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Abstract
An understanding of  spatial processes is necessary when modelling and predicting mountain 
pine beetle (Dendroctonus ponderosae Hopkins) behaviour. The recent availability of  large area, 
mountain pine beetle data sets enables new approaches to studying spatial processes of  
infestations. Our goal is to explore observed, landscape level, spatial and spatial-temporal 
patterns of  mountain pine beetle infestations using data collected by the Morice Forest 
District. A better understanding of  mountain pine beetle spatial behaviour will be obtained 
by: investigating the nature of  error and information content of  the data and improving data 
visualization; exploring spatial and spatial-temporal patterns in observed data; comparing 
observed spatial patterns with modelled expectations to identify areas with unexpected 
patterns; and exploring the landscape characteristics of  areas that are statistically different 
from our expectation of  mountain pine beetle behaviour. We provide an introduction to 
our project by presenting the objectives, methods, and some preliminary results.

Introduction
The increasing number of  spatially explicit mountain pine beetle studies attest to the importance of  
incorporating spatial processes when modelling or predicting insect activity (e.g., Bentz et al. 1993; Powell 
and Rose 1997; Logan et al. 1998; Fall et al.2004). Spatial studies of  bark beetles can be carried out at 
many different scales. For example, at a fine scale, the spatial patterns of  individual insects within a gallery 
have been studied (Byers 1984), while at a coarser scale, the spatial pattern of  tree mortality within a stand 
has also been analyzed (Mitchell and Preisler 1991; Preisler and Mitchell 1993). Landscape scale studies 
have been more limited due to a lack of  large area data sets, with most using simulation of  mountain pine 
beetle (Dendroctonus ponderosae Hopkins) processes, both spatial and aspatial, to better understand mountain 
pine beetle behaviour (e.g., Powell et al. 1996; Logan et al. 1998; Riel et al. 2004; Fall et al. 2004). 

An influx of  monitoring programs, combined with new technology and data acquisition methods, 
has generated large area, multi-temporal, mountain pine beetle data sets. For instance, point data on 
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infestations has been collected for the Morice Forest District (1.5 million ha) since 1995. Using these data, 
we can explore observed spatial patterns in mountain pine beetle infestations. Pattern-based analysis can 
be used to better understand the spatial processes associated with mountain pine beetle infestations and 
may enable refinement of  process-based models.

Our research goal is to explore landscape scale, spatial and spatial-temporal patterns in mountain pine 
beetle infestations by applying spatial statistical analysis tools to infestation data from the Morice Forest 
District. In this document, we outline our study objectives and provide an introduction to our research 
by describing research questions and methods, and presenting some preliminary results. We begin this 
discussion by describing data attributes and characteristics relevant to this study. 

Study Area and Data
The Morice Forest District, near Houston, British Columbia (BC) (see Fig. 1), is currently experiencing 
epidemic numbers of  mountain pine beetles. Bordered on the west by the Cascade Mountains and on the 
south by Tweedsmuir Provincial Park, the topography is gentle in the north and east, and mountainous in 
the southwest. Covering an area of  approximately 1.5 million ha, the Morice Forest District is dominated 
by lodgepole pine (Pinus contorta) and spruce (Picea). 

While the central and northern portions of  the Morice Forest District were infested in the early and 
mid 1990s, the southern portion was infested later. Since there are many differences in mountain pine 
beetle activity, the northern, central, and southern areas of  Morice are considered separately where 
appropriate in our analysis. 

The Morice Forest District has used aerial surveys to monitor mountain pine beetle infestations since 
1995. From helicopters, surveyors identify clusters of  dying or infested trees and a global positioning system is 
used to record the location of  the cluster centroids. For each cluster, the number of  infested trees is estimated 
and the species of  infestation is recorded. The maximum area associated with a location point is a circle with 
a radius of  100 m. However, points may represent smaller areas and variations are unknown. 

British Columbia,
Canada

0 100 200km

Figure 1. The Morice Forest District is centered in Houston, BC, Canada.
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Field data associated with aerial surveys are available from 1999 to 2002. For 2001 and 2002, field 
visits were made for approximately 75% of  aerial survey locations. However, field data from 1999 and 
2000 are sparse. During field data collection, ground crews locate the infestation clusters that were 
recorded during aerial surveys and determine the cause of  lodgepole pine mortality. If  there are trees 
killed by mountain pine beetles, crews record the number of  green trees currently under attack, the 
number of  trees attacked the previous year, the number of  trees attacked two years previously, and the 
number of  trees attacked which are now grey. Later, field sites may be treated in an effort to reduce the 
impact of  the mountain pine beetle, in which case the type of  treatment is recorded.

