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Abstract

Remotely sensed imagery is becoming a common source of environmental data. Consequently, there is an increasing need for tools to

assess the accuracy and information content of such data. Particularly when the spatial resolution of imagery is fine, the accuracy of image

processing is determined by comparisons with field data. However, the nature of error is more difficult to assess. In this paper we describe a

set of tools intended for such an assessment when tree objects are extracted and field data are available for comparison. These techniques are

demonstrated on individual tree locations extracted from an IKONOS image via local maximum filtering. The locations of the extracted trees

are compared with field data to determine the number of found and missed trees. Aspatial and spatial (Voronoi) analysis methods are used to

examine the nature of errors by searching for trends in characteristics of found and missed trees. As well, analysis is conducted to assess the

information content of found trees.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past decade, spatial, spectral, and temporal

resolution of remotely sensed imagery has improved

significantly. Finer spatial resolution has lead to particular

improvements in environmental mapping. For example,

high spatial resolution imagery has enabled the identifi-

cation and mapping of individual trees, or groups of trees

(Gougeon et al., 1999; Wulder et al., 2000a; Culvenor,

2002). Many issues impact the accuracy of feature

extraction techniques. In forestry, these include trees

located in close proximity, layering of multiple strata of

trees, and the relationship between spatial resolution and

tree crown size.

Although numerous procedures have been designed to

extract environmental data from remotely sensed imagery,
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tools available for accuracy assessment are limited. By

matching trees extracted from imagery to those found on the

ground, we can determine the percentage of trees accurately

located. However, this tells us nothing about the nature of

the error. It may be useful, for example, to know if the errors

are random or related to tree characteristics. Also,

techniques to determine the information content of data

would be valuable. For instance, in some cases researchers

suspect trees identified through feature extraction may

actually represent tree clumps (Gougeon et al., 1999).

In this paper we demonstrate a combination of spatial

and aspatial methods (Table 1) useful for investigating

both the nature of error and the actual information content

of environmental data captured from remotely sensed

imagery. We demonstrate our methods on individual tree

data generated from high spatial resolution imagery

(IKONOS) via local maximum (LM) filtering, which is

described in the section that follows (Wulder et al.,

2000a). However, our approach may also be used when

examining the effectiveness of other feature extraction

methods. To validate the efficacy of the tree identification
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Table 1

An overview of aspatial and spatial techniques for assessing the accuracy of environmental data extracted from remotely sensed imagery

Domain Technique Objective

Aspatial Difference of means Determine if summary characteristics of found and omitted objects differ significantly

Spatial Voronoi Convert point data to areal units

Operationalize spatial relationships between objects

Global measures of spatial association Determine if the spatial pattern of feature extraction error is significantly different

from a random expectation

Local measures of spatial association Detect if objects are significantly different from their immediate surroundings

Spatial/aspatial Measures of association Assess if local significance in object characteristics is related to the likelihood of an

object being found or omitted during feature extraction
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approach, we compare the individual tree characteristics

of trees located and missed by the LM filter. Points

representing individual tree locations are converted to

Voronoi polygons (VPs) and spatial analysis (join counts)

is conducted on the pattern of found and missed trees. We

also search for spatial patterns in the aspatial character-

istics of trees and VPs using local spatial autocorrelation

measures and relate the patterns found to that of the

missed trees. Then we assess the information content of

trees located by the LM filter through a comparison of VP

characteristics of trees found by the LM filter with those

of the corresponding stem mapped trees.
Fig. 1. Voronoi polygons generated from stem mapped trees. Grey circles

represent the locations of mature trees and black squares represent the

locations of young trees.
2. Local maximum filtering

LM filtering automates the extraction of individual tree

locations from high spatial resolution remotely sensed

imagery (Wulder et al., 2000a). A kernel is moved over the

image and trees are located when the central digital value in

the kernel window is higher than all other values. The LM

filter is based on the assumption that reflectance is highest at

the tree apex and decreases towards the crown edge (Wulder

et al., 2000a). The LM filter constrains the identification of

trees to pixels that do not touch, thereby limiting the

maximum number of trees that can be found in any remotely

sensed image.

