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Modeling the contagious distribution of vegetation and species in ecology and biogeog-
raphy has been a challenging issue. Previous studies have demonstrated that the autologistic
regression model is a useful approach for describing the distribution because spatial corre-
lation can readily be accounted for in the model. So far studies have been mainly restrained
to the first-order autologistic model. However, the first-order correlation model may some-
times be insufficient as long-range dispersal/migration can play a significant role in species
distribution. In this study, we used the second-order autologistic regression model to model
the distributions of the subarctic evergreen woodland and the boreal evergreen forest in
British Columbia, Canada, in terms of climate covariates. We investigated and compared
three estimation methods for the second-order model—the maximum pseudo-likelihood
method, the Monte Carlo likelihood method, and the Markov chain Monte Carlo stochastic
approximation. Detailed procedures for these methods were developed and their perfor-
mances were evaluated through simulations. The study demonstrates the importance for
including the second-order correlation in the autologistic model for modeling vegetation
distribution at the large geographical scale; each of the two vegetations studied was strongly
corrected not only in the south-north direction but also in the northwest-southeast direction.
The study further concluded that the assessment of climate change should be performed on
the basis of individual vegetation or species because different vegetation or species likely
respond differently to different sets of climate variables.
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1. INTRODUCTION

Recording the presence/absence of a species or a vegetation type in landscapes is
perhaps the simplest and easiest survey method in biogeography. With the aid of remote
sensing and aerial photogrammetric technologies, information on species occurrence is
increasingly documented by this format (Little 1971; Arnold 1993, 1995; Mitchell-Jones et
al. 1999). In practice, presence/absence data are typically presented in the form of an atlas
map which is divided into a grid system with equal pixel size. Species occurrence and other
covariates in each pixel may or may not be fully observed.

Interests in modeling such atlas data have largely focused on two issues. One is to
smooth or restore an observed atlas in order to estimate the distribution range for a species
(Heikkinen and Högmander 1994; Augustin, Mugglestone, and Buckland 1996; Hoeting,
Leecaster, and Bowden 2000). This restoration procedure is necessary in many occasions
as the occurrence of a species in some pixels is sometimes less certain than others due
to discrepancy in survey intensity in some area, or worse, occurrence information in some
pixels may not be available at all. Another issue is to model the spatial distribution rather than
to estimate the range. This latter emphasis is particularly pertinent if the goal of a study
is to interpret species distribution in terms of covariates, for example, climatic variables
(Box, Crumpacker, and Hardin 1993; Wu and Huffer 1997). On this account, the questions
of interest then are: Why does the species occur there? Which covariates determine its
distribution? and How would its distribution shift if covariates change? It is these questions
that motivate this study, in which we investigate the response of vegetation distribution to
climate change in British Columbia (BC), Canada.

Several methods have been developed for modeling spatially correlated presence/
absence data (Besag 1972, 1974; Albert and McShane 1995; Diggle and Tawn 1998).
Among them, the autologistic regression is perhaps the most widely used one, thanks to the
statistical theory of the model developed by Besag (1972, 1974). Indeed, previous studies
have demonstrated the usefulness of the autologistic regression in modeling binary data with
observed covariates (Augustin et al. 1996; Gumpertz, Graham, and Ristaino 1997; Wu and
Huffer 1997; Huffer and Wu 1998; Hoeting et al. 2000). In these studies, spatial correlation,
a key component in the autologistic regression model, is commonly modeled by considering
the effect of neighboring cells. This structure captures the nature of species dispersal or the
influence of underlying environmental factors that make species occurrence in neighboring
pixels tend more similar than pixels far apart. Several structures can be proposed to reflect
this spatial correlation (Figure 1). Although any of them may be reasonable, previous stud-
ies usually consider no more than the first-order correlation (e.g., Huffer and Wu 1998) or
occasionally consider higher order correlation but depend on the pseudo-likelihood func-
tion for parameter estimation (e.g., Gumpertz et al. 1997). This study employs autologistic
regression to model the distribution of vegetation in BC by considering the second-order
correlation structure. We viewed this as a necessary structure in describing the spatial dis-
tribution of vegetation, because the landscapes in BC are typically featured by mountain
ranges in the northwest-southeast direction, and dispersal/migration processes in the distri-
bution of vegetation/species may impose a long-range effect. First-order correlation models
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Figure 1. Structure of the first-order and second-order neighborhoods. The vertical (γ1) and horizontal (γ2) are
the first-order neighborhoods, whereas the second-order neighborhoods further include the diagonal directions
(γ3: southwest-northeast direction; γ4: northwest-southeast direction).

