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Abstract. Seven Landsat images near Prince George, British Columbia, Canada,
representing a range of within-year and between-year dates, were acquired to
assess spectral variability and the concomitant impact upon hyperclustering
classification results. Top-of-atmosphere (TOA) radiometric corrections, dark
target subtractions and geometric corrections were applied to the imagery.
Following application of an unsupervised hyperclustering procedure which
employed the K-means classifier, post-classification comparisons examined the
differences in spectral response patterns for several target classes, and area
summaries were generated to compare the variability in the total area of classes as
identified in each image. Finally, the kappa coefficient of agreement was used to
quantify the degree of correspondence between the classified images. The results
indicated that the spectral variability of the within-year image set exceeded the
variability in the between-year image set and differences in class area were highly
variable over the range of image acquisition dates. These findings suggest that
off-year imagery (acquired on or near anniversary dates) may be preferred to
off-season imagery when building large-area Landsat mosaics for land cover
classification using the hyperclustering procedure.

1. Introduction

A hyperclustering and labelling procedure is a simple and relatively common

approach to classify multiple scene Landsat mosaics (Talbot and Markon 1988,

Bauer et al. 1994, Debinski et al. 1999, Cihlar 2000). Typically, this approach is

recommended in areas where little is known of the class structure or where training

(field) data are scarce or impractical to acquire (Franklin and Wulder 2002). The

process is to generate many hyperclusters from the image data available by testing

for within-cluster heterogeneity, merge the hyperclusters into a smaller number of

more reasonable groupings which may resemble homogeneous classes, and then

label the resulting classes as spatial features of interest according to a pre-

determined map legend or class hierarchy. Hyperclustering and labelling requires

relatively little manual effort, thereby limiting field and ancillary data needs (Homer
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et al. 1997). The approach appears to have the potential to be robust and repeatable

and has been recommended as the basic method to be used in the production of a

Landsat-based land cover map of the forested area of Canada representing year

2000 conditions (Wulder et al. 2003) using the Centre for Topographic Information

(CTI) satellite image database (Wulder et al. 2002).

Typically, at the heart of this classification approach is a simple clustering

algorithm; one of the most common such algorithms is known as K-means (Tou

and Gonzalez 1974). The K-means algorithm is influenced by the number of cluster

centres specified, the choice of initial cluster centres, the order in which the samples

are taken and the geometrical properties of the data. This research addresses the

question: what is the influence of the scene-dependent factors on the ability of the

hyperclustering approach to generate the land cover classes required over large,

spatially variable image mosaics? A test of the ability of the K-means algorithm to

produce consistent classes from imagery acquired under different conditions was

required; therefore, an experiment was devised involving seven different Landsat

images acquired over one growing season and three years, in the region of Prince

George, British Columbia, Canada.

2. Study area and methods

The study area was located near Prince George, British Columbia, Canada, and

was centred at approximately 123‡ 23’ 32.50’’W, 54‡ 27’ 50.91’’N. Seven Landsat

Thematic Mapper (TM) images (WRS Path 49, Row 22) were acquired from three

different years and five different months (see table 1). Clouds were a problem in the

majority of the images; only the 3 August 1999 image was reasonably cloud-free.

This image was selected as the master image for the comparison tests in this paper.

The master image was orthorectified using 15 Ground Control Points (GCPs)

resulting in an RMS error of 1.33 pixels in the x-direction and 1.18 pixels in the y-

direction. The remaining six images were registered to the master image using cubic

convolution resampling. Both a top-of-atmosphere (TOA) radiometric correction

and a dark-object subtraction procedure were applied to each of the seven images.

Details of the methods used are given in Markham and Barker (1986) and Peddle

et al. (2003). Since the analysis involved post-classification comparison between

images, this degree of atmospheric correction was deemed appropriate (Song et al.

2001). Table 2 contains the values used in the dark-object subtraction for each

image/band combination; for each image, these values were obtained in three deep,

Table 1. Seven TM images used in analysis of hyperclustering and labelling within-year and
between-year variability.

Satellite Date Solar zenith (‡) Percentage cloud cover1

Landsat 5 31 July 1998 51 0 (1102)
Landsat 5 29 April 1999 47 0 (0010)
Landsat 5 18 July 1999 53 10 (1111)
Landsat 5 3 August 1999 50 0 (0000)
Landsat 7 12 September 1999 38.6 0 (1100)
Landsat 5 20 September 1999 35 10 (1111)
Landsat 7 26 June 2000 56.5 10 (1111)

1The first value is the overall percentage cloud cover. The second value in brackets is the
cloud cover index of a scene quadrant in tens of percentage points. To obtain the percentage
cloud cover of a quadrant, the corresponding index must be multiplied by 10.
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dark lakes and then averaged to create the estimate for the subtraction process. The

K-means algorithm was implemented using the five-step process outlined in table 3.