There are three outcomes for a LM filter: correct

identification of a tree, failure to find a tree that exists

(omission error), or identification of a tree that does not exist

(commission error). If the trees are small relative to the

imagery pixel size, minimizing the kernel size will

maximize accuracy; if trees are large relative to the image

pixel, smoothing or use of a larger kernel may improve

results. In reality, trees often vary in size throughout a study

region and the LM filter should be optimized based on the

acceptable type of error for a particular application. The LM

filter is a well-documented feature extraction technique. Our

goal is not to further develop this technique, but rather to

provide a method for assessing the accuracy of LM filtering,

and other feature extraction techniques that represent

objects as points.
3. Data

Two data sets covering the same area were used for this

analysis: (1) field data on the location and characteristics of

individual trees, and (2) individual tree locations extracted

from remotely sensed imagery using the LM filter.

3.1. Field data

Field data on the location and characteristics of

individual trees were collected for a 0.72 ha area in the

Sooke Watershed located near Victoria, BC. A ground

survey was undertaken, over an area with little topographic

variability, to produce a stem map where trees were located

to the nearest 10 cm. In total, 199 trees were mapped of

which 150 were classified as young and 49 mature (Fig. 1).

The young stand was composed of a mixture of Douglas-fir

(Pseudotsuga menziesii) and western red cedar (Thuja

plicata), whereas the mature stand was dominated by

Douglas-fir. Characteristics recorded for each tree include

species, tree height, crown radius, and diameter at breast

height (DBH). Diameter breast height is the circumference
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of a tree trunk at 1.3 m above the ground and is often

correlated with tree height and crown radius (Avery, 1967,

pp. 144–146). Crown radius was determined using standard

forest measurements outlined in Avery, 1967 (pp 160–161),

and a hypsometer was used to measure the height to an

accuracy of 2–5% (see Avery, p. 154). For young trees, the

average height, crown radius, and DBH were 19.2, 1.48, and

0.21 m, respectively. Average height, crown radius and

DBH for mature trees were 47.52, 3.12, and 0.58 m,

respectively. For details of the data collection procedure,

we refer the reader the Hay and Niemann (1994).

3.2. Imagery data

LM filtering was performed on an orthocorrected

IKONOS image captured at 19:05 h GMT June 3, 2000.

The solar altitude and azimuth angles at the time of the

satellite overpass were 608 and 1468, respectively. The

image is panchromatic with a spectral range of 450–900 nm

and a spatial resolution of 1 m, and trees appeared dark

against the bright background.

Several variations of the LM filter were applied to the

IKONOS imagery. For more information on LM filtering

variations see Wulder et al. (2002a). The method that best-

balanced accuracy with errors of omission and commission

was a LM filter with a 3!3 window size, applied to a

smoothed IKONOS image. The image was smoothed with a

3!3 averaging filter to reduce radiometric noise present in

the imagery prior to LM filtering. While this variation

missed several of the small trees, it had much lower

commission error than other methods tried. While we

demonstrate this method on a particular variation of the LM

filter, it could be applied to other variations and point-based

feature extraction techniques.

3.3. Relating the data sets

The stem map was overlain with the LM from the

imagery to allow for a comparison of trees found on the

ground with those extracted from the imagery. When many

field-identified trees were located in close proximity, it was

often difficult to link them with trees captured from the

imagery. This was resolved by considering the found tree to

be the field-identified tree with the largest DBH, while the

others in the clump were omitted. Tree locations are

measured to a nearest centimeter level of precision, whereas

the LM trees are represented by a 1 m pixel, which can

result in difficulties relating the points. Additionally, the LM

generated from the image data are a function of factors such

as sun angle, tree crown shape and size, and the relative

height of a tree in comparison to its neighbors. Previous

work has illustrated the link between accuracy and the

relationship between tree and image pixel size (Wulder

et al., 2000b).

