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Estimating Time Since Forest Harvest Using Segmented Landsat ETM+ Imagery 

 

Abstract 
Modeling of forest carbon (C) dynamics requires precise information regarding when a 
disturbance occurred and the age of regeneration present. Generally this information is 
obtained in the age class attribute of forest inventories, however forest inventories can 
become quickly outdated when disturbance events are not continuously integrated into 
the database. In this study, Landsat ETM+ image data and Tasseled Cap index values 
were used to estimate the age of lodgepole pine (Pinus contorta) stands from the 
approximate time of disturbance to 20 years of regeneration. An image segmentation 
procedure aided the removal of pixels representative of residual forest and other non-
characteristic stand conditions within forest inventory polygons, in order to isolate the 
pixels representative of regenerating harvested forest. A stepwise multivariate regression 
procedure was used to estimate stand age for harvested areas, and an R2 of 0.68 (with a 
standard error of less than 2.4 years) was computed. This transferable approach provides 
useful information for forest C accounting when the year of disturbance, or the age of 
subsequent regeneration is required for estimating C stocks.  
 
Introduction 
Forests play an important role in the global carbon (C) cycle. Forest C dynamics, 
particular in some boreal ecosystems, are strongly influenced by disturbance (i.e. fire, 
insect, harvest) and associated patterns of forest succession. A disturbed forest typically 
functions as a net C source through respiration and decomposition of dead organic matter. 
Forest regeneration following disturbance acts as a net C sink when the uptake of C in 
regenerating trees exceeds the initial loss of C. Modeling C dynamics in these forest 
conditions relies on precise information regarding when a disturbance occurred and the 
age of regeneration present. Trees or stands of trees killed by disturbance (i.e. fire, insect, 
harvest) generally act as a net carbon source, with C that had been sequestered as biomass 
being released. Forest regeneration following disturbance results in sequestration of C 
back into the ecosystem, where young and vigorously growing trees covert carbon 
dioxide (CO2) from the atmosphere into biomass via photosynthesis (Karjalainen et al., 
2000). As regenerating stands approach maturity, the size of the vegetation C pool may 
eventually equal or even surpass the pre-disturbance C stock levels (Dale et al., 1993). 
Because disturbance followed by regeneration represents only a temporary loss of C from 
the ecosystem, the period of time required for the formation of a new stand affects C 
dynamics.  
 
Several investigators have shown a close relationship between the succession stage and 
spectral response of forests detected using Landsat Thematic Mapper (TM) data. Horler 
and Ahern (1986) found that TM bands 5 and 7 are particularly sensitive to forest 
vegetation density, especially in the early stages in the regeneration of a clear-cut. Foody 
et al. (1996) separated a range of tropical forest age classes (pasture, <2 years, 2-3 years, 
3-6 years, 6-14 years, >14 years) with >85 % classification accuracy using TM bands 3, 
4, and 5. Fiorella and Ripple (1993) found the “structural index” (TM bands 4/5) to have 
the highest correlation (R = 0.96) with stand age of young Douglas-firs (Pseudotsuga 
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menziesii (Mirb.) Franco). Kimes et al. (1996) used TM bands 3, 4, 5, elevation, slope, 
and aspect as inputs to a neural network classification for mapping conifer forests <50 
years of age in western Oregon. In other studies, Cohen et al. (1995) found the TM-
derived Tasseled Cap wetness index to be particularly useful for distinguishing various 
age classes (i.e., young, mature, and old-growth) of closed canopy conifer forest in the 
Pacific Northwest. Jakubauskas (1997) separated early lodgepole pine (Pinus contorta 
var. latifolia) succession stages in Yellowstone National Park, U.S.A. using texture 
information derived from TM data, Tasseled Cap index, and NDVI values. Helmer et al. 
(2000) examined successional montane tropical forest using multi-date TM-derived 
Tasseled Cap index values. Other investigators have utilized the NDVI (Sader et al., 
1989), but concluded that the index was insignificantly correlated with regenerating 
forest age. Imagery with lower spatial resolution than Landsat has also been used to 
estimate the occurrence date of boreal forest fires. Fraser and Li (2002) present a method 
for estimating forest age (post-burn) using SPOT VEGETATION. Forest age was 
estimated with an RMS error of 7 years (r2=0.7). Amiro and Chen (2002) built upon the 
methods of Fraser and Li (2002) in order to estimate fire scar ages by Canadian boreal 
ecoregion. While the ability to estimate the age of the fire scars decreased with time since 
fire, empirical regressions between scar age and a SPOT VEGETATION band ratio were 
found to be statistically significant for periods of 6 to 30 years, with RMS errors ranging 
from 5 to 12 years.  
 