are not so effective for these geographic structures. In this study three methods were used
to estimate the parameters of the second-order autologistic model, including the maximum
pseudo-likelihood method (Besag 1977), the Monte Carlo likelihood method (Geyer and
Thompson 1992; Geyer 1994; Huffer and Wu 1998) and the Markov chain Monte Carlo
stochastic approximation method (Gu and Kong 1998; Gu and Zhu 2001). Simulation stud-
ies were conducted to compare the performance of the three methods. The model was then
applied to the vegetation data of BC.

2. AUTOLOGISTIC REGRESSION MODEL

Suppose data are recorded at M locations (sites) forming a subset D of a rectangular
lattice. Each site in D is described by coordinates (k, l) specifying the row and column of
the lattice at which it is located. At each site (k, l), we observe a binary response yk,l and
a p × 1 vector of covariates xk,l, where yk,l equals 1 if the site is occupied by vegetation,
otherwise 0. Taken altogether, the M binary responses Y = (yk,l, (k, l) ∈ D) constitute
a map of the distribution of that vegetation type. The second-order autologistic regression
model specifies the conditional probability Prk,l(θ) that yk,l = 1 given all the other values
ym,n ((m,n) �= (k, l)) as follows

Prk,l(θ) = P (yk,l = 1 | all other values) =
exp(fk,l(θ))

1 + exp(fk,l(θ))
, (2.1)

where fk,l(θ) = β0+xTk,lβ1+γ1y
(1)
k,l+γ2y

(2)
k,l+γ3y

(3)
k,l+γ4y

(4)
k,l , θ = (β0, β

T
1 , γ1, γ2, γ3, γ4)T
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∈ Θ (a parameter space for θ), y(1)
k,l is the number of occupied sites in {(k, l − 1), (k, l +

1)}, y(2)
k,l is the number of occupied sites in {(k − 1, l), (k + 1, l)}, y(3)

k,l is the number of

occupied sites in {(k − 1, l − 1), (k + 1, l + 1)}, and y
(4)
k,l is the number of occupied sites

in {(k − 1, l+ 1), (k + 1, l− 1)}. Thus, γ1, γ2, γ3 and γ4 are the parameters for describing
various spatial correlation structures (Figure 1).

Let Pθ be the probability measure of a random map Y = (yk,l, (k, l) ∈ D) generated
from model (2.1). It can be shown that this measurePθ is a member of an exponential family
defined as follows

Pθ(Y) = C(θ)−1 exp{θTT (Y)}, (2.2)

where T (Y) =
∑

(k,l)∈D yk,lx̃k,l, x̃k,l = (1,xTk,l, y
(1)
k,l/2, y(2)

k,l/2, y(3)
k,l/2, y(4)

k,l/2)T and
C(θ) is a normalizing factor. The normalizing constant C(θ) (called the partition function)
is obtained by summing over all possible configurations Y, namely

C(θ) =
∑
all Y

exp{θTT (Y)}.

Let Y0 be the observed map, the log-likelihood function for θ is

�(θ) = �(θ; Y0) = lnPθ(Y0) = θTT (Y0) − lnC(θ). (2.3)

The first and second derivatives of �(θ) are, respectively,

	 �(θ) = T (Y0) − 	lnC(θ) and 	2 �(θ) = − 	2 lnC(θ), (2.4)

where 	 and 	2 are the first and second derivative operators with respect to θ. Using the
identities Eθ[	�(θ; Y)] = 0 and Eθ[	2�(θ; Y)] = −Eθ[	�(θ; Y)⊗2], where Eθ denotes
expectation with respect to the density in (2.2), we can show that

	lnC(θ) = Eθ[T (Y)], (2.5)

	2lnC(θ) = Eθ{T (Y)}⊗2 − {Eθ[T (Y)]}⊗2 = varθ[T (Y)],

where for a vector a, a⊗2 = aaT .