3. Results

Post-classification comparisons of the seven Landsat TM images indicated the

existence of large differences in the outputs of the hyperclustering and labelling

procedures. Visually, the different imagery contained large and variable amounts of

cloud, haze, ice and snow, which affected the initial clustering sequence and results.

The images displayed differences in general land cover condition that are consistent

with seasonal changes in vegetation pattern (Guyot et al. 1989). For example, the

visual inspection of normal colour composites (TM bands 3, 2 and 1 viewed

through red, green and blue channels, respectively) indicated that there was more

green coloured vegetation in the June, July and August images; conversely there

was more brown vegetation in the April and September images. The presence of

cloud also affected the classification results: in the 20 September 1999 image, clouds

completely obscured the city of Prince George, and no urban/cultural/road class

could subsequently be distinguished in the hyperclusters.

The analysis of the classification results involved several comparisons between

the classified outputs generated from the K-means algorithm. First, the differences

Table 2. Dark-object subtraction values for each reflective band in each scene based on the
average of three deep, dark lake radiances.

Date

TM bands

1 2 3 4 5 7

31 July 1998 59 19 18 9 4 2
29 April 1999 59 20 17 11 7 5
19 July 1999 58 17 16 10 5 2
3 August 1999 57 18 14 7 4 2
12 September 1999 45 25 17 12 9 9
20 September 1999 51 15 13 7 6 3
26 June 2000 55 30 22 10 9 8

Table 3. Implementation of the K-means algorithm.

Step Action

1 Manual generation of a cloud mask for each image (interpreter delineated clouds
manually with the aid of interactive reflectance thresholds).

2 K-means clustering after 12 iterations (the maximum allowable in the formulation
available) and 50 clusters requested (this amount was thought to represent a
reasonable compromise between the number of clusters that could be managed
reasonably by a human interpreter in the following step and the maximum
number – more than 240 – that can be generated in the available code). All six
optical TM bands were used as inputs for the clustering.

3 Cluster merging based on Bhattacharyya distance separability measures
(Bhattacharyya 1943) and visual cues in the imagery for known class features
(utilizing air photos and local knowledge).

4 Recoding of clusters to a nine class scheme (unclassified/ice/snow/clouds, water,
dense conifer, open conifer, deciduous/shrub, shrub/grass mix, grass, exposed soil,
urban/cultural/roads).

5 Export of recoded class scheme to GIS map creation and display software.
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in spectral response patterns for several target classes were compared across image

dates. Second, the total class areas were compared between image dates and the

maximum and minimum differences in class areas were summarized. Finally, a

pixel-by-pixel comparison of the image classes was conducted by subtracting each
image from the master and compiling the differences for the entire TM scene.

The spectral response patterns of several target classes for TM bands 1, 2 and 3

are shown in figure 1. Several features changed reflectance dramatically as a con-

sequence of the formation and melting of snow and ice, classes that were most

prevalent in the 29 April 1999 image. In this image, the recently cut areas appeared

to contain significant variability related to the presence of snow (‘snow-effect’) and

this greater reflectance is common in all three visible bands; however, a reasonably

stable spectral response pattern existed for these features in the visible bands in the
other images. There was also a marked increase in the reflectance of recent cuts

(and all other target classes) in the 12 September 1999 imagery, specifically in TM

band 2. This may be caused by a relatively larger amount of haze in this scene or by

the senescence of deciduous species found in these recent cuts.

In contrast to the spectral response seen in new cuts, older cuts appeared to

have less snow-effect in the 29 April 1999 image, and less variability from one

image date to the next. Also in the older cuts, in the 26 June 2000 scene, the

reflectance in TM band 2 was greater than either bands 1 or 3; this was interpreted
as indicating a higher shrub content in these older cut blocks and early emergence

of deciduous plants (leaf-on). The other target classes of interest (coniferous,

deciduous, wetland) followed a similar pattern in spectral response to older cuts:

the snow-effect in the April image resulted in increased reflectance for TM bands 1,

2 and 3; reflectance is relatively stable for July and August images; and reflectance

increases in the 12 September 1999 image in bands 2 and 3, most likely as a result of

a relative increase in vegetation wetness. Extraction of the TM band 4 (infrared)

reflectance in the dense conifer class provided for a detailed consideration of within-
and between-year spectral characteristics. The histograms presented in figure 2

illustrate that the reflectance values are less stable in the within-year comparison

than in the between-year comparison.

