	11	11	**	
		4	ADMC	11	*1	11	11	"	11	**	**	
		5	FWI	**	11	11	**	11	**	11	"	

<u>SET 15</u>

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION
15	1	1	Cost versus hour of ignition
15	1	2	" " hour of detection
		3	hour of accack
		4	" " hour of control
	2	1	Cost versus elapsed time to detect (FH4)
		2	" " elapsed time to attack (FH3)
		3	" " elapsed time to suppress (FH2)
		4	" " elapsed time to control (FH1)
	3	1	Cost versus fires by station
		2	" " fires by cover
		3	" " fires by cause
		4	" " fires by detecting agency
		5	" " fires by month
	4	1	Cost versus fires by size at detection
		2	" " fires by size at attack
		3	" " fires by size at control
	5	1	Cost versus FH1 by station
		2	" " FH1 by cover
		3	" " FH1 by cause
		4	" " FH1 by detecting agency
		5	" " FH1 by month
	6	1	Cost versus FH4 by size at detection
		2	" " FH3 by size at detection
		3	" " FH2 by size at detection
		4	" " FH1 by size at detection

<u>SET 15</u>

KDIVIS	ISECT	ITABLE				
15	7	1	Cost	versus	FH4 by s	size at attack
		2	11	**	FH3 by s	size at attack
		3	"	**	FH2 by s	size at attack
		4	11	**	FH1 by s	size at attack
	8	1	Cost	versus	FH4 by s	size at control
		2	11	**	FH3 by s	size at control
		3	11	**	FH2 by s	size at control
		4	**	**	FH1 by s	size at control
	9	1	Cost	versus	average	FH4/fire by size at detection
		2	11	11	**	FH3/fire by size at detection
		3	11	**	11	FH2/fire by size at detection
		4	11	**	11	FH1/fire by size at detection
	10	1	Cost	versus	average	FH4/fire by size at attack
		2	**	**	**	FH3/fire by size at attack
		3	**	**	"	FH2/fire by size at attack
		4 -	**	**	**	FH1/fire by size at attack
	11	1	Cost	versus	average	FH4/fire by size at control
		2	**	**	11	FH3/fire by size at control
		3	**	**	11	FH2/fire by size at control
		4	**	**	**	FH1/fire by size at control
	12	1	Cost	versus	fire act	reage comparisons

<u>SET 15</u>

KDIVIS	ISECT	ITABLE	TABLE DES	SCRITPION
15	13	1	Cost versus	fires by FFMC
		2	** **	fires by DC
		3	** **	fires by ISI
		4	** **	fires by ADMC
		5	¥\$ \$\$	fires by FWI

<u>SET 16</u>

.

KDIVIS	ISECT	ITABLE	TABLE DESCRIPTION	
16	1	1	Damage versus hour of ignition	
		2	" " hour of detection	
		3	" " hour of attack	
		4	" " hour of control	
	2	1	Damage versus elapsed time to detect (FH4)
		2	" " elapsed time to attack (FH3)
		3	" " elapsed time to suppress (F	H2)
		4	" " elapsed time to control (FH	1)
	3	1	Damage versus fires by station	
		2	" " fires by cover	
		3	" " fires by cause	
		4	" " fires by detecting agency	
		5	" " fires by month	
	4	1	Damage versus fires by size at detection	
		2	" " fires by size at attack	
		3	" " fires by size at control	
	5	1	Damage versus FH1 by station	
		2	" " FH1 by cover	
		3	" " FH1 by cause	
		4	" " FH1 by detecting agency	
		5	" " FH1 by month	
	6	1	Damage versus FH4 by size at detection	
		2	" " FH3 by size at detection	
		3	" " FH2 by size at detection	
		4	" " FH1 by size at detection	

