


 2

Abstract 
 
Forest stand data is normally stored in a geographic information system (GIS) on the 
basis of areas of similar species combinations.  Polygons are created based upon species 
assemblages and given labels relating the percentage of areal coverage by each 
significant species type within the specified area.  As a result, estimation of leaf area 
index (LAI) from the digital numbers found within GIS stored polygons lack accuracy as 
the predictive equations for LAI are normally developed for individual species, not 
species assemblages.  A Landsat TM image was acquired to enable a classification which 
allows for the decomposition of forest stand polygons into greater species detail.  
Knowledge of the actual internal composition of the stand polygons provides for 
computation of LAI values based upon the appropriate predictive equation resulting in 
higher accuracy of these estimates.  To accomplish this goal it was necessary to extract, 
for each cover type in each polygon, descriptive values to represent the digital numbers 
located in that portion of the polygon.  The classified image dictates the species 
composition of the various portions of the polygon and within these areas the raster pixel 
values are tabulated and averaged.  Due to a lack of existing software tools to assess the 
raster values found within GIS polygons a combination of remote sensing, GIS, UNIX, 
and specifically coded C programs were necessary.  Such tools are frequently used by the 
spatial analyst and indicate the complexity of what may appear to be a straight forward 
spatial analysis problem. 
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Introduction 
 
Leaf Area Index (LAI), the leaf area per unit ground area, a dimensionless index, is an 
important structural attribute of forest ecosystems because of its potential to be a measure 
of energy, gas, and water exchanges.  Accordingly, estimation of LAI from remote 
sensing instruments is of wide interest and significance, prompting Running, et al., 
(1986), to comment that LAI is “the single variable which may be derived from remote 
platforms that is of greatest importance for quantifying energy and mass exchange by 
plant canopies over landscapes.”  Physiological processes such as photosynthesis, 
transpiration, and evapotranspiration are related to LAI (Pierce and Running, 1988).  
Furthermore, understanding the relation between spectral response and LAI at the forest 
level may allow for the future determination of LAI by remote sensing at a global level, 
facilitating calculation and global modeling of canopy photosynthesis and 
evapotranspiration in a synoptic and repeatable fashion (Bonan, 1993; Gutman, 1991; 
Spanner, et al., 1990).   
 
The production of dry matter is related to the capacity of trees to synthesize 
carbohydrates; accordingly, the growth of individual trees is often related to crown size.  
It follows that dominant trees with large fully exposed crowns produce more dry matter 
than suppressed trees with small shade crowns.  Leaf biomass, or LAI, is directly related 
to the productivity of forest stands (Running and Hunt, 1994).  The LAI of temperate 
zone forests generally varies in the range from 1 to 20, as a function of stand type, age, 
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and site conditions such as water supply and soil fertility.  In general, deciduous species 
have an LAI from approximately 3 to 6, with coniferous trees reaching up to 20 (Waring 
and Schlesinger, 1985;  Kozlowski, et al., 1991).  Accurate estimates of LAI are required 
from the remotely sensed imagery so that they may be applied to compute an actual NPP 
measurement that can be compared to the NPP value produced in a biogeochemical 
model, such as BIOME-BGC (Running and Hunt, 1994; Franklin, et al., 1997a; Wulder, 
et al., 1996a).  If the modeled values are close to the values predicted from the remotely 
sensed imagery, the stand may be assumed to be in a normal condition, yet if the stand is 
found to be below the remotely sensed estimate of NPP there may be a need for some 
form of silvicultural treatment.  These analyses are a component of forest productivity 
monitoring and assessment studies undertaken by the Canadian Forest Service, Maritime 
Region, based in Fredericton, New Brunswick. 
 