The LM filter located 89 of the 199 trees identified in the

field. Thirty-three of the 49 mature trees and 56 of the 150
immature trees were located. Four trees were located which

did not exist on the ground (commission error). Commission

errors were removed from the analysis as they had no

corresponding tree on the ground for comparison.
4. Methods

4.1. Aspatial analysis of individual tree characteristics

Stem-mapped trees were partitioned into found and

omitted classes and aspatial analysis conducted to determine

if there were differences in the distribution of tree

characteristics between the two classes. Data were also

partitioned by age resulting in the following groups: (1) all

found trees (nZ89); (2) all omitted trees (nZ112); (3)

mature found trees (nZ33); (4) mature omitted trees

(nZ16); (5) young found trees (nZ56); and (6) young

omitted trees (nZ94). For each age class, the Mann–

Whitney statistic was used to test for differences in the

means of individual tree characteristics (DBH, crown

radius, and tree height) when trees are captured or missed

by the LM filter.

4.2. Spatial patterns of found and omitted trees

To further investigate the nature of feature extraction

error, we use spatial analysis to determine if the omission

error is random. Prior to spatial analysis, the points

representing the location of individual trees were converted

to VPs (Fig. 1). Given a set of points and continuous space,

VPs partition a surface so that all locations are associated

with the closest point (Okabe et al., 2000). VPs have the

advantage of intrinsically defined spatial properties and

additional attributes such as VP area, perimeter, shape, and

the ratio of neighbors found and omitted (RNFO). Shape was

determined using the simple index

S Z
4pA

P2
(1)

where A and P are polygon area and perimeter, respectively.

S ranges from 0 to 1. A VP is circular when SZ1 and becomes

more elongated as S approaches zero (Bogaert et al., 2000).

The RNFO was computed for adjacent or first lag neighbors

by dividing the number of adjacent located trees by the

number of adjacent omitted trees. When RNFOZ1, the same

number of adjacent trees are located and omitted; RNFO!1

means more neighbors were omitted than found and

RNFOO1 indicates more neighbors were found than

omitted.

The VP surface was corrected for edge effects by

excluding all VPs for which a circle centered at any vertex

of a polygon and passing through the three points

equidistance from the vertex, intersects the boundary of

the study area (Okabe et al., 2000). The edge corrected

surface included 150 polygons, of which 63 are found
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and 87 omitted by the LM filter. Of the correctly identified

trees, 19 are mature and 44 are young. Of the omitted trees,

nine are mature and 78 are young.

Although VPs were generated for the purpose of spatial

analysis, the VP characteristics can be analyzed similarly to

the individual tree characteristics discussed above. For each

age class, the Mann–Whitney statistic was used to test for

differences in the means of VP characteristics (VP area, VP

perimeter, VP shape, and the RNFO) when trees are located

or omitted.

Join counts were used to analyze the spatial pattern of

located and omitted trees for each age class. Join counts

have been used in the analysis of remotely sensed data to

investigate the nature of image classification error (Con-

galton, 1988), but to our knowledge have not been used to

analyze feature extraction results. Join counts can be used to

determine if polygons, with a binary attribute, exhibit

significant clustering or dispersion of attribute values

relative to a random expectation (Cliff and Ord, 1981).

VPs were coded either 1 (black) if a tree was found or 0

(white) if it was omitted (Fig. 2). For 30 or more

observations and proportions of B and W polygons greater

than 0.2, the counts of BB and BW joins are approximately

normally distributed (Cliff and Ord, 1981, Chapter 2; Upton

and Fingleton, 1985, p. 163). Thus, a negative z-score

indicates an under-representation of a particular join count

while a positive value indicates an excess.
4.3. Spatial autocorrelation in attribute values

In Section 5, we show that certain individual tree and VP

characteristics are significantly different for trees that are

found and those that are omitted. We use global and local

measures of spatial autocorrelation to examine if these
Fig. 2. VP surface for stem mapped (SM) trees (SM-VP). Gray equals found

and white equals omitted by the LM filter. VPs with one or more sides

represented by a thin line were removed during edge correction.
differences in characteristics have a spatial component

related to the pattern of omission error. Global measures of

spatial autocorrelation summarize the overall pattern of

spatial dependence in the entire data set, while local

measures identify individual observations that show signifi-

cant departures from this trend.