<u>SET 16</u>

KDIVIS	ISECT	ITABLE			TABL	E DESCRI	PTION	
16	7	1	Damage	versus	FH4 by s	size at a	attack	
		2	**	11	FH3 by s	size at a	attack	
		3	11	11	FH2 by s	size at a	attack	
		4	11	**	FH1 by s	size at	attack	
	8	1	Damage	versus	FH4 by s	size at	control	
		2	11	11	FH3 by s	size at	control	
		3	11	11	FH2 by s	size at	control	,
		4	11	**	FH1 by s	size at	control	
	9	1	Damage	versus	average	FH4/fir	e by size	at detection
		2	**	**	11	FH3/fir	e by size	at detection
		3	**	11	11	FH2/fir	e by size	at detection
		4	**	11	**	FH1/fir	e by size	at detection
	10	1	Damage	versus	average	FH4/fir	e by size	at attack
		2	11	11	11	FH3/fir	e by size	at attack
		3	**	**	**	FH2/fir	e by size	at attack
		4	11	11	**	FH1/fir	e by size	at attack
	11	1	Damage	versus	average	FH4/fir	e by size	at control
		2	**	**	**	FH3/fir	e by size	at control
		3	**	**	**	FH2/fir	e by size	at control
		4	**	11	11	FH1/fir	e by size	at control
	12	1	Damage	versus	fire ac:	reage co	mparisons	

<u>SET 16</u>

K	DIVIS	ISECT	ITABLE	TAI	BLE DESC	CRIPTIC	<u>DN</u>	
	16	13	1	Damage	versus	fires	by	FFMC
			2	**	**	fires	by	DC
			3	**	**	fires	by	ISI
			4	**	**	fires	by	ADMC
			5	**	**	fires	by	FWI

APPENDIX B

Explanation of Terms Used

1.		FH	-	refers to fire hours expressed in hours and tenths of an hour.
	a)	FH4	-	the number of fire hours from ignition time to time of detection.
	b)	FH3	-	the number of fire hours from detection time to time of attack.
	c)	FH2	-	the number of fire hours from attack time to time of control.
	d)	FH1	-	the number of fire hours from detection time to time of control
2.		Fire	da	ta - is the information on the individual fire report forms.
3.		Elap	se	time class - is an hour class category. The program delegates the above four fire hours into the appropriate hour category for table comparisons.
	a)	Elap	sed	time to detect - the amount of time that passed between ignition and detection time.
	b)	Elap	sed	time to attack - the amount of time that passed between detection and attack time.
	c)	Elap	sed	time to suppress - the amount of time that passed between attack and control time.
	d)	Elap	sed	time to control - the amount of time that passed between detection and control time.
4.		Peri	od	class - is the breakdown of a fire season into periods, that have so many days per period. (i.e., 300 days = 20 periods with 15 days/period).

- 5. Distance class is the breakdown of the area around the stations into a number of concentric circle classes, with so many miles per circle. (i.e., 100 miles from station = 10 circles, with 10 miles per circle).
- 6. Sector Class is the breakdown of the area around the stations into a number of study quadrants. (i.e., 180 degrees = 6 sectors with 30 degrees per sector).
- 7. Size class is the breakdown of acres into a set of size categories.

APPENDIX C

1 1

EXAMPLES OF TABULATOR TABLES

CAUSE VS FIRES BY HOUR OF IGNITION <u>з ч э ь 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24</u> TOTAL CAUSE 9 8 17 11 25 7 14 17 9 9 16 1 20 10 10 15 324 4 10 20 14 20 12 20 8 LÍO 6 8 22 40 13 10 17 12 10 10 30 0 165 0 6 0 0 ų * 0 5 RÉC 4 Û U 2 1 0 0 1 1 4 5 3 8 8 13 5 4 5 1 0 64 U 0 3 RES U u U u 40 0 Q 6 Ť 7 ħ 0 KLY Ū T 6 1 Π ŧ. 44 U U 0 1 1 Ü Û 1 0 0 1 1 0 0 0 0 0 Ω Ω 0 4 LUF 0 n u U u u u n 2 0 19 ۵ 0 1 3 1 5 0 1 1 n 2 n 0 0 100 U . 11 11 0 u 0 Ω 3 0 Õ 0 1 INC Û Ó 0 0 0 0 0 0 0 ۵ 0 Ő Ö. Ô u U IJ U. J. n U 0 ۵ 0 0 2 0 0 1 1 1 0 0 1 0 0 0 0 6 Unit 14 U U U. 0 U. MID Ũ 0 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ù a. 0 - D U U - 14 107AI 4 10 20 14 24 12 20 16 16 30 35 51 82 44 44 56 37 28 32 11 24 10 12 15 THIS TABLE WAS REFERENCED 602 OU- OF A POSSIBLE 780 TIMES and the second ير المراجعة المراجع الم , . the term of the second se . . and an an end of the second second

.