Forest inventories that store polygon data in a geographic information system (GIS) are a 
primary tool used by forest managers. The polygons are generalizations of forest 
characteristics typically derived from aerial photography. The polygons are delineated 
based on homogenous stand-structure characteristics, such as species composition, age, 
crown closure, and density class (Gillis and Leckie, 1993). The forest inventory 
information is often used to describe past disturbance regimes, as reflected in the age-
class structure. The data from inventories may however lack the precision required for 
estimating C stocks of current forest conditions. Gillis and Leckie (1993) point out forest 
inventories in Canada are normally updated incrementally within approximately a ten-
year cycle, suggesting the forest inventory information is often not all of the same 
vintage. A method to update forest inventory polygons to current forest conditions is 
desirable.  
 
In this study, we examined the utility of remotely sensed data for estimating the stand age 
of regenerating forest. These estimated stand ages provide a useful information source for 
an operational forest C accounting framework (Kurz et al., 2002). Image values were 
extracted from a single-date Landsat ETM+ scene and used in conjunction with a GIS-
based forest inventory to produce stand age estimates of regenerating lodgepole pine 
(Pinus contorta).  
 
Study Area 
The area selected for analysis is located in the Morice Forest District of British 
Columbia, Canada, and covers approximately 5,900 km2 (82 km east/west by 72 km 
north/south), centered at latitude 54° 09’04.4 N and longitude 126° 33’32.1 W (Figure 1). 
The topography is rolling and gentle to the north and east and becomes mountainous in 
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the southwest. The climate is transitional between coast and interior, having a continental 
climate that is moderated by a coastal marine influence. The dominant tree species are 
lodgepole pine, white spruce (Picea glauca (Moench) Voss), and subapline fir (Abies 
lasiocarpa (Hook.) Nutt.). Other forest types include western red cedar (Thuja plicata 
Donn.), balsam fir (Abies balsamea (L.) Mill.), western hemlock (Tsuga heterophylla 
(Raf.) Sarg.), whitebark pine (Pinus albicaulis Engelm.), western larch (Larix 
occidentalis Nutt.), trembling aspen (Populus tremuloides Michx.), and balsam poplar 
(Populus balsamifera L.). The majority of harvesting activities are clear-cut and clear-cut 
with retention – a treatment that leaves a residual stand structure in the harvest cut to 
facilitate forest regeneration and provide shelter for wildlife. Most of this logging activity 
has occurred since 1980. 
 
Data Collection, Preparation, and Analysis 
Forest inventory polygons 
For this study, GIS-based forest inventory polygons were used to extract forest stand age 
and species composition information. The majority of the inventory polygons within the 
study area were interpreted from aerial photography collected during a re-inventory of the 
study area in 1992. In each inventory polygon, stand age was assigned in years and 
species composition was delineated up to the fourth leading species with estimates of 
species percent to the nearest 10 percent. We stratified the inventory data set to obtain 
polygons <21 years of age, with lodgepole pine as the leading tree species. A total of 800 
polygons out of a possible 1114 polygons, were retained from the stratification for 
analysis. The inventory and the subsequent data layers were projected to a UTM NAD 83 
(Zone 10) projection.  
 