We use Moran’s I to measure global spatial autocorrela-

tion. I may be written as

I Z
n

W

� � Pn
iZ1

Pn
jZ1 wijzizjPn

iZ1 z2
i

� �
(2)

where wij is a measure of the spatial relationship between

observations i and j, ziZ ðxiK �xÞ, n is the number of

observations, and W Z
Pn

iZ1

Pn
jZ1 wij; isj (Cliff and

Ord, 1981, Chapter 2). Since I is asymptotically normally

distributed, z-scores can be used to determine the extent to

which the data exhibit positive (clustering of like values) or

negative (dispersion of like values) spatial autocorrelation.

The local version of I, Ii, can be written as

Ii Z
ziP

i
z2

i

n

0
@

1
AX

j

wijzj (3)

where wij and zij are as defined for I (Cliff and Ord, 1981,

Chapter 2). Although Ii is not normally distributed (Boots

and Tiefelsdorf, 2000; Gebhardt, 2001), z-scores can be

used to give an approximate indication of significance when

there is no global spatial autocorrelation in the data (Sokal

et al., 1998). However, when there is significant global

spatial autocorrelation, the number of locally significant

observations will be overestimated. Thus, although our

primary concern is with the results for local measures, it is

necessary to measure global spatial autocorrelation in order

to interpret the local measures appropriately.

The Getis statistics, Gi and Gi*, can be used to identify

significant clustering of high or low values. Gi excludes

observation i from the calculation while Gi* does not (Ord

and Getis, 1995). The forms of these statistics are

Gi Z

P
isj jwijxjP

isj jxj

; G�
i Z

P
jwijxjP

jxj

(4)

when the number of neighbors (ni) used in the calculation is

at least eight, both Gi and Gi* are approximately normally

distributed and therefore can be written in the form of a z-

score. In this work, ni averages six and so significance tests

should be interpreted cautiously.

A 2!2 c2 test was used to compare the results of local

spatial autocorrelation for trees found and omitted. In the c2

test, columns represent the frequency of trees found and

omitted and rows represent significant or non-significant

local spatial autocorrelation. The H0 was that a significant

value in Gi* or Ii is independent of whether a tree is found or

omitted.



Fig. 3. VP surface for trees mapped with the local maximum (LM) filter

(LM-VP). VPs with one or more sides represented by a thin line were

removed during edge correction.
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4.4. Analyzing the information content of trees correctly

identified by the LM filter

The goal of LM filtering is to generate points represent-

ing single trees. However, some researchers suggest that

when the spatial resolution of an image is not sufficient to

resolve individual trees, LM points often represent clumps

of trees (Gougeon et al., 1999). In this section, we analyze

the information content of correctly located trees as a means

of determining if LM trees represent individuals or groups

of trees. We investigate the properties of found trees by
Fig. 4. Overlay of SM-VPs (black) and LM-VPs (grey). The overlay was

used to generate two attributes: (1) the SM-VP area divided by LM-VP

area; and (2) the number of times SM-VPs intersects a LM-VP.
overlaying the VPs generated from the stem mapped tree

locations (SM-VPs) (Fig. 1) with VPs generated from the

results of the LM filter (LM-VPs) (Figs. 3 and 4).

The areas of SM-VPs were divided by the areas of

corresponding LM-VPs. If the area ratio equals one,

polygons are the same size, less than 1 indicates that the

LM-VP is bigger than the SM-VP, while a ratio greater than

1 indicates the LM-VP is smaller than the SM-VP. A second

attribute was generated based on the number of times a LM-

VP was intersected by SM-VP when the two surfaces were

overlain.
5. Results and discussion

5.1. Aspatial analysis of individual tree and VP

characteristics

The results of aspatial (Mann–Whitney) analysis for the

individual tree and VP characteristics can be seen in

Table 2. For every age class, DBH, crown radius, tree

height, VP area, and VP perimeter are larger for found trees

than for omitted trees. However, the significance of these

relationships varies. When all trees are analyzed, differences

in DBH, crown radius, and tree height are statistically

significantly different between found and omitted trees.

