A RADIAL TREE-LOCATOR FOR USE IN A COMPUTER MAPPING SYSTEM

by
L. G. Brace

Résumé en franģais

> DEPARTMENT OF FISHERIES AND FORESTRY CANADIAN FORESTRY SERVICE PUBLICATION NO. 1269
> 1970

ABSTRACT

A simple instrument designed for obtaining tree-mapping data in the field is described and the procedure for producing a tree map is outlined. The instrument and program provide a system for mapping, storage and retrieval of tree location and measurement data which is of particular advantage in research work.

RÉSUMÉ

Description d'un tachéomètre dendrométrique nouveau et du programme à suivre afin de confectionner la carte forestière qui en découlera. L'instrument et le programme permettent de cartographier, de conserver et d'avoir sous la main les données concernant la localisation et les dimensions des arbres; en recherche, voilà un avantage prononcé.

Published under the authority of the Minister of Fisheries and Forestry Ottawa, 1970

QUEEN'S PRINTER FOR CANADA OTTAWA, 1970
Catalogue No. Fo. 47 - 1269

A RADIAL TREE-LOCATOR FOR USE IN A COMPUTER MAPPING SYSTEM

by
L.G. Brace ${ }^{1}$

INTRODUCTION

Maps showing the spatial distribution of trees on sample plots find considerable use in forestry both for illustration and as permanent records. Retrieval of mapped detail, in numerical form, is sometimes required for computation or for collation, reorganization, or revision of maps, but is not possible with most available tree-mapping methods.

A tree-mapping system that facilitates numerical retrieval has been developed for use on research plots at the Petawawa Forest Experiment Station and is described in this paper.

INSTRUMENT

An instrument for obtaining field data was designed and built. A general description of the instrument is given in Table 1, and Figure 1 is an assembly drawing of the components. The instrument is primarily a large graduated horizontal ring with a sighting device that moves around the circumference. It is mounted on legs and used in much the same way as a transit. The instrument can be disassembled for ease of transport and storage. The advantages of this instrument over a transit include:

1. Low magnification (less than 2 X) and a wide viewing field (5 feet at 15 feet) that minimizes interference by brush and leaves and facilitates location of plot detail in forest conditions.
2. High illumination, which allows operation at light intensities as low as 5 per cent of full sunlight.
3. Rugged construction, which minimizes breakage and adjustment problems during field use.
4. An inexpensive, commercially available lens system.
[^0]
TABLE 1. INSTRUMENT SPECIFICATIONS

Component	Material	Approximate dimensions	Approximate weight	Measurement
Horizontal circle	Aluminum alloy with brass fittings. Numbers photographed on sensitized aluminum	```24" outside diameter 20" inside diameter 2" deep 1.5" wide```	15 pounds 12 ounces	Scale reads to 30 minutes; can estimate to 15 minutes. Full 360-degree range.
Viewer carriage	Aluminum alloy body with brass wheels and stainless-steel vertical circle with etched numbers	$\begin{aligned} & 9^{\prime \prime} \text { long } \\ & 1.5^{\prime \prime} \text { deep } \\ & 1.5^{\prime \prime} \text { wide } \end{aligned}$	1 pound 12 ounces	Scale reads to 1 degree over 40degree range both sides of zero.
N				
Viewer	Pentax* camera rightangle viewer (plastic and metal body) with modified objective lens assembly	$\begin{aligned} & 1^{\prime \prime} \text { outside diameter } \\ & 3.5^{\prime \prime} \text { long } \end{aligned}$	11 ounces	
Legs	Tubular stainless steel with brass fittings	```1" tube outside diameter 32" long unextended 60" long extended```	5 pounds 4 ounces	
			23 pounds 7 ounces	

*The Pentax viewer, manufactured by the Asahi Optical Co. Ltd., Tokyo, Japan, is the basic lens system. A clear celluloid disk, scribed with a cross-hair, was inserted between the lenses at the joint in
the viewer body, and a larger-diameter magnifying objective lens adapted.

Figure 1. General view of components of radial tree-locator. Drowings of each component are available upon request.

MAPPING PROCEDURE

Field work
The instrument may be set up over a point on the ground or assembled so that the horizontal ring encircles a tree. The latter method is useful for plotting detail in relation to a given tree and simplifies relocation of the instrument position, but is limited by the ring diameter to trees 18 inches or less in diameter at breast height.