Regression relationships are developed between field measured LAI and remotely sensed 
vegetation indices.  The method applied in this study to obtain initial control estimates is 
based upon destructive samples and pipe model theory (Kaufmann and Troendle, 1981; 
Lavigne, et al., 1996).  These predictive equations for LAI are species specific as the 
slope value relates the degree to which the vegetation index is increased to generate the 
LAI value.  As a result, to achieve the highest precision in the estimation of LAI each 
major surface cover has an empirical LAI predictive equation associated with it.  Forest 
stand data stored in a GIS is normally associated with a polygon based on a species 
assemblage, such as 60% white spruce and 40% aspen.  If a vegetation index value is 
computed to represent the polygon it will not be representative of the species 
composition and there is also a question of which predictive equation to apply.  Data 
storage in a vector GIS, such as ARC/INFO is accomplished through the creation of 
labeled polygons which represent a particular geographic area.  The polygon label 
enables the relational data base properties of the GIS.  Remotely sensed imagery is stored 
in a raster format, which is a grid of regularly sized and shaped areas, 30 metres squared 
in the case of Landsat TM (Lillesand, and Kiefer, 1994).  Input to the predictive 
equations for LAI requires a normalized difference vegetation index (NDVI) specific to 
each cover type, which will entail extraction of a mean NDVI for each cover type found 
within each polygon.  Texture has also been demonstrated as a valuable independent 
variable in the modeled prediction of LAI (Wulder, et al., 1996b).   
 
Methods 
 
The method utilized to extract cover type information from forest stand polygons has 
been demonstrated to result in varying estimates of LAI (Franklin, et al., 1997b). The 
extraction of intra-polygon cover type information may allow for the ability to increase 
the reliability of estimates of LAI from GIS polygon data through the addition of a 
remotely sensed image classification and image spectral and textural information.  The 
project data flow and extracted variables are demonstrated in Figure 1.  To maximize the 
potential utility of the data a variety of values will be extracted from the image within 
each class of each polygon, such as spectral band information, vegetation indices, 
textural information, pixel count per polygon, and pixel count per class per polygon.  An 
analysis of spectral/forest relationships was undertaken to develop regression models 
between LAI, aerial remote sensing data, and the TM-derived NDVI values at 17 
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intensively sampled plot locations (Wulder, et al., 1997a).  These regression equations 
will be utilized to test for an increase in precision of LAI estimates with the refined 
extraction process.  Each cover type represented in a stand will have an LAI value 
computed which is then multiplied by the proportion of the polygon occupied by that 
cover type and summed for an LAI value.  The predictive equations of LAI from NDVI 
applied in this study are, 
 

Hardwood LAI =  (2.99 * NDVI) + 5.34 
Softwood LAI =  (-5.05 * NDVI) + 11.44 
Mixedwood LAI = (2.47 * NDVI) + 5.94 

 
The LAI values computed for the intra-polygon data are then compared to LAI values 
derived from mean polygon values.  
 
Study Area, Field Data, and GIS Data 
 
The Fundy Model Forest (FMF) is a 420,000 hectare working forest in southeast New 
Brunswick, Canada.  The model forest is located in the Acadian forest region and is 
composed of a variety of broadleaf deciduous and coniferous species and includes a wide 
range of forest conditions (Rowe, 1972), with stand structures ranging from regeneration 
to old growth.  The Acadian forest region is characterized by a wide variety of forest 
species.  Coniferous tree species are predominantly jack pine, white spruce, and balsam 
fir, and also include white pine and red spruce.  The predominant deciduous species are 
red maple and white birch, with stands also including beech, striped maple, trembling 
aspen, long tooth aspen, sugar maple, yellow birch, and grey birch (Power and Matson, 
1995).  The main focus of the study area was centered near Sussex at 45.43.00˚ North 
latitude and 65.31.00˚ West longitude.   
 
The field data available consisted of: 
 

• a GIS database for the Fundy Model Forest,  
• a general timber cruise consisting of data on species, density, age, height, and 

site class for a sample of 128 stands, and  
• detailed plot-level information at 17 locations where destructive sampling was 

undertaken, to derive allometric equations between LAI and sapwood cross-
sectional area, for commercially important species located in the study area 
(Lavigne, et al., 1996;  Wulder, 1996).   

 
The forest cover types were derived from airphoto interpretation, work which involved 
separation of some of the main cover types into species assemblages, such as stands 
dominated by tolerant hardwoods, intolerant hardwoods, spruce, pine, and fir, and a wide 
range of mixed wood combinations and structures.   
 