3. ESTIMATION METHODS

This section describes three estimation methods—the maximum pseudo-likelihood
(MPL) estimate, the maximum likelihood estimate (MLE), obtained via the Monte Carlo
likelihood (MCL) method, and the maximum likelihood estimate obtained via the Markov
chain Monte Carlo stochastic approximation method (MCMC-SA), and develop detailed
algorithms for model (2.1). We have developed C-code for computing the above three
estimates with various constraints on (γ1, γ2, γ3, γ4)T . The codes are available upon request
from the authors.
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3.1 MAXIMUM PSEUDO-LIKELIHOOD ESTIMATION

The MPL estimate, proposed by Besag (1977), maximizes the sum of the log pseudo-
likelihood function

�ps =
∑

(k,l)∈D
ln[P (Yk,l = yk,l | all other values)]

=
∑

(k,l)∈D
{yk,lfk,l(θ) − ln[1 + exp(fk,l(θ))]} . (3.1)

Since the objective function in (3.1) is convex in θ, the standard Newton–Raphson algorithm
can be used. The approximate variance for the MPL estimate θ̂MPL is taken to be the diagonal
elements of 

 ∑
(k,l)∈D

Prk,l(θ̂MPL)(1 − Prk,l(θ̂MPL))x̃k,lx̃Tk,l




−1

. (3.2)

However, it should be noted that this estimate does not give a valid variance estimate. The
result should be interpreted cautiously. In addition to being easy to compute, it has been
proved that the MPL estimate is consistent and asymptotically normally distributed (Comets
1992). Although the MPL estimate is very efficient in the case of weak spatial correlation,
it is not so in the case of strong spatial correlation (Diggle et al. 1994).

3.2 MONTE CARLO LIKELIHOOD METHOD

Geyer and Thompson (1992) considered the log-likelihood ratio against a “reference”
point ψ ∈ Θ,

�(θ) − �(ψ) = (θ − ψ)TT (Y0) − ln
C(θ)
C(ψ)

. (3.3)

From (2.2), we have

C(θ)
C(ψ)

=
∫

exp{(θ − ψ)TT (Y)}Pψ(Y)dY. (3.4)

Using Monte Carlo, we can approximate the integral in (3.4) based on a random sample
Y1, . . . ,Yn from Pψ(Y), that is,

C(θ)
C(ψ)

≈ 1
n

n∑
i=1

exp{(θ − ψ)TT (Yi)}. (3.5)

Substituting (3.5) into (3.3), we obtain an approximation to the log-likelihood ratio in (3.3)

�n(θ;ψ) = (θ − ψ)TT (Y0) − ln

[
1
n

n∑
i=1

exp{(θ − ψ)TT (Yi)}
]
.

Directly maximizing �n(θ;ψ) yields the MCL estimate θ̂n.



210 F. HE, J. ZHOU, AND H. ZHU

Define

ωn,θ,ψ(Y) =
exp{(θ − ψ)TT (Y)}∑n
i=1 exp{(θ − ψ)TT (Yi)}

and for any function g, En,θ,ψg(Y) =
∑n
i=1 g(Yi)ωn,θ,ψ(Yi). Using these notations, we

get

	�n(θ;ψ) ≈ T (Y0) − En,θ,ψ[T (Y)], (3.6)

and

− 	2 �n(θ;ψ) ≈ varn,θ,ψT (Y) = En,θ,ψ[T (Y)]⊗2 − [En,θ,ψT (Y)]⊗2.

Based on these results, the Newton–Raphson algorithm can be applied to compute θ̂n.
The details of the algorithm are:

M1: Select an initial value θ0 for θ and a fixed point ψ ∈ Θ.
M2: Generate a random sample Y1, . . . ,Yn from Pψ(Y) using a Gibbs sampler below.

Each site (k, l) is selected in the lexicographical order.
1. Calculate Prk,l(ψ) using (2.1).
2. Generate a random number u uniformly distributed on (0, 1]. If u ≤ Prk,l(ψ),
set yk,l = 1; otherwise, set yk,l = 0.
After updating all sites in D, we treat the observations on D as one map.