Alignment of the instrument with respect to true north is not critical, because an azimuth reading on true north can be used to derive the desired map orientation.

Each tree to be mapped is sighted through a right-angle viewer, and the azimuth of the tree is then read from the graduated horizontal circle and recorded.

Distance to the viewed tree is measured from the edge of the graduated ring with a tape, either as a horizontal distance or as a slope distance at a specified vertical angle when slope steepness dictates. The angle can be set on the vertical circle of the viewing apparatus. For the sake of simplicity, the vertical circle reads full degrees only and sightings are made with the indicator set at an even degree division.

Tree elevation at ground level relative to the height of the instrument can be obtained, if required, by sighting a levelling rod held at the tree being viewed.

Plot information is recorded to a prespecified format conforming to the format required in the computer program. Data specifications are:

Computing and plotting

To obtain a top view of a plot, angle and distance data from field sheets are converted by computer to X, Y co-ordinates, which are plotted along with tree number, at a scale of 1 inch $=10$ feet.

If a side view is desired, it can be produced as a cross-section through the plot showing the number, height, crown length, and elevation of each tree.

A map of top and side views of a fifth-acre plot is shown in Figure 2. The computer program, with notes on use, is shown in the appendix.

Circular areas up to 1 acre in size can be plotted on one map sheet. It is seldom possible to map an area larger than 1 acre from one instrument location in a natural stand because of restricted visibility. Plots of any shape can be mapped.

In mixed stands, different color codes for each species would be advantageous. Many plotters have this facility.

MAPPING TIME AND COST

The average field time to obtain map information with the tree locator for a fifth-acre plot in pine mixedwoods is given in Table 2. This does not include the time required to obtain tree heights and crown lengths necessary for plotting the side view. These measurements are ordinarily obtained with an abney hypsometer or haga altimeter.

Average times and costs for computing information and automatically plotting the same fifth-acre areas are shown in Table 3.

Mapping by this method is only about half as expensive as manual drafting.

MAPPING ACCURACY

Tests of accuracy were made by measuring intertree distances on the plots and on the maps and comparing them. Figure 3 shows results for two fifth-acre plots in natural pine mixedwood stands. Brush density was average (approximately 6,000 stems per acre, 4 feet high), and slope did not exceed 10 degrees.

Error was apparently not correlated with distance. The average location error between any pair of mapped trees, excluding the center tree in this case, was 0.3 foot. The location error between the center tree, where the instrument was situated, and any other tree, is taping error and should not exceed 0.2 foot. In a similar test on a plot where intertree distances were as large as 100 feet, similar errors were observed. All errors, from field work to final map, are included in this test of accuracy.

TABLE 2. FIELD TIME FOR TWO MEN TO MAP A FIFTH-ACRE PLOT*

Operation

Set up and level instrument
Measure and record data ${ }^{\dagger}$

Take down instrument
Time (minutes)
8

40

4
52
*Average of two plots; 57 trees per plot.
†Measure and/or record tree number, species, angle and distance and read and record elevation from a levelling rod.

TABLE 3. TIME AND COST FOR COMPUTING AND PLOTTING A FIFTH-ACRE PLOT*

	Top view		Top and side view	
Operation	$\begin{aligned} & \text { Time } \\ & \text { (minutes) } \end{aligned}$	$\begin{gathered} \text { Cost } \\ \text { (dollars) } \end{gathered}$	$\begin{aligned} & \text { Time } \\ & \text { (minutes) } \end{aligned}$	$\begin{aligned} & \text { Cost } \\ & \text { (dollars) } \end{aligned}$
Key punch and verify cards	60.00	2.05	60.00	2.05
Compute**	1.25	5.00	1.48	6.00
Plot ${ }^{+}$	5.00	2.50	14.00	7.00
Total ${ }^{\dagger+}$	66.25	\$9.55	75.48	\$15.05

*Average of two plots; 57 trees per plot.
**I.B.M. $360 / 65$ computer.
†Calcomp 663 plotter.
$\dagger \dagger$ The greater the number of plots per run the lower the cost per plot because of fixed-cost reduction at both computing and plotting stages.

Figure 3. Mapping error.

Accuracy compares favorably with that of other instruments such as the plane table.