Remotely Sensed Imagery and Supplemental Data 
 
To enable the integration of the raster and vector data both data sets were geometrically 
transformed to real world coordinates using UTM projection and NAD 27 datum.  The 
Landsat TM image, which was acquired on August 7, 1992,  was geometrically corrected 
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utilizing the EASI/PACE utility of GCP Works.  Base maps (1:50,000) and GPS points 
were used for the ground control, resulting in a RMS accuracy of 0.125 pixels utilizing 
25 ground control points and a first order nearest neighbor resampling technique.  
 
Landsat TM spectral data selected for extraction were TM bands 3, 4, and 5.  Prior to 
extraction the data was corrected for atmospheric effects using a dark pixel subtraction 
technique (Franklin and Giles, 1995).  The dark pixel subtraction technique was 
appropriate due to the presence of two deep water bodies in the original Landsat TM 
imagery for the calibration of each band.  Landsat TM band 3 (0.63 - 0.69 µm) was 
included for extraction because it senses a strong chlorophyll absorption region and a 
high reflectance region for most soils, hence it is appropriate for discerning between 
vegetation and soil.  Landsat TM band 4  (0.76 - 0.90 µm) was selected for 
discriminating between differing vegetation and varieties and conditions.  Landsat TM 
band 5 (1.55 - 1.75 µm) measures changes in leaf-tissue water content (as reflectance is 
found to decrease as water content increases) which may be related to differences 
between plant species or vigor (Avery and Berlin, 1992).  The mid-infrared spectral 
region occupied by TM band 5 is also related to the degree of forest canopy closure.  
 
Vegetation Indices and Image Texture 
 
Vegetation indices have been developed to emphasize the difference between the 
absorption in the visible and reflectance in the infrared through the construction of ratios 
between multispectral bands (Curran, 1980).  The normalized difference vegetation index 
is a commonly used metric, calculated from the red (R) portion of the visible and near 
infrared (NIR) radiation, in the form of, NDVI =  (NIR-R) / (NIR+R).  NDVI has also 
been demonstrated to assist in the compensation for changing illumination conditions, 
surface slopes, and viewing aspects (Avery and Berlin, 1992).  NDVI captures 
information relating to the amount of radiation absorbed in the visible (Red) and reflected 
in the near infrared (NIR) wavelengths by vegetation.  Vegetation indices, such as NDVI, 
may be viewed as a surrogate for scene vegetation content, and may be correlated with 
physical measures of vegetation, such as LAI.    
 
Texture has been characterized as the spatial variation in tones.  This property may be 
related to statistics which characterize the relationship between neighboring pixels.  Such 
statistics are related to the image properties of an area, this is usually accomplished 
through a moving window.  A user-defined moving window is typically passed over the 
imagery and statistics are calculated directly from the values reflectance in the window, 
which are known as first-order texture.  Alternatively, second-order texture may be 
calculated from matrices which characterize the arrangement of the digital numbers 
within a window (Wulder, et al., 1997b).  The variation in texture is related to changes in 
the spatial distribution of terrestrial vegetation, both in the vertical and horizontal 
direction.  Texture values describe the spatial variation in image tones which are the 
result of the variation in the above ground organization of forest elements.  Texture 
derivatives are supplemental to the image data, and, accordingly, provide an accessible, 
low cost, additional data source.  
 
Multispectral Digital Image Classification 
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A maximum likelihood classifier was selected for the multispectral digital image 
classification (Jensen, 1996).  The goal of the classification was to accurately assign 
pixels to a limited number of classes.  The classes defined for discrimination are: conifer, 
deciduous, mixed forest, non-vegetation, sparse vegetation, water, and null.  An overall 
accuracy of 97.23%, with an average accuracy of 93.27%, was achieved for the 
multispectral image classification, based on the correct assignment of classes to the 
training data.  The classification was semi-supervised based upon high resolution casi 
data, field collected ground cover survey data, and forest development survey maps. 
 