38

.*

					FFMC VS	FIRES BY	rAUSF	·····					
FFwC	LĨĠ	KEC	RFS	MIS	RLY	IDF	IDo	INC	UNK	MID	TOTAL		
4u 5n	9	2	1 0	0	0	0	0	0	0		12 4 15	ar a an a	
<u>60</u> 70 75	10 22 15	2	<u> </u>	1 1 2	0 0 1	0	0	0	1	0	26 29		
85 90 +	47 105 150 ≥6	16 36 93 35	5 8 33 11	3 5 22 9	<u>10</u> 6 18 12	1 4	0 3 11 5	0	0 2 2	0 0 0 0	82 164 333 102		
IUTAL	367	194	63	43	47	7	19	1	6	0			
19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		999 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	THIS		REFERENC	ED 767 0	UT OF A P	OSSIRLE			ч те		
					REFERENC			OSSIRLE					
					REFERENC	ED 767 0		OSSIALE					
					REFERENC	ED 767 0		OSSIALE					
					REFERENC	ED 767 0		OSSIBLE					
					REFERENC	ED 767 0							
					REFERENC	ED 767 0							

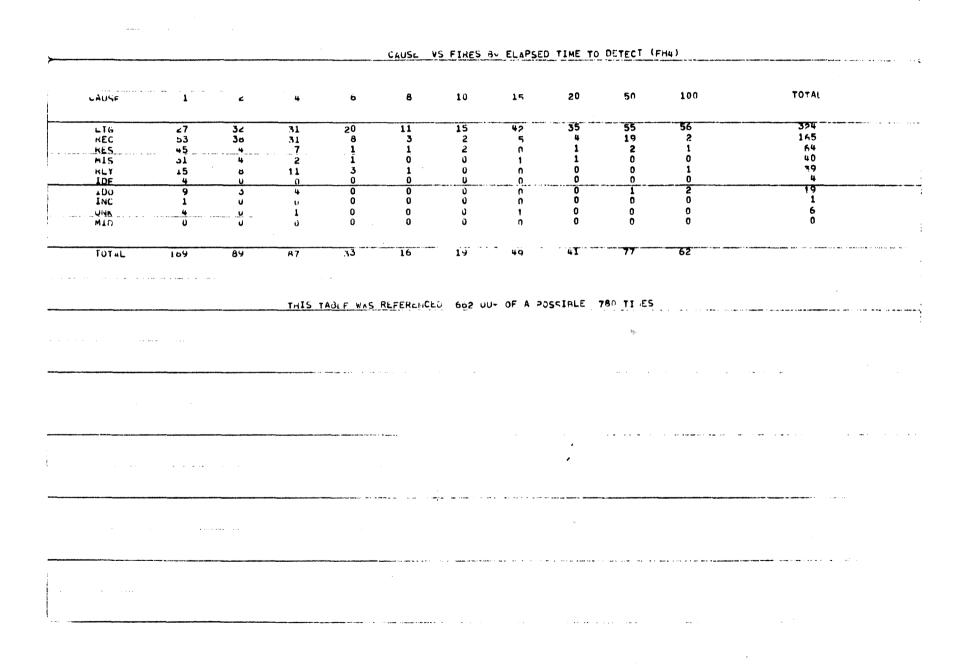
FIRE ACREAGE COMPADISONS BY CAUSE					
LTG	367	• 49D	13956.19	.667	
REC	197	.250	452.80	.022	
RES	72	.09¢	5288.80	•523	
MIS	43	• 055	48+00	.002	
RLY	47	• 160	85.30	.004	
IUF	T	• 069	446.80	.021	
IUO	20	.026	270.60	.013	
INC	↓	.001	4.00	•000	
UNK	6	•008	373.30	•718	
MID	U	•00u	•00	•000	
FOTAL	764	n na na na santa di tanan di di di santa	20925+80		

THIS TABLE WAS REFERENCED 780 OUT OF A POSSIBLE 780 TIMES

the second of the second se

A REAL AND A

	······································	م معشادتها الم والاست		
the second s				
		•		
the second process of the second proces of t				
		and a second	n Ballander nædeling av sugeringer († 14. s	


.