Note: An initial map is needed to carry out the above procedure, and we usually
take the observed map Y0. Also a number of burn-in maps are required to reach an
equilibrium state before selecting a random sample (Geyer and Thompson 1992).
In our computation in Sections 4 and 5, 200 burn-in maps were used and a spacing
of 2, that is, every other map generated after that was taken to obtain the random
sample Y1, . . . ,Yn. Experiments with different number of burn-ins and spacing
did not yield different results.

M3: For i ≥ 1, update estimate θi using the Newton–Raphson algorithm

θi = θi−1 − ρ[	2�n(θi−1;ψ)]−1 	 �n(θi−1;ψ), (3.7)

where 0 < ρ = 1/2k0 ≤ 1 for some k0 ≥ 0 such that �n(θi;ψ) ≥ �n(θi−1;ψ).
Repeat this step until θi converges, and at the final step we set θ̂n = θi.

Under some mild conditions, Geyer (1994) showed that θ̂n → θ̂ (MLE) in probability
as n → ∞. The success of the MCL method depends on the choice of ψ. If ψ is far from the
exact MLE, the above method may fail to have a solution. Huffer and Wu (1998) proposed
to use the MPL estimate for the initial value θ0 and reference point ψ.

3.3 MARKOV CHAIN MONTE CARLO STOCHASTIC APPROXIMATION

Gu and Zhu (2001) recently proposed a two-stage stochastic approximation for comput-
ing maximum likelihood estimates for a class of spatial models. Their approach combines
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the methods of adaptive search direction and off-line average. Assume that at the ith iter-
ation θi is the current estimate of θ̂, hi is the current estimate of Eθ̂[T (Y)] and Γi is the
current estimate ofEθ̂{T (Y)}⊗2. In the algorithmm is a preselected integer. In practice, we
suggest choosing m to be about 20M . The two basic steps for the stochastic approximation
for model (2.1) are:

Step 1. At the ith iteration, set Y(i)
1 = Y(i−1)

m . We generate m − 1 maps {Y(i)
j , j =

2, . . . ,m} as follows. We start with map Y(i)
1 and update one randomly selected

site to get the next map Y(i)
2 . Therefore the possible difference between any two

consecutive maps Y(i)
j and Y(i)

j+1 is the value at the randomly selected site. Here is
the detail to update one site.
1. Randomly select a site (k, l) ∈ D with probability 1/|D|.
2. Calculate Prk,l(θi−1) using (2.1).
3. Generate a random number u uniformly distributed on (0, 1]. If u ≤ Prk,l(θi−1),
set yk,l = 1; otherwise, set yk,l = 0.

Step 2. Update θi−1 to θi, hi−1 to hi and Γi−1 to Γi by


hi = hi−1 + γi(
∑m
j=1 T (Y(i)

j )/m − hi−1),

Γi = Γi−1 + γi(
∑m
j=1 T (Y(i)

j )⊗2/m − Γi−1),

θi = θi−1 + γi[Γi − h⊗2
i ]−1[T (Y0) − ∑m

j=1 T (Y(i)
j )/m].

(3.8)

Note that the last formula in (3.8) is just the stochastic approximation version of the
Newton–Raphson update of (3.7). The main procedure is implemented as follows.

Stage I. Choose an initial point θ0, an initial matrix Γ0, an initial vector h0 and an initial
spatial configuration Y(0)

m , set i = 1 and iterate Steps 1 and 2 with i = 1, . . . ,K1.
The gain constants are defined by

γi = γ1i = b1/(ia1 + b1 − 1), i = 1, . . . ,K1,

where K1 ≥ K0 is determined by

K1 = inf

{
K ≥ K0,

∥∥∥∥∥
K∑

i=K−K0+1

Sign(θi − θi−1)/K0

∥∥∥∥∥ ≤ η1

}
, (3.9)

in which ‖ · ‖ denotes the commonly used L2 norm. The function Sign(θ) is a
vector of 1, 0 or −1 according to whether the component of θ is positive, zero or
negative respectively. The integers b1 and K0, the real numbers a1 ∈ (0, 1) and η1

are preassigned constants. Gu and Zhu (2001) suggested to choose a1 to be close to
zero, b1 to be relatively large, and η1 to be a relatively small value, say a1 = 0.3,
b1 = 5 and η1 = 0.1.
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Stage II. Take the final values of θ, h, Γ and Y of Stage I as its initial values. We iterate
Steps 1 and 2 with i = 1, . . . ,K2. The gain constants are defined by