Intra-Polygon Species Information Extraction Procedure 
 
To enable the automatic extraction of the raster digital numbers from within each class 
within each polygon a series of steps are necessary due to a current lack of commercially 
available software to complete the desired task.  A solution was found for the pixel 
decomposition problem by exploiting what did exist in PCI’s EASI/PACE and ESRI’s 
ARC/INFO while creating patch routines in UNIX and C to fill the gaps where necessary.  
The methodology for extracting pixel image values from within a polygon and within a 
class within a polygon required the conversion of vector data to raster data.  This 
transformation permits data to be read by the EASI/PACE image processing software 
where the two raster layers are geometrically overlaid so that the values within each class 
within each pixel may be extracted.  The large number of polygon identification numbers 
required that 32 bit data be exported, which precluded most of the built-in 
Importing/Exporting utilities of both ARC/INFO (version 7.0.1) and EASI/PACE 
(version 6.0.1).  For example, there is no command sequence in ARC/INFO GRID to 
undertake the polygon decomposition goals of this project, and there are too many 
polygons (77077) to export to EASI/PACE while keeping the vital polygon identification 
value.  The maximum number of polygon labels that may be exported utilizing GRID in 
ARC/INFO is 10,000, and the maximum number of vector polygon labels that may be 
imported into EASI/PACE is 512, which are both short of the number of polygons 
present. The number of polygons, 77077, is beyond the 16 bit unsigned limitation of most 
commercial image processing and GIS software packages.  Accordingly, the following 
steps outline the procedure undertaken to extract the image values from within polygons 
and classes within polygons.   Short simple computer programs are presented to enable 
easy alteration based on the specific needs of a project. 
 
1. In ARC/INFO: 
- ensure that the map projection for the forest cover polygon data corresponds with the 

geocoding used in the EASI/PACE image database (ARC: PROJECT). 
- POLYGRID, convert the polygons to raster format.  Each pixel is given a value which 

corresponds to the ID of the polygon in which the pixel was found.  A pixel size 
of 30 metres is specified to enable integration of the raster polygon coverage with 
the image data.  (ARC: LIST cover_name.pat) 

- in GRID, use the DESCRIBE command to view the dimensions of the newly created 
raster data matrix.  These dimensions are necessary for importing the ASCII data 
to an image format in EASI/PACE. 

- use GRIDASCII command to create a text file from the raster data. 
 
2.  In C: 
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- process the ACSII text file to convert the NO_DATA (-9999) values supplied by the 
GRIDASCII routine to zeros.   

- process the large ASCII file to add line breaks (EOLs) as the exported data is of a line 
length which exceeds that allowed by the NUMREAD command in EASI/PACE. 

- remove unreadable header information.  (May not use a text editor as the editor creates 
line breaks as set by the editor and transforms the data by breaking individual 
numbers apart.  (C program:  fileprep.c)   

 
3.  In EASI/PACE: 
- create a new image (CIM) with the dimensions provided in ARC/INFO GRID with a 

single 32 bit real channel to receive the information. 
- combine the rasterized polygon data with the existing Landsat imagery, landcover 

classification, and textural information (III). 
- use the imported forest stand data to create a mask to remove image areas outside of the 

FMF from the analysis (In C: binary.c) .  Create a binary image to use a multiplier 
channel against the full image channels using the EASI/PACE task MODEL. 

- create image channels (CIM) which correspond to the size of the FMF to move the 
image data (III) into.   

- export the raster data to individual ASCII text files for each of the channels of interest 
(EASI/PACE: NUMWRIT). 

- add a terminal value to the exported text files.  Create a file containing only a 99999 
value and use the UNIX cat command to append to the end of the exported files.  
(cat 99999_only_file >> text_file) 

 
4.  In C: 
- convert the 32 bit real polygon raster data exported by NUMWRIT from an unreadable 

scientific notation format (ie. 0.13000000E+01) to non-decimal float values which 
may be read.  (C program:  inexpout.c) 

 
5.  In UNIX: 
- check the exported ASCII text files for errors using the word count, command.  The 

total number of words should equal the number of rows multiplied by the number 
of columns of the exported image channel.  Recall to add one for the added 
terminator value.  (UNIX:  wc exported_file.asc) 

 
The polygon ID numbers are not assigned to the grid cells in a sequential fashion.  
Accordingly this requires searching for each polygon which would entail a very large 
computational load.  Starting at the beginning of the files each time to search for the next 
polygon ID to be assessed vastly increases the computation time.  To avoid excess 
searching the data is sorted using the polygon ID as the key field.  The following steps 
both in C and in UNIX outline the process to add the polygon ID to all text files as a new 
column of data, to sort the files in ascending order based on the polygon ID, and to 
remove the polygon ID value once the files have been sorted. 
 