Image processing 
Landsat-7 ETM+ data were acquired September 15, 2001 over a cloud-free region of the 
Morice Forest District (path/row: 51/22). The image was obtained geometrically 
corrected (Wulder et al. 2002) and following close inspection of the image in conjunction 
with the forest inventory polygons, no additional geo-corrections were required. A Top-
of-Atmosphere (TOA) reflectance correction based upon the theory of Markham and 
Barker (1986) was applied to ETM+ bands 1, 2, 3, 4, 5 and 7. The TOA procedure 
corrects for variations in solar illumination, atmospheric transmission and path radiance, 
and assumes a uniform atmosphere within the image (Peddle et al., 2003). The image is 
transformed from raw digital numbers to TOA reflectance values using image calibration 
values, radiometric ancillary information, solar zenith angle, and Earth-sun distance 
measurements. An at-satellite Tasseled Cap Transformation procedure was then applied 
to obtain brightness, greenness and wetness index values (Huang et al., 2002). 
 
Data analysis and segmentation 
The vector boundaries produced for forest inventories capture a homogeneous 
assemblage of forest attributes (Gillis and Leckie, 1993). As a result, when observing 
individual pixels within a polygon, the variability between values can be high (Wulder, 
1998). Wulder et al. (1999) illustrated the disagreement between forest inventory 
attribute information and remotely sensed spectral values found within polygons. To 
account for the variability in spectral properties within forest inventory polygons, we 
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used a segmentation procedure to group neighboring pixels according to the similarity of 
their spectral properties. Polygon decomposition (Wulder and Franklin, 2001) is an 
approach that enables the high within-polygon variability of pixel values to be utilized by 
providing a context for analysis and comparison. Further, within each forest inventory 
polygon, the segmentation procedure results in the stratification of the pixels into 
polygonal sub-units, based on local homogeneity of the pixel values present. A rule-base 
can then be applied to select and use in the estimation of age, only those pixel values that 
represent post-harvest conditions and exclude any residual stand structure not indicative 
of post-harvest conditions. For comparison, age estimates are also made from within 
polygon pixel values that are not subject to a segmentation and vetting process.   
 
Precedents in the literature indicated the utility of empirical modeling, or regression 
based approaches to estimate stand age. Independent variables utilized include Landsat 
bands 3, 4, 5, and 7, and the Tasseled Cap components of brightness, greenness, and 
wetness. In turn, regression equations are developed using the age attribute in the forest 
inventory as the dependant variable. ETM+ reflectance and Tasseled Cap components 
were extracted from each forest inventory polygon and polygon segment and imported 
into Stata version 7.0 (Stata Corporation, 2001) for analysis. Descriptive statistics were 
calculated to verify that ETM+ reflectance and Tasseled Cap index values varied with 
changes in age. The mean values within each of the forest inventory polygons and 
polygon segments were then calculated for each of the above mentioned independent 
variables and used in the analysis. The correlation analysis was conducted to determine 
which ETM+ bands and Tasseled Cap indices were significantly related to stand age.  
 
Univariate regression models were generated to determine how well ETM+ spectral 
response and Tasseled Cap components could estimate stand age. Multivariate regression 
was then applied using a stepwise-variable selection procedure to determine which of 
those variables used in the univariate regression should be accounted for in the model. 
The stepwise procedure initially enters into the model the variable that has the highest 
correlation with stand age. At each subsequent step, the variable with the next highest 
correlation is added. Each variable was tested for removal based on statistical 
significance ( = 0.95). The final regression model was built after it was determined that 
no more variables could be entered or removed. Model strength was assessed by the R2 
value and root mean square error. Models exhibiting multicollinearity were discarded. 
 
Age estimates were made from mean reflectance values and Tasseled Cap components 
found, 1) within forest inventory polygons, and; 2) within spectrally similar within- 
polygon segments. In the first procedure, estimates of stand age were based on the mean 
value of all image pixels contained in a forest inventory polygon, including residual 
forest and forestry road networks. In the second procedure, the image pixels representing 
these features and other non-characteristic stand conditions were removed and the mean 
value of the remaining image pixels in a polygon segment were used to estimate stand 
age. A segment-based area weighted average is used to generate an age estimate from 
within polygon segments to represent the age of a given polygon. The segments were 
created using eCognition version 2.1 (Definiens Imaging, 2002). The proprietary 
algorithm essentially minimizes the average heterogeneity of the image by segmenting 
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features based upon similarities in shape, colour, size and texture. User settings control 
the nature of the segmentation. For instance, if the scale parameter is larger, the image 
objects will be larger. In this case, the following settings were used for scale (10), colour 
(0.6), shape (0.4), smoothness (0.5), and compactness (0.5). 
 