CONCLUSION

The computer-oriented mapping system described produces accurate tree maps at a reasonable cost. The instrument developed for the job is simple and relatively rugged. The system provides flexibility in map-data storage and retrieval. This flexibility is of particular advantage in research work and may well be useful for purposes other than tree-mapping.

ACKNOWLEDGMENT

Hans Zuuring of Biometrics Research Services prepared the computer program and provided time and cost data for the computing and plotting shown in Table 3.

APPENDIX

Program for Computing and Plotting Field Data
A. Notes on Program Use

1. Choice of Side View

The choice of a side view is optional and is made on the variable $N \emptyset G \emptyset$. A side view is plotted if a positive integer (99 in the example included) is coded in card columns 79 and 80 on the card that follows END.

If no side view is required, code these columns 00.
2. Set-up of Card Following END Statement

This card must come immediately ahead of actual plot measurement data as shown in the example, and is coded as follows:

Card Column	Description
1 to 5	Number of trees on plot to be mapped
6 to 11	Azimuth of north position on plot (to 0.25 degree)
18 to 20	Plot number
35 to 46	Date (day-month-year)
79 to 80	Code for side view option ($\mathrm{N} \emptyset \mathrm{G} \emptyset$)

3. Data Cards

Data cards follow the set-up card in order, after the END statement, and the last data card must be coded - 1 in column 80 to execute END (see example).

Crown-width data shown in columns 57 to 64 on the data deck were not used in this program.
B. Computer Program (see following pages).

101131	020	540835	35	14600	115	350	95	90	00
101141	020	505833	15	13450	293	200	90	80	00
101151	020	460695	15	13300	285	200	75	65	00
101161	600	6901137	30	13850	508	390	140	120	00
101171	600	750895	27	13350	520	480	100	95	00
101181	020	410655	18	14900	478	210	70	60	00
101191	020	5501098	13	18750	150	300	140	120	00
101201	020	7401488	00	18000	443	300	150	130	00
101211	020	5201107	00	18750	455	215	120	105	00
101221	020	480710	00	19100	505	240	80	60	00
101231	020	390528	32	28500	28	260	75	65	00
101241	020	180364	33	27950	51	115	40	60	00
101251	020	432734	62	25200	342	160	80	70	00
101261	600	552716	52	26050	336	304	85	75	00
101271	600	588790	50	26450	350	400	85	75	00
101281	600	636857	54	25500	418	420	90	85	00
101291	600	630975	71	24300	445	410	105	75	00
101301	020	410842	43	28600	228	220	110	95	00
101311	020	360415	38	29850	250	180	55	45	00
101321	020	500560	12	29700	363	310	60	50	00
101331	020	437670	12	28850	375	210	75	55	00
101341	020	430424	21	30250	415	140	50	40	00
101351	600	615802	24	30600	407	380	105	80	00
101361	600	560776	35	32000	223	435	95	85	00
101371	600	590873	33	31250	248	410	90	70	00
101381	020	416608	40	32700	249	176	75	70	00
101391	600	680808	51	33500	230	540	100	90	00
101401	600	660907	28	32200	316	520	100	100	00
101411	020	360546	37	32900	355	160	65	60	100
101421	600	750925	56	35550	139	460	100	90	100
101431	600	7001120	53	34250	365	410	145	120	100
101441	600	630715	39	33550	420	330	85	65	100
101451	020	410641	40	33900	436	190	70	70	100
101461	970	360366	25	33750	498	250	55	35	100
101471	970	340365	25	33700	510	220	50	40	100
101481	020	320428	53	34500	481	160	45	45	100
101491	820	365546	57	34650	465	144	60	55	100
101501	600	675830	42	1700	178	385	105	90	00
101511	600	7201042	44	1550	273	490	120	105	00
101521	600	640691	56	3350	311	565	70	65	00
101531	600	8051054	56	2400	362	515	120	120	00
101541	600	515823	49	1050	344	395	90	90	00
101551	600	660801	21	35900	492	435	85	80	00
101561	710	550818	53	2300	416	365	85	80	00
101571	710	585822	53	2300	435	400	100	90	00

1269-2-70-2.7M

[^0]: ${ }^{1}$ Research Scientist, Department of Fisheries and Forestry, Canadian Forestry Service, Petawawa Forest Experiment Station, Chalk River, Ontario.