To determine the impact of the spectral variability on classification results, the

area differences between the classes were compared. In table 4 the minimum and

maximum area differences for each of the images, relative to the master image (3

August 1999), are presented. In six of nine classes, the maximum difference (with

clouds masked) occurred between the master image and the April image, suggesting
that the use of images with large amounts of ice and snow strongly impairs

generation of the desired target classes. As proof of this, four of the target classes

were not present in the April image (open conifer, deciduous/shrub, shrub/grass mix

and grass). The next greatest number of differences was found between the master

and the 31 July 1998 image, probably caused by the presence of a large cloud bank

in this image. Finally, the two September images contained the maximum difference

from the master image in three classes: the shrub/grass mix, grass and urban/

cultural/roads. The latter difference was almost certainly caused by the large cloud
positioned over the city of Prince George in the 20 September 1999 image. Thus,

although seasonal differences may strongly influence classification results, image

anomalies such as clouds and haze may also have an impact on hyperclustering and

labelling of classes.

The final step in the analysis was to complete a pixel-by-pixel post-classification

comparison of each of the images with the master image in order to quantify the
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Figure 1. Spectral response patterns for certain target classes. (a) Landsat TM band 1;
(b) Landsat TM band 2; (c) Landsat TM band 3.
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level of agreement between them. The kappa coefficient of agreement suggested that

the correspondence was at best moderate between the master and the 18 July 1999

and 26 June 2000 classifications. The other four classifications only weakly cor-

responded to the master (table 5). These results suggested a low persistence and

stability of classifications representing the differing dates.

Figure 2. Histograms of Landsat TM channel 4 (near-infrared) reflectance for the dense
conifer class in: (a) five within-year TM images of Prince George, British Columbia,
Canada and (b) three near-anniversary, between-year images.
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4. Conclusions

Differences in class area were highly variable over the analysed range of image

acquisition dates when a K-means hyperclustering and labelling procedure was used

in Prince George, British Columbia. In addition, the spectral variability of the

within-year image set was observed to exceed that in the between-year image set.

This is an important finding as it suggests that off-year imagery (acquired on, or

near anniversary dates) may be preferred to off-season imagery when building

large-area Landsat mosaics for land cover classification using the hyperclustering

procedure. When selecting imagery it is important to remain as close to peak

photosynthetic activity as possible. However, because of anomalies such as clouds

and haze, acquisition during these peak times may not be feasible and the results of

this research indicate that users must consider the implications of the selection and

inclusion of an off-season image with caution.
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Table 4. Class areas and maximum difference in class areas using the 3 August 1999 image
as the master (areas calculated with clouds masked).

Class1
Master

(ha)
Minimum

difference (%) Date
Maximum

difference (%) Date

0 545 186 21.73 12 Sep 1999 3.27* (2.30) 31 July 1998
1 30 268 3.60 18 July 1999 262.93* (46.59) 26 June 2000
2 786 783 22.32 20 Sep 1999 237.12 31 July 1998
3 98 232 28.58 26 June 2000 276.82 31 July 1998
4 140 906 23.89 12 Sep 1999 2100.0* (56.87) 18 July 1999
5 80 148 27.44 26 June 2000 171.51* (249.50) 20 Sep 1999
6 49 508 218.39 26 June 2000 2100.0* (247.21) 12 Sep 1999
7 75 250 24.92 26 June 2000 2100.0* (89.08) 31 July 1998
8 10 268 12.49 12 Sep 1999 756.47 20 Sep 1999

*The largest difference was with the snow-covered 29 April 1999 imagery; second largest
difference shown in brackets.

1Classes: 0~unclassified/ice/snow/clouds; 1~water; 2~dense conifer; 3~open conifer;
4~deciduous/shrub; 5~shrub/grass mix; 6~grass; 7~exposed soil; 8~urban/cultural/roads.

Table 5. Kappa coefficient of agreement over all classes using the 3 August 1999 image as
the master.

Date Kappa

31 July 1998 0.3593
29 April 1999 0.3266
18 July 1999 0.5762
12 Sep 1999 0.4485
20 Sep 1999 0.3794
26 June 2000 0.5234
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