Mature trees show significant differences in DBH and tree

height. For young trees, DBH, crown radius, VP area, and

VP perimeter show significant differences. Regardless of

age, trends in VP shape are not statistically significant. In

every class the RNFO is lower for located trees; if a tree is

located fewer of its neighbors are found than if a tree is

omitted. The trend in the RNFO is only statistically

significant for young trees.

Differences in the DBH of found and omitted trees should

be interpreted cautiously. Recall that the procedure for

matching stem mapped trees to those found by the LM filter

favored locating trees with a large DBH. Most of the mature

trees are large enough to be fully imaged by the sensor and

captured by the LM filter. Young trees often have a crown

radius size that is similar to the spatial resolution of the

imagery. When an object size is similar to the image spatial

resolution, the object (tree) is imaged within few pixels,

reducing the effectiveness of the LM approach and resulting

in higher omission error during feature extraction. There-

fore, matching young stem mapped trees to those found by

the LM filter relied more heavily on DBH size. Still, the

mean DBH for found and omitted trees is only slightly more

different for young trees than for mature trees, perhaps

suggesting that the trend in DBH is only partially explained

by the relationship between tree crown and pixel size.

With the exception of tree height, mature trees have less

significant disparity in the mean of characteristics for found

and omitted trees. As mentioned above, most of the mature

trees were big enough to be imaged by the sensor and

therefore the error may be more random than for young trees



Table 2

Aspatial comparison of the distribution of characteristics for trees found and omitted

Variable All Mature Young

Found Omit Z Found Omit Z Found Omit Z

DBH (cm) 49.34 28.11 5.13 92.03 70.81 3.02 23.73 20.92 3.11

Crown radius (m) 2.13 1.60 4.88 3.11 2.88 1.24 1.54 1.38 3.09

Tree height (m) 31.47 22.02 4.07 51.00 39.71 2.99 19.75 19.04 1.33

VP area (m2) 40.05 24.24 1.83 79.45 72.79 0.57 23.03 18.64 2.61

VP perimeter (m) 24.15 19.30 1.61 35.87 34.77 0.57 19.10 17.52 2.34

VP shape 0.76 0.73 1.08 0.76 0.75 0.27 0.76 0.73 1.42

RNFO 1.02 1.04 0.50 2.20 3.17 1.59 0.50 0.80 4.13

Values in the found and omit columns are the mean for each characteristic. The Z columns are z-scores calculated using a Mann–Whitney test.
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where size seems important. VP area and perimeter, as well

as the RNFO, seem to be the most important factors in the

correct identification of young trees.
5.2. Spatial patterns of found and missed trees

The results of the join counts for each age class can be

seen in Table 3. For every class, join count statistics reveal a

non-significant under-representation of BB adjacencies; all

and mature trees have a non-significant over-representation

of BW joins. For young trees, the z-score for the BW joins is

significantly positive, suggesting the omission error is

spatially disperse. Dispersion in the omission error of

young trees is most likely an artefact of the LM filter, which

prohibits the locating of trees in adjacent pixels. This

implies that the area for each tree covers a minimum of 9

pixels (center plus the 8 adjacent), resulting in a minimum

diameter of 3 m. Therefore, at the pixel scale, the filter

imposes a certain level of dispersion. Since many young

trees have a crown radius smaller than 3 m, the filter causes

identified trees, and therefore omission error, to be

dispersed. Mature trees on the other hand, typically have a

crown radius much larger than the size of a pixel, so the

spatial pattern of the error is not strongly impacted by the

adjacency constraint of the filter. The spatial nature of

commission error also explains why aspatial analysis shows

the RNFO is significantly different for young trees omitted

and located but not for mature trees.
Table 4

Global Moran’s I, z-scores for individual tree and VP characteristics
5.3. Spatial autocorrelation in attribute values

When young and mature trees were analyzed together, all

characteristics have significant positive global spatial

autocorrelation (Table 4). When only the mature trees
Table 3

Join count results for all trees, mature trees, and young trees

Z-value All Mature Young

BB K1.05 K0.53 K1.67

BW 1.27 0.99 2.00

B represents trees found by the LM filter and W represents trees omitted.