.....

and the second second

•				:				
			an an Anna 1984 an Anna A	, ,			ж.	:
	TOTAL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • • •	•		•		
19			and the second second second second		ş	1	5 1 1 1	
	CIM		0			1		
3	•	.		78° 11 455			an a	, ,
FIRES & SITE AT DETECTION	500			POSSIPLE 7		• 、		
SITE AT	25n	ceccecce	c c	0F A				
	100			7d0 UU+				
CAUSE VS	50		b ist	<u>was ref</u> ekedoc		2		
	20		t c	ls.	r			
	.	******	0 11	THIS TA3				
		0 0 4 3 7 4 0 4 N 0 4 N	u 133					
	6•3	+ 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0					÷	
	LAUSE	502224 <u>6</u> 64	MLI) TOTAL					
	L'AU	L L L L L L L L L L L L L L L L L L L	M 101					

.

.

APPENDIX D

\$

Class Examples

Part A - Code	Cause	Abbreviation
1	Lightning	LTG
2	Recreation	REC
3	Resident	RES
4	Miscellaneous	MIS
5	Railway	RLY
6	Industrial (forest)	IDF
7	Industrial (other)	IDØ
8	Incendiary	INC
9	Unknown	UNK
10	Missing Data	MID

<u>Part B</u> -	Code	Cover	Abbreviation
	1	Grass	GRA
	2	Slash	SLA
	3	Shrubs or hardwood brush	BRU
	4	Insect killed conifer	ISC
	5	Conifer, crown continuous from surface.	CCC
	6	Conifer, crown separated from surface.	CCS
	7	Mixedwood	MIX
	8	Hardwood	HWD
	9	Other	OTH
	10	Missing Data	MID

Class Examples

• • •

<u>Part C</u>	-	Code	Detecting Agency	Abbreviation
		1	Ministry Tower	TOW
		2	Detection Aircraft, Ministry	DAM
		3	Detection Aircraft, Hired or Contracted.	DAC
		4	Other Ministry Organized Detection.	MOD
		5	Other Agency Organized Detection.	OOD
		6	Ministry Aircraft, not on Detection.	MAC
		7	Other Aircraft	CAC
		8	Public	PUB
		9	Miscellaneous	MIS
		10	Missing Data	MID

<u>Part D</u>	-	Code	Month	Abbreviation
		1	March	MAR
		2	April	APR
		3	Мау	MAY
		4	June	JUN
		5	July	JUL
		6	August	AUG
		7	September	SEP
		8	October	OCT
		9	November	NOV
		10	December to February	DEC

Class Examples

<u>Part E</u> - <u>Code</u>	Elapsed Time (in hours)	Abbreviation
1	0.1 to 1.0	1
2	1.1 to 2.0	2
3	2.1 to 4.0	4
4	4.1 to 6.0	6
5	6.1 to 8.0	8
6	8.1 to 10.0	10
7	10.1 to 15.0	15
8	15.1 to 20.0	20
9	20.1 to 50.0	50
10	50.1 to 100.0 +	100

Part F

Fire Weather Indices

Code	FFMC	ISI	DC	ADMC	FWI
1	40	1	100	30	3
2	50	2	120	40	6
3	60	3	140	50	9
4	70	4	160	60	12
5	75	5	180	70	15
6	80	7	200	80	20
7	85	10	220	90	25
8	90	15	240	100	30
9	+	+	+	+	+

Class Examples

Part G - Code	Size Class	Abbreviation
	(in acres)	
1	0.1 to 0.9	0.9
2	1.0 to 5.0	5.0
3	5.1 to 10.0	10
4	10.1 to 20.0	20
5	20.1 to 50.0	50
6	50.1 to 100	100
7	100 to 250	250
8	250 to 500	500
9	500 +	+
10	Missing Data	MID

APPENDIX E

Maximum Values of Classes

Maximum Value

<u>Class</u>

Station
Cause
Cover
Detecting agency
Size class
Elapsed time
Month
Period
Distance
Sector
FFMC
DC
ISI
ADMC
FWI