Research Objectives
Our research objectives are grouped into four categories. The first category is the improvement of  our 
understanding of  the data by quantifying the information content of  point-based, aerial surveys of  
mountain pine beetle infestations and demonstrating appropriate techniques for visualizing infestation 
data while considering data uncertainty. The second category is exploratory spatial analysis, including 
investigations of  spatial and spatial-temporal trends in landscape level, mountain pine beetle activity. The 
third category involves the comparison of  observed mountain pine beetle data to expectations conditioned 
on forest risk. Here we consider how to incorporate data uncertainty when generating a model of  forest 
risk and we use statistical comparison of  observed and modelled spatial patterns to identify interesting 
areas (hot spots) where unexpected patterns occur. The fourth category involves investigation of  these 
hot spots. By analyzing the physical characteristics of  areas underlying hot spots, relationships between 
site conditions and mountain pine beetle infestations can be determined. Such relationships will allow 
us to better understand model output and may be useful in identifying spatial parameters important for 
generating mountain pine beetle models.

Understanding the Data

As with all large area data sets, aerial surveys are prone to uncertainty. Therefore, when undertaking 
spatial analysis, a thorough investigation of  data accuracy and information content is necessary to 
ensure confidence in results. Our comparisons of  field and aerial data show that aerial data are useful for 
mapping the location and magnitude of  infestations that occurred more than one year previously. In aerial 
point data, the majority of  attribute values are small, as is the error associated with most individual survey 
locations. The cumulative impact of  error, however, is considerable, as only 28% of  survey points have the 
correct attributes. Although both errors of  omission and commission occur, commission errors account for 
almost twice the uncertainty, and overall the distribution of  errors approximates a gamma distribution. 

The information available from point-based, aerial surveys is often difficult to visualize. Since 
aerial surveys are used to monitor large areas, data sets tend to be sizeable and difficult to represent. 
Simple cartographic techniques generally provide insufficient improvements (Fig. 2) and visualization is 
complicated by data uncertainty. Data visualization can be improved by converting point data to surfaces 
using kernel density estimators. As well, using a Monte Carlo approach and estimates of  attribute error, 
kernel density estimators can be used to incorporate uncertainty into data visualization. 
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Figure 2. Comparison of  data visualization techniques: A) Aerial survey points with no enhancements. B) Aerial 
survey point attributes represented as proportional symbols. C) Aerial survey point attributes represented as 

proportional colours. D) Aerial survey point attributes represented using a kernel density estimator. (darker locations 
have higher infestation).

For details on kernel density estimators we refer the reader to Silverman (1986) and Bailey and Gatrell 
(1995). Essentially, kernel density estimators can be used to visualize the intensity of  events over space. 
Conceptually, the intensity λ(z) at a particular location z in a study area A can be estimated by the naïve 
kernel density estimator 

A more precise estimate, τλ̂ (z) is defined by 
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where z  and A are defined as above, τ is the radius of  a disk centered on z, k( ) is the kernel or a 
probability density function which is symmetric around about the origin, zi (i = 1, …, n), are locations of  

    

ˆ λ (z) = the numberof events in a diskcentredon z
area of the disk

A B

DC



168

n observed events, and yi is the attribute value at zi. The term ( ) ( )[ ] uuzz dkp
A∫ −= ô/τ is an edge correction 

equivalent to the volume under the scaled kernel centred on z, which lies inside of  A (Diggle 1985). 
The disk radius τ is the most important parameter to consider when generating kernel density surfaces 
as it controls the amount of  data smoothing. For this research, τ was set equal to 2 km, optimizing 
improvements to data visualization while retaining detail. Also this value is sufficiently large to be relatively 
robust with respect to any errors in the locations of  the points (approximately 25 m maximum). Further, 
given the size of  the kernel relative to the study area, the impact of  edge effects was considered negligible 
and no edge correction was applied.

In brief, the method for incorporating uncertainty in kernel-estimated density surfaces is as follows. 
Possible realizations of  point locations and attribute values are generated by randomly drawing values 
from a gamma distribution, whose parameters were estimated by fitting a distribution to the field data 
using a maximum likelihood estimator. Spatial uncertainty is incorporated by randomly drawing values 
for both the x and y coordinates from a normal distribution with a mean of  0 and standard deviation of  1. 
These values are scaled to ±25 m, which is the spatial uncertainty estimated by field crews. One hundred 
point realizations are generated and a kernel density surface is produced for each realization. The 100 
kernel density surfaces are summed and averaged to generate a final kernel density surface incorporating 
uncertainty. Most often, aerial survey attributes are overestimated; therefore, when kernel density surfaces 
are corrected, attribute values generally decrease (Fig. 3 and Fig. 4). 