γi = γ2i = b2/(ia2 + b2 − 1), i = 1, . . . ,K2,

where the integer b2 and the real number a2 ∈ (1/2, 1) are preassigned. We choose
a2 close to 1/2, and a small integer for b2, say a2 = 0.8 and b2 = 2. At the same
time, an averaging procedure is used with θ̃0 = θ0, h̃0 = h0 and Γ̃0 = Γ0,

θ̃i = θ̃i−1+(θi−θ̃i−1)/i, h̃i = h̃i−1+(hi−h̃i−1)/i, Γ̃i = Γ̃i−1+(Γi−Γ̃i−1)/i.

Taking account of a possibly large Monte Carlo error, Gu and Zhu (2001) defined
the following criteria function to determine K2,

∆̂i = (T (Y0) − h̃i)T
[
Γ̃i − h̃⊗2

i

]−1
(T (Y0) − h̃i) + tr

{[
Γ̃i − h̃⊗2

i

]−1
Σ̂i

}
/i,

where Σ̂i denotes the sample covariance of {∑m
j=1 T (Y(k)

j )/m, k = 1, . . . , i} and
K2 is defined as

K2 = inf
{
i, ∆̂i ≤ η2

}
,

where η2 (usually taken to be around 0.002) is a preassigned small number. After
the K2th iteration, we use the off-line average (θ̃K2 , h̃K2 , Γ̃K2) as our final estimate
of (θ̂, Eθ̂[T (Y)], Eθ̂{T (Y)}⊗2).

Note: In practice, to save computer time, we can run an MCMC-SA algorithm with
a relatively large η1, for example, η = 0.05, and then use the obtained (rough)
estimate as the starting value to obtain the MCL estimate. This approach is very
useful for a large dataset and large K2. Moreover, the Step 2 in the MCMC-SA
algorithm can be regarded as a stochastic version of the Newton–Raphson update
given in (3.7).

Gu and Zhu (2001) showed that, as K2 → ∞,

(θ̃K2 , h̃K2 , Γ̃K2) −→ (θ̂, Eθ̂[T (Y)], Eθ̂{T (Y)}⊗2) in probability.

3.4 GOODNESS-OF-FIT STATISTICS

After estimating the parameters in the autologistic model, we can obtain an estimate
of the conditional probability Prk,l(θ̂) in (2.1) at each site (k, l) ∈ D. Based on these
probabilities, we considered three goodness-of-fit statistics:

1. sum of the absolute errors: SAE =
∑

(k,l)∈D |yk,l − Prk,l(θ̂)|/M,

2. sum of the squares of errors: SSE =
∑

(k,l)∈D(yk,l − Prk,l(θ̂))2/M,

3. sum of correct predictions: SCP =
∑

(k,l)∈D δ(yk,l, ŷk,l),
where δ(·, ·) is the Kronecker function and

ŷk,l =

{
1, Prk,l ≥ 0.5,
0, Prk,l < 0.5.



AUTOLOGISTIC REGRESSION MODEL FOR THE DISTRIBUTION OF VEGETATION 213

Adequate fits have small SAE and SSE and large SCP. The AIC for MCMC-SA was calcu-
lated following Huang and Ogata (2001).

4. SIMULATION STUDY

To compare the MCMC-SA algorithm with MPL and MCL, we considered the follow-
ing autologistic regression model on a 40×40 lattice

fk,l(θ) = β0 + β1xk,l + γ̃1(y
(1)
k,l + y

(2)
k,l ) + γ̃2(y

(3)
k,l + y

(4)
k,l ),

where xk,l = 2.5 × sin(0.1 × (k + l)). Thus, we have four parameters to estimate. In the
simulation study, we set β0 = 1, β1 = −1 and

(γ̃1, γ̃2) ∈ {(0, 0), (0.5, 0.5), (0.5,−0.5), (−0.5,−0.5), (−0.5, 0.5)}.