The main operations to remove the non-characteristic stand conditions were: 

1. Buffer 30 meters inward from the perimeter of the forest inventory polygon to 
reduce possible edge effects (Boudewyn et al., 2000);  

2. Segment the forest inventory polygons into contiguous, homogeneous image 
units (with parameters described above);  

3. Removed polygon segments that were uncharacteristic of a harvest clear-cut. For 
example, we determined that polygon segments with a shape index >2.4 are 
relatively linear in shape (i.e. forest access roads and cut block edges) and should 
be removed. We also removed polygon segments <1 ha in size, as harvest clear-
cuts are generally larger and these small units are also highly influenced by edge 
conditions.  

4. Created a rule-base that retains polygon segments that have spectral 
characteristics that are closest to TM channel 4 mean values found within a given 
forest inventory polygon and that compose at least one third of that same 
polygon’s area. The rule implies that polygon segments such as residual forest, 
secondary successional species or rocky outcrops would have mean values 
further from the mean value of the forest inventory polygon, which are not 
representative of the post-harvest areas regenerating within a stand.  

 
A total of 1305 polygon segments were created, which is approximately 65% more 
discrete units than were contained in the original forest inventory (with 800 polygons) 
(Table 1). The mean area of the generated segments was 9.2 ha, a decrease from the 27.0 
ha mean of the forest inventory polygons.   
 
Results 
Polygon Segment Illustrations 
Four forest inventory polygons were selected for illustration of the polygon segmentation 
procedure (Figure 2). The wider vectors that encircle the entire harvest cut area indicate 
the original forest inventory polygon. The thinner vectors represent the polygon segments 
within the inventory polygon, derived from the segmentation procedure. An “x” indicates 
a segment that has a mean value closest to the forest inventory mean and composes at 
least one third of the polygon area, and would have been used for estimating stand age. 
The ages of Polygons A, B, C and D are 5, 6, 7, and 13 years respectively.  
 
In Figure 2 polygons A, B and C show examples of harvest operations in which residual 
forest remains inside the harvested area. The residual forest has a different reflectance 
pattern than the regenerating forest. The regenerating forest is bright and pink, indicating 
high reflectance from early successional trees and shrubs, whereas the residual forest has 
a darker green tone indicative of a closed canopy structure. The polygon segmentation 
procedure uses information related to shape, color, size and texture to create locally 
homogenous objects. Using the rule-base, the segments representing regenerating forest 
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are kept (marked on the figure with an “x”) and residual forest and other non-
representative stand conditions are removed. In Polygons A and B, the lower segments 
with an “x” were marked first and the upper segments next, which indicates the lower 
segments had a TM channel 4 mean value closer to the mean of the forest inventory 
polygon and the upper segments had the next closest TM channel 4 mean value and were 
included, as they composed at least one third of the inventory polygon area. Polygon D is 
an example of an older harvest cut where a small patch in the stand has limited vegetation 
growth. These characteristics may be due factors such as poor soil conditions, a rocky 
outcrop, or from soil compaction of heavy machinery during harvest operations. In this 
example, a large polygon segment with a homogeneous green tone is marked with an “x”. 
The other large segment above, although similar in size and color, was not marked with 
an “x” because the mean value did not meet the required criteria (as the desired one-third 
of the polygon was already accounted for). A smaller patch of vegetation growth was also 
segmented yet was removed from the empirical analyses (as were all segments with an 
area <1 ha).    
 
Stand wetness characteristics 
Table 1 shows the mean wetness values and mean standard deviations of forest inventory 
polygons and polygon segments over the 4-20 year age distribution (no polygons of ages 
1, 2, or 3 existed in the inventory). Generally, wetness increased from the approximate 
time of disturbance to a regeneration of 20 years (Figure 3a). The mean wetness of 
polygon segments in early stages of succession (<10 years) is also slightly less than the 
mean wetness of inventory polygons. This likely results from removing residual forest 
pixels from the polygon, since the wetness signature would be less influenced by small 
patches of forest and more by the reflectance properties of regenerating trees. In Figure 
3b, the large reduction in mean standard deviation for polygon segments supports how 
polygon segmentation reduces in-polygon variability. Stands 4 years of age had a very 
low standard deviation, indicating a homogeneity of stand structural conditions, which is 
also illustrated by no within-polygon segments being generated (Table 1). Additionally, 
polygons of 4 years have only three forest inventory polygons available for analysis.  
 