Figure 3. Kernel density surfaces estimated from aerial points and attributes.  

A) Kernel density surface without consideration of  data uncertainty.  
B) Kernel density surface including data uncertainty. Darker tones are higher values.

BA
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Exploratory Spatial and Spatial-Temporal Analysis

Kernel-estimated density surfaces are useful for investigating spatial patterns in a single time period and 
may be used to relate landscape characteristics to variations in infestation magnitude. Using the corrected 
kernel-estimated density surfaces, infestations were categorized as intense or non-intense, where intense 
infestations are defined as values in the 90th percentile of  the kernel density surface frequency distribution 
(Fig. 5). The 90% threshold identifies areas with landscape characteristics that were distinctive relative to 
less infested and non-infested areas. The spatial distributions of  intense and non-intense infestations were 
compared with landscape characteristics such as pine age, percent of  pine in a stand, elevation, aspect, 
and slope in the northern, central and southern portions of  the study area. The relationship between 
infestation intensity and forest age is demonstrated in Figure 6. Forest age classes were determined using 
the forest inventory data representative of  forest characteristics in 1999. Forest age classes were as follows: 
1 (1-20 years); 2 (21-40 years); 3 (41-60 years); 4 (61-80 years); 5 (81-100 years); 6 (101-120 years); 7 (121-
140 years); 8 (141-250 years); and 9 (> 250 years). 

In the northern sub-area, the pine age classes underlying both intense and non-intense infestations 
approximately follow the distribution of  age classes in the area. While age class 8 (141-250 years) is most 
heavily infested, it is not attacked more often than anticipated if  the mountain pine beetle randomly 
selected host trees. This is likely related to the infestation history. The mountain pine beetle infestations in 
the north were intense in 1996 and 1997. By 2001 there was little mature pine remaining as most has been 
infested or harvested. However, the forest age data is based on conditions in 1999; thus, there appears to 
be more mature pine than would actually be available in 2001 and 2002. 

In the central sub-area, mountain pine beetle preferred age class 7 (121-140 years) when the 
infestation was intense and age class 8 when the infestation was non-intense. In this area, stands of  age 
class 7 have a higher percentage of  pine (mode = 70% pine) than stands with age class 8 (mode = 30% 
pine). As a result, most age class 8 stands have relatively few trees available for infestation, so the most 
intense infestations are found elsewhere. 

Figure 4. Difference in kernel densities calculated 
with and without corrections. Gray represents 

areas where the correction resulted in a decrease 
in infestation values and black represents locations 

where the correction generated an increase.

Figure 5. Variation in infestation intensity in 2001 
and 2002. Black represents intense infestations, 

grey represents non-intense infestations, and  
white represents no infestation.

2001 2002
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Figure 6. Comparison of  pine age classes underlying intense and non-intense infestations in 2001 (01)  
and 2002 (02). I = intense infestations, NI = Non-intense infestations, and All = the distribution of   

all pine locations within the study area. 
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In the southern sub-area, age classes associated with non-intense infestations have a similar distribution 
to the overall distribution of  forest age. However, the intense infestations rarely occur when trees are young 
and are most frequently associated with age class 8. Clearly, host age selection is not random. In 2001, 
almost all intense infestations occurred in age class 8. In 2002, most intense infestations were associated 
with age class 8 forests, although intense infestations were increasingly found in younger forest age classes. 
In the south, mountain pine beetles first appeared in large quantities in 2000. Therefore, in 2001 many 
age class 8 trees, which are the hosts preferred by mountain pine beetle, were available. By 2002, fewer age 
class 8 trees were available, so the mountain pine beetle began infesting younger age classes.

Kernel-estimated density surfaces can also be used to explore spatial-temporal patterns in mountain 
pine beetle infestations. By differencing surfaces, we can represent temporal change in the spatial pattern 
of  mountain pine beetle infestations and investigate methods of  defining meaningful change. Here we 
define meaningful change in mountain pine beetle infestations using the 5% tails of  the distribution 
of  a surface of  change (e.g., surface 2002 – surface 2001). An example is shown in Figure 7 where 
change is represented between 2001 and 2002. While this definition allows the threshold for significant 
or meaningful change to vary depending on mountain pine beetle activity in the whole area, 10% of  
the infested area is always considered to have changed meaningfully. From the perspective of  forest 
monitoring, this method is useful as it is flexible enough to identify areas of  change relative to resources 
available for mitigation. For instance, if  resources are available to treat 25% of  the affected Forest District, 
the thresholds can be changed to identify the most impacted 25%. To better understand why change 
varies over space, change will be compared with landscape characteristics and methods of  treating 
mountain pine beetle infestations. 