Values are z-scores
were analyzed, significant positive global spatial autocorre-

lation occurred only for VP perimeter and shape. In the

young trees, significant positive global spatial autocorrela-

tion occurred in all characteristics except DBH and the

RNFO. For the characteristics where global spatial auto-

correlation is found, local measures are more prone to type I

errors and the associated tests of significance should be

interpreted cautiously.

In almost all cases, using the c2 test we were unable to

reject the H0 that a significant value of Gi* or Ii is

independent of whether a tree is found or omitted (aZ0.05).

Therefore, a tree’s likelihood of having significant local

spatial autocorrelation in a particular characteristic seems

independent of whether or not the tree is found by the LM

filter. The only exception is tree height among young trees,

which had a c2 value of 3.95. When aZ0.05 the expected

value of c2Z3.84. This suggests that a tree in a group of tall

young trees may be more likely to be extracted from

remotely sensed imagery than a tree in other situations.

However, local tree height results should be interpreted

carefully due to the presence of significant global spatial

autocorrelation in this variable.
5.4. Analyzing the information content of trees correctly

identified by the LM filter

The average ratio of SM-VP area divided by LM-VP area

is 0.52, 0.42, and 0.79 for all, young, and mature trees,

respectively. For the number of intersections, the average

values for all, young, and mature trees are 5.53, 6.43, and

3.58, respectively. These values demonstrate that LM-VP
Variable All Mature Young

DBH 14.81 K0.66 0.89

Crown Radius 13.67 1.22 2.21

Tree Height 14.04 K1.61 2.98

VP Area 15.62 0.86 8.11

VP Perimeter 16.71 2.66 9.54

VP Shape 3.40 3.50 2.51

RNFO 5.73 K1.56 K0.46
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is on average twice the size of the SM-VP and are

intersected by an average of about 6 SM-VP. Even when a

LM point represents the location of an individual tree and

not a tree clump, the area of a point seems to be associated

with a clump of trees. Thus, one should exercise caution

when converting LM trees to area based forestry measures

(i.e. forest density). Misrepresentation of area may be severe

in young stands where trees are split between an average of

more than six trees.
6. Conclusions

We have demonstrated a set of tools for assessing the

accuracy of feature extraction techniques. If features are

represented as points, and a comparable surface represent-

ing reality exists, these methods can be used to analyze both

the nature of error and information content of data. As

environmental data are increasingly acquired from remotely

sensed imagery, it is important that we have means of

assessing the quality of these data.

The LM filter’s constraint, prohibiting trees from being

located in adjacent pixels, seems to result in the dispersion

of errors for young trees, but not for mature trees. When the

object size is similar to the pixel size adjacent trees are

automatically missed. However, when the object size is

much larger than the pixel size this constraint is not

problematic and the error is random.

Although LM points often represent the location of

individual trees, this is not always the case. This is

especially so in young forests when more than one tree, or

at least portions of more than one tree, may fall within a

single pixel. This problem is exacerbated by the LM

constraint of locating trees in pixels that do not touch other

pixels with trees. Even when LM points do represent a

single tree, it is likely that the area associated with the point

is related to multiple trees or a tree clump. Image pre-

processing also intensifies this problem. While image

smoothing reduces commission error, it also results in a

loss of information that may help in the identification

younger, and, therefore, smaller trees.

Although the tree and VP characteristics appear import-

ant in determining if trees are found or not, the spatial nature

of these characteristics is not related to that of omission

error. It is most likely the relationship between the object

and pixel size that impacts error. When a tree is small
relative to the size of a pixel, it is less likely to be fully

imaged by the sensor and therefore less likely to be

extracted from the imagery. Relating image content to

the effectiveness of the LM filtering explains why young

trees are more sensitive to differences in individual tree and

VP characteristics than are mature trees. In this study, most

mature trees are large enough to be imaged by the sensor.
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