Correlation coefficients between stand age and digital numbers 
In general, stand age was negatively correlated with Landsat ETM+ spectral response 
(Table 2). Similar relationships have been identified in tropical (Mausel et al., 1993) and 
temperate (Jakubauskas, 1996) forest regions. The strongest correlations for both forest 
inventory polygons and polygon segments were ETM+ bands 3 (visible), 5 (mid-infrared) 
and 7 (mid-infrared), with R- values of –0.78, -0.78 and –0.77, respectively, for 
segments. Reductions in band 3 reflection are generally caused by increases in 
chlorophyll absorption as leaf area and biomass increase with stand age. Decreases in 
middle-infrared reflectance (ETM+ bands 5 and 7) may have been the result of increased 
water absorption and canopy shadowing. Similarly, a weak negative correlation in band 4 
(near-infrared), with an R-value of –0.19, may have also been influenced by increased 
shadowing resulting from canopy structure. Overall, the correlation coefficients between 
stand age and image values were higher for polygon segments than for the original 
inventory polygons. 
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The strongest correlation to stand age using Tasseled Cap index values was the wetness 
index, with R-values of 0.56 for the forest inventory polygons and 0.78 for polygon 
segments (Table 2). Landsat TM wetness has been shown in previous studies to be highly 
correlated with stand age of mature forest structures (Cohen and Spies, 1992; Hansen et 
al., 2001), but only few studies have used wetness in the context of forest succession 
(Jakubauskas, 1997; Helmer et al., 2000). The brightness index, a positive linear 
combination of all six bands, had the next highest correlations; R = -0.39 for inventory 
polygons and –0.61 for polygon segments. Negative brightness correlations may have 
been caused by reduced ground exposure due to increased crown closure with canopy 
development. Positive greenness correlations, R = 0.27 for inventory polygons and 0.44 
for polygon segments, may have been related to increased amounts of green vegetation in 
the pixel. Again, all correlation coefficients were higher for polygon segments in 
comparison to the original inventory polygons. 
 
Estimates of stand age using univariate and multivariate regression 
Univariate and multivariate regression estimates to stand age were the strongest when 
image values from polygon segments were used (Table 3b) as opposed to the polygons 
(Table 3a). Landsat ETM+ bands 3, 5, 7 and the wetness index all generated the highest 
R2 values in a univariate regression model; the root mean square error was <2.5 years for 
each independent variable. The results for band 4 univariate models were the least 
significant. For the multivariate stepwise regression procedure (with independent 
variables of ETM+ bands 3, 5, 7, and wetness), the polygon segments produced an R2 
value of 0.68 and <2.4 years of error, which is the highest of all estimates to stand age in 
this study.  
 
Figure 4 is a plot of the residual values generated from the multivariate regression using 
the polygon segments. The regression line is also shown expressing the prediction of age 
given the multiple variables. As stand age increases, the variability of the residual values 
from the regression line increases. This indicates that the strength of the regression model 
becomes weaker with increases in stand age. Since the younger stands had the least 
amount of deviation from the regression line, the image values from these stands would 
have generated the strongest influence on model strength. To verify this, we applied a 
multivariate regression to stand ages of 4 to 10 years only and generated an R2 value of 
0.71 (with a standard error of 2.18). This younger age range is generally within normal 
forest inventory update cycles and of prime interest to C modeling.  
 