Figure 7. Change between 2001 and 2002. Significant change is defined as values in the 5% tails 
of  the distribution of  a surface of  change. Black areas represent locations where mountain pine 
beetle activity has increased significantly, dark gray areas represent a significant decrease, and  

light gray areas represent locations of  change that are not significant.
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Comparing Observed Data with Mountain Pine Beetle Model Expectations

Quantitative analysis of  spatial patterns generally involves the comparison of  an observed spatial pattern 
to some expected pattern. Most often, the expected pattern is generated assuming a process of  complete 
spatial randomness (Upton and Fingleton 1985). However, due to aggregative behaviour and mountain 
pine beetles’ need of  lodgepole pine, it is unlikely that the spatial pattern of  infested trees is random. 
Thus, comparing observed patterns in infestation data to a random expectation seems inappropriate. 

A more suitable expectation of  spatial pattern may be generated based on the present understanding 
of  mountain pine beetle behaviour. For example, we know that the location of  trees infested by mountain 
pine beetles in the current year is not random, but rather related to the site of  infested trees in the 
previous year. An expectation that incorporates knowledge of  mountain pine beetle behaviour will allow 
statistical significance to be used to identify hot spots or locations where the pattern is unexpected based 
on the current understanding. 

The Shore and Safranyik forest risk model (Shore and Safranyik 1992; Shore et al. 2000) calculates 
the probability that forests will be infested based on forest characteristics, beetle location, and population 
size. The probability of  risk derived from this model may be used to condition the randomization of  
attributes within a specific time period, thereby allocating more infestations to locations with a higher 
likelihood of  risk. Based on this model, we can identify hot spots, or locations where the spatial pattern of  
mountain pine beetle infestations is unexpected.

As hot spots will be detected using randomizations conditioned on the forest risk model, the value 
of  our quantitative analysis is directly related to the quality of  the forest risk model, which, in turn, is 
impacted by the quality of  the input data. Inputs to the forest risk model include forest inventory data and 
mountain pine beetle aerial survey data, both of  which are prone to error. Consequently, it will be useful 
to investigate methods to incorporate data uncertainty when modelling forest risk.

There are two sources of  uncertainty that are of  concern when working with forest inventory data. 
First, the attribute values attached to different forest characteristics tend to be uncertain. Secondly, in some 
instances, the input parameters required for modelling forest risk are not provided in the forest inventory 
data. As no other data source exists, surrogate input parameters available from the forest inventory data 
must be used and the impact of  this should be investigated. There are also two important considerations 
regarding error in the mountain pine beetle data. The first is the spatial and attribute error discussed 
above. The second issue is that some areas are treated to mitigate mountain pine beetle populations, while 
others are not. Two mountain pine beetle populations of  similar size, one treated and the other not, will 
likely have different impacts on forest risk. How to deal with these sources of  uncertainty when modelling 
forest risk will be considered.

Investigating Hot Spots
Hot spots represent areas that are poorly predicted, based on our present understanding of  mountain pine 
beetles. Therefore, investigations into the characteristics underlying hot spots may provide new insights 
as to why mountain pine beetle activity in some areas is poorly predicted. Landscape characteristics of  
particular interest include elevation, aspect, slope, forest age, and stand species compositions. 

Conclusion
Understanding landscape-scale spatial and spatial-temporal processes of  mountain pine beetle infestations 
is important when modelling and predicting mountain pine beetle behaviour. New, large area data sets 
provide a vehicle for understanding spatial processes through the exploration of  observed spatial patterns. 
Knowledge of  the error and information content of  aerial survey data is essential when using such data 
for spatial pattern analysis. Improved visualization, which includes the incorporation of  data uncertainty, 
allows examination of  spatial and spatial-temporal patterns. Quantitative analysis undertaken by 
comparing observed spatial patterns to those expected, based on our current understanding of  mountain 
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pine beetle behaviour, allow hot spots, or areas where the spatial pattern does not meet our expectation, to 
be identified. By investigating the landscape characteristics underlying hot spots we hope to generate new 
insights that can be meaningfully combined with ongoing mountain pine beetle modelling.
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