Parameter β1 = −1 represents a strong covariate effect, and (γ̃1, γ̃2) ranges in four different
directions. The corner sites only have three neighbors, and the sites along the edges have
five neighbors. To simulate the process, we used the Gibbs sampler. The initial state of the
process was taken at random such that yk,l at each site (k, l) was taken independently to be
1 or 0 with 1/2 probability. We repeated the Gibbs sampler 2001 times (2001 Monte Carlo
steps) to ensure that the equilibrium states were achieved.

For each parameter vector θ = (β0, β1, γ̃1, γ̃2)T , we generated N = 500 datasets.
We applied the proposed three methods to obtain estimates of θ for each pseudo-observed
dataset. For the MPL method and the MCMC-SA algorithm, the initial value of θ was set at
(0, 0, 0, 0). The MPL estimate was used as the starting value and the reference point for the
MCL method. In fact, we took the first step θ1 of the Newton–Raphson iteration as a new
value for θ to generate another random sample from the Gibbs sampler. This is different
from Huffer and Wu (1998) who used θ1 only when the sample produced using the MPL
did not lead to adequate estimates.

For the MCL method, the random samples were generated from a Gibbs sampler
described in Section 3.2. We used a burn-in of 200 iterations and a spacing of 2. A total of
10,200 (40×40) random samples were generated, and only 5,000 random samples were used
to obtain the MCL estimates. In the MCMC-SA algorithm, we set (a1, a2, b1, b2,m,K0, η1,

η2) as (0.30, 0.60, 4.0, 1.0, 20,000, 200, 0.144, 0.001), h0 = 0 and Γ0 = I the identity
matrix.

To compare the performance of the proposed approaches, we examined only univariate
aspects of the sampling distribution of the four estimates based on the 500 parameter esti-
mates. These included the estimated sample mean (ESM), the estimated sample standard
deviation (ESD), the mean of the standard error estimates (MSD), the skewness coefficient
(SK) g1 = m3/m

3/2
2 and the excess kurtosis coefficient (KT) g2 = m4/m

2
2 − 3, where

m2,m3 and m4 are the estimated centered sample moments. The ratio of ESD over MSD
can be used to check accuracy of the standard error estimates, whereas the coefficients of
skewness and excess kurtosis are used to test the hypotheses that the obtained estimates come
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Table 1. Summary Statistics for 500 Samples Simulated from the Scenario with True Parameters:
(βT, γ) = (1, −1, 0.5, 0.5). ESM: the estimated sample mean, ESD: the estimated sam-
ple standard deviation, MSD: the mean of the standard error estimates, SK: the skewness
coefficient, KT: the kurtosis coefficient, 95%, 90%, 70%, 50%, 10% are the true confidence
levels.

ESM ESD MSD SK KT 95% 90% 70% 50% 10%

MPL
β0 1.180 0.784 0.733 0.349 −0.194 0.954 0.874 0.668 0.470 0.084
β1 −1.047 0.189 0.192 −0.875 1.324 0.970 0.942 0.734 0.508 0.104
γ̃1 0.509 0.283 0.199 0.228 −0.078 0.842 0.750 0.524 0.380 0.058
γ̃2 0.468 0.240 0.182 −0.204 −0.227 0.848 0.784 0.582 0.372 0.082

MCL
β0 1.174 0.725 0.722 0.426 −0.057 0.970 0.912 0.686 0.504 0.086
β1 −1.041 0.184 0.180 −0.954 1.652 0.958 0.938 0.736 0.492 0.110
γ̃1 0.495 0.267 0.266 0.198 −0.155 0.960 0.904 0.678 0.494 0.100
γ̃2 0.483 0.223 0.227 −0.135 −0.163 0.958 0.906 0.708 0.486 0.124

MCMC-SA
β0 1.173 0.725 0.720 0.436 −0.044 0.962 0.912 0.686 0.502 0.088
β1 −1.041 0.184 0.179 −0.962 1.684 0.958 0.934 0.732 0.498 0.106
γ̃1 0.495 0.268 0.266 0.193 −0.154 0.956 0.890 0.676 0.492 0.096
γ̃2 0.482 0.223 0.227 −0.136 −0.178 0.960 0.900 0.708 0.484 0.114

from a normal distribution. Under the normal assumption and when N is large enough, g1

and g2 are approximately normally distributed with mean zero and standard error (6/N)1/2

and (24/N)1/2, respectively. In our simulation study, N = 500 and the standard deviations
of g1 and g2 are, respectively, 0.11 and 0.22. Formula (3.2) was used to obtain an estimate
of the covariance matrix for the MPL estimate. The inverse of the observed information
matrix was used as an estimate of the covariance matrix for the MLEs via the MCL and
MCMC-SA methods.