Discussion 
In this study, we reduced within-polygon variability by removing pixels representing 
residual forest and other non-representative stand conditions from within pre-defined 
forest inventory polygons. From a C accounting perspective, these features still 
contribute to the net C balance of the harvested area and would provide useful 
information in a forest inventory database. For example, data on the size and age of the 
residual forest in a forest inventory could be used in C models for computing changes in 
C stocks post-harvest. However, estimating inventory attributes of the polygon segments 
that represent residual forest would be problematic. In Figure 2, we can see Polygons A, 
B and C have some segments composed of both regenerating forest and residual forest; 
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no segments in these examples are “pure” residual forest. As a result, these mixed 
segments of residual and regenerating forest would have high within-segment variation, 
poor relationships with stand age, and could perhaps only be inventoried with categorical 
descriptors, such as “high vegetated” and “low vegetated”. Other segments with non-
representative stand conditions such as forestry access roads and rocky outcrops, which 
are not shown in these examples, lower the net C balance. An inventory of these features 
would also be useful in a forest inventory database, but similar difficulty would likely 
exist by the within-segment variability.   
 
The objective of this study was to estimate the ages of regenerating forest using remotely 
sensed data. We observed the direction and strength of the relationship between stand age 
and ETM+ bands 3, 4, 5 and 7 and brightness, greenness, and wetness indices. Band 3 
developed a strong relationship with stand age in a negative direction; this is due to a 
decrease in reflectance from an increase in chlorophyll absorption. Band 4 and the 
greenness index generated poor relationships with stand age - likely due to variability in 
broad-leaf vegetation caused by successional shrubs and herbs. Bands 5 and 7 and the 
brightness index had strong and negative relationships which were thought to have been 
caused by increased shadows due to variable heights from the developing stand structure. 
The wetness index showed a strong and positive relationship to stand age, indicating 
healthy forest growth. The wetness index could also be valuable in providing information 
on stands that have poor regeneration.  
 
The results of this analysis are inline with those of other studies using similar approaches; 
Kimes et al. (1996) achieved a maximum R2 value of 0.69 with approximately 5.50 years 
of error using TM bands 3, 4, 5, elevation, slope, and aspect data for conifer forest stands 
<50 years of age. Fiorella and Ripple (1993) generated an R2 of 0.54 for conifer stands 
<18 years of age using TM band 4, however their model was built using only a sample of 
45 regenerated stands. Overall, bands 3, 5, 7 and the Tasseled Cap wetness index were 
the most successful independent variables for estimating stand age and were the variables 
used in a multivariate regression model. The coefficients generated from this model, 
however, are empirical in nature and limited to the area of study and the species of 
interest. While the actual coefficients used are specific to this study, the approach is 
transferable to other locations and/or species of interest. Furthermore, although this 
approach only focused on disturbances caused by harvest, the approach could be 
extended to other forms of disturbance.  
 
Conclusion 
In this study, we used Landsat ETM+ image data and Tasseled Cap index values in 
conjunction with a GIS-based forest inventory polygon dataset to determine how well 
remotely sensed data could be used to estimate the ages of regenerating forest. The 
context is placed in a C accounting framework; if the date of disturbance is known, then 
C models can be adjusted to compensate for initial C losses followed by C sequestration 
in regenerating trees. The period of regeneration from which stand age was estimated 
were ages 4 to 20 years. 
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Estimates of stand age were obtained for both forest inventory polygons and within-
polygon units. For the latter, a procedure was used to segment the forest inventory 
polygons into smaller polygonal sub-units, and a rule-base was developed that removed 
all sub-units uncharacteristic of the stand's age. For example, the rule-base enabled 
removal of residual forest and access roads from the polygon interior. The use of the 
polygon segments was more successful for generating an estimate of stand age as 
indicated by the larger correlation coefficient values and the univariate and multivariate 
regression models. The highest coefficient correlation to stand age was an R-value of 
0.78, based on the wetness index. A stepwise multivariate regression procedure generated 
a regression value of R2 = 0.68, with a standard error of 2.39 years. Further, it was 
demonstrated that these results might be improved when constraining the date range of 
the training data to younger ages only (in this case, <10 years). From a C modeling 
perspective, the ability to estimate stand age to within 3 years, where no other current age 
information is available, provides a useful optional model input.  
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Table 1. 
 