6.  In C: 
- combine the ASCII text files, the extracted image data, and the raster polygon data.  

Create files with column one as the polygon ID value and column two is the 
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image channel.    All files must be sorted in the same manner to retain the 
integrity of the data. (C program:  joiner.c) 

 
7.  In UNIX: 
- use the sort command to place polygon ID values in ascending order.  The syntax to sort 

numeric values to a specified output files is as follows, the -n flag specifies to sort 
numeric values and the -o flag specifies to send the results to the named outfile: 

 
$> sort -n -o outfile file_to_sort 
 
8.  In C: 
- transform the data into a format suitable for input into the specifically written extraction 

code.  The supplied C program parse.c processes the data into a single sorted 
column from which the within polygon and class species information can be 
extracted.   

- sequentially process each of the lines of the input files for the polygon, class, and 
related image pixel values.  The C program countmean.c extracts the following 
sets of  values (see Figure 1 for the complete list of variables extracted): 

- pixel counts within each polygon,  
 - pixel counts within each class within each polygon, 
 - mean digital number values within a polygon, 
 - mean digital number values within each class within a polygon.  
- provide the polygon file, class file, and image data file to run the countmean.c program.  

The procedure may be run in a sequential batch mode from an executable file, 
first joining the data to the polygon information, sorting, removing the polygon 
information, and then inputting the data to countmean.c.  

 
Results and Conclusions 
 
The final output of countmean.c provides tab delimited text files which are readily 
imported into statistical analysis packages.  A demonstration of the increased amount of 
the original variance in LAI captured through the decomposed polygon estimates over a 
polygon based estimate is provided in Figure 2.  A future article will outline the change 
in estimates of net primary productivity based upon the species specific computation of 
LAI from spectral and textural variables extracted from within the GIS polygons.  The 
polygon decomposition routines have also proven to be valuable in change detection.  
Stands that have been harvested between field data collection and image acquisition are 
discovered through the presence of non-vegetated or shrub categories in the classification 
in place of the forest cover type classes.   

 
The original field collected LAI values are appear to be approximately normally 
distributed with a median value of 8.6 (Figure 2).  The refined LAI, from the estimates of 
polygon contents with an image classification, show a distribution that is near normal yet 
negatively skewed towards lower LAI values.  The skew towards the lower range of LAI 
values may be due to incomplete polygon coverage by SW, HW, or MW stands from the 
presence of other categories, especially non-vegetation class pixels representing access 
roads.  The results of the estimates of LAI from the dominant species in the polygon with 
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a mean NDVI value shows little variation about the median of 7.75.  The averaged NDVI 
values calculated to represent the polygons are from a constrained range and leave little 
opportunity to capture the variance associated with LAI within and between the 
polygons.  The procedure to decompose GIS forest stand polygons based on species 
assemblages with a remotely sensed image classification has been demonstrated as a 
valuable methodology. 
 
This methodology is also valuable for change detection and database modification.   
Imagery collected and classified after completion of the polygon coverage may be 
applied to update the polygon coverage following disturbances, such as, insect 
defoliation, fire, or harvesting activities.   
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Figure 1, GIS polygon decomposition project flow and list of extracted data 
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Classification information:
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- mean red
- mean IR
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- mean NDVI
First-Order Texture
- mean of mean IR
- mean of the standard deviation red
Second-Order Texture
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- mean of co-occurrence standard deviation IR

Spectral/Textural Information per Class per Polygon
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- non-vegetated

Raster Image Data
Spectral Values
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- TM 4, IR
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First-Order Texture
- mean IR
- standard deviation red
Second-Order Texture
- co-occurrence dissimilarity measure red
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Figure 2, Box plots demonstrating the distribution of variance based upon LAI 

estimation technique.  LAI is the field collected control, refined-LAI is the 
decomposed polygon estimate, and polygon-LAI is the estimate made 
from a single value to represent the polygon. 
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