Forest Inventory Polygons Polygon Segments 

Wetness (DN) Wetness (DN) 

 

Count 
(#) 

 Area 
(ha)~ mean std dev

Count 
(#) 

Area 
(ha) mean std dev

4 3 5.79 -73.4 4.5 3 5.79 -73.4 4.5 

5 26 14.6 -63.8 18.2 34 7.8 -67.3 13.8 

6 45 20.4 -56.9 15.3 75 9.4 -60.3 11.1 

7 9 39.5 -49.9 12.2 16 14.5 -56.9 9.3 

8 17 19.1 -52.2 14.7 25 9.6 -55.6 8.6 

9 24 16.2 -42.2 17.1 37 7.9 -49.9 11.2 

10 43 17.1 -38.5 12.4 64 7.1 -40.5 9.8 

11 102 21.2 -34.9 12.2 165 7.8 -36.2 10.2 

12 93 26.7 -31.4 11.9 157 9.2 -30.0 11.1 

13 89 48.2 -25.7 12.3 149 10.6 -26.4 10.3 

14 63 30.6 -25.4 11.1 103 8.3 -23.8 9.8 

15 63 29.1 -23.9 10.1 105 7.5 -22.8 9.4 

16 63 38.7 -21.8 10.0 102 8.9 -20.4 8.1 

17 45 28.7 -20.5 9.1 72 10.7 -19.7 8.4 

18 62 38.0 -17.6 8.3 104 10.0 -16.8 7.5 

19 25 28.0 -14.4 7.3 41 10.7 -14.4 6.1 

S
ta

nd
 A

ge
 

20 28 36.3 -14.2 7.1 53 10.9 -14.1 5.5 

General Polygon Description:       

Total 
Count 

800    1305    

Average 
Area 

27.0    9.2    

 
~Note: Area (ha) estimates represent mean polygon size. 
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Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: All correlations significant at 95% (p = 0.05). 
 

 Forest Inventory  
Polygons 

 Polygon Segments 

 R R 

ETM+ 3 -0.53 -0.78 

ETM+ 4 -0.18 -0.19 

ETM+ 5 -0.56 -0.78 

ETM+ 7 -0.54 -0.77 

Brightness -0.39 -0.61 

Greenness 0.27 0.44 

Wetness 0.56 0.78 
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Table 3a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: All regressions significant at 95% (p = 0.05). 

Univariate Regression 

 Regression Equation R2 
Root Mean 
Square Error 

ETM+ 3 -0.342x + 21.19 0.28 2.96 

ETM+ 4 -0.020x + 15.63 0.01 3.48 

ETM+ 5 -0.106x + 19.26 0.31 2.90 

ETM+ 7 -0.178x + 17.83 0.29 2.94 

Brightness -0.085x + 23.46 0.15 3.22 

Greenness 0.082x + 11.45 0.07 3.37 

Wetness 0.110x + 16.89 0.31 2.90 

Stepwise Multivariate Regression  

Regression Equation: 
-0.137wetness – 0.116etm7 + 0.059greenness + 16.24 

R2: 0.46 

Root Mean Square Error: 2.83 
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Table 3b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: All regressions significant at 95% (p = 0.05). 

Univariate Regression 

 Regression Equation R2 
Root Mean 
Square Error 

ETM+ 3 -0.625x + 27.09 0.60 2.43 

ETM+ 4 -0.044x + 17.54 0.02 3.82 

ETM+ 5 -0.177x + 22.73 0.61 2.41 

ETM+ 7 -0.307x + 20.54 0.60 2.44 

Brightness -0.177x + 33.63 0.37 3.06 

Greenness 0.175x + 8.48 0.19 3.48 

Wetness 0.181x + 18.71 0.61 2.42 

Stepwise Multivariate Regression  

Regression Equation: 
0.456wetness + 0.410etm7 – 0.387etm3 + 0.142etm5 + 18.20 

R2: 0.68 

Root Mean Square Error: 2.39 
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Figure 1. Study area located in the Morice Forest District, British Columbia, Canada.  
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Figure 2. Illustrative examples of polygon segmentation for four forest inventory 
polygons (Polygon A, B, C, and D). A Landsat ETM+ image is shown in the background 
using RGB 543. 
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Figure 3a. Mean wetness values for regenerating forest stands aged 4 to 20 years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3b. Mean standard deviations for regenerating forest stands aged 4 to 20 years. 
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Figure 4. Residual values and regression fit generated from the multivariate regression 
procedure using the polygon segments. 
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