Like g1 and g2, ri = (θ̂i − θi)/σ̂i is also approximately N(0, 1), where θ̂i is the ith
element of vector θ̂ and σ̂i is the standard error for θ̂i. Therefore we can form the (1 − α)
confidence interval for θi using θ̂i±zα/2σ̂i, where zα/2 is the normal quartile corresponding
to the (1 − α) confidence level. Based on the obtained parameter estimates and standard
error estimates, for each set of parameter values, we can construct confidence intervals and
calculate the actual coverage probabilities of the 95%, 90%, 70%, 50%, and 10% confidence
intervals. The exact Binomial two-sided test is used to test the hypothesis that the coverage
probabilities are equal to the nominal levels. Under the level of significance α = 0.05, the
critical values for the various confidence levels are: 95%(0.930, 0.969), 90%(0.872, 0.926),
70%(0.659, 0.740), 50%(0.456, 0.544) and 10%(0.074, 0.128).

The results for one of the five simulation scenarios are illustrated in Table 1, similar
results were obtained for other simulations. From the simulations, we seem to be able to
make the following conclusions. (i) The MCL and MCMC-SA algorithms are superior to
that of MPL in terms of the accuracy of the standard error estimates and of the estimated
sample standard deviations. The estimates from MCL and MCMC-SA are often too close
to be distinguishable. (ii) In comparison with the MCL and MPL methods, the MCMC-SA
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Figure 2. Distribution of the subarctic evergreen woodland in BC. The top maps are the observed and fitted
distributions and the bottom maps are the effect of the increase in degree-days (X2) on the distribution of the
woodland, all produced using the reduced model in Table 2.

algorithm demands much more computer time, although the latter algorithm possibly has
more chance to find the true MLE’s in a certain sense. According to our experience, adjusting
η2 is important in improving the estimate. We suggest choosing η2 ∈ (0.001, 0.01] which
works very well in most cases in this study. (iii) Our simulations show that the MCL method
works well if the MPL estimates are used as a starting point, confirming the conclusion of
Huffer and Wu (1998).

5. APPLICATIONS

Understanding the relationship between the geographical distribution of vegetation
and climatic variables is essential in studying the potential effects of climate change on
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Figure 3. Distribution of the boreal evergreen forest in BC. The top maps are the observed and fitted distributions
and the bottom maps are the effect of the increase in temperatue (X1) on the distribution of the boreal forest, all
produced using the reduced model in Table 3.

vegetation. The data we analyze are from an earlier study that addressed the vegetation
distribution of all of Canada from ecophysiological perspectives (Lenihan and Neilson
1993). In this study we concentrate on modeling the distributions of two types of vegetation
in British Columbia in terms of five climatic variables. Our particular goal at this point is
to develop suitable estimation methods for the second-order autologistic model. The two
vegetation types are the subarctic evergreen woodland and the boreal evergreen forests in
the form of an atlas map with pixel resolution 0.5◦ latitude ×0.5◦ longitude (Figures 2 and
3). There are total of 707 grid cells. The subarctic evergreen woodland is the broad ecotone
between tundra (at higher elevation) and closed forest (at lower elevation), that is, between
the tree line and the continuous forest line. The boreal evergreen forest is dominated by
black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss),
jack pine (Pinus banksiana Lamb.) and balsam fir (Abies balsamea (L.) Mill.), and occupies
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the central mountainous region and the northeastern upland.
In each 0.5◦ × 0.5◦ pixel, there are records for each of the following five climatic

variables: absolute minimum temperature (◦C) for the coldest month (X1), annual degree-
days with base temperature = 0◦C (X2), total actual evapotranspiration (mm) for summer
months (X3), annual soil moisture deficit (mm) (X4) and annual snowpack (mm) (X5). These
variables were commonly derived from two fundamental climatic factors: temperature and
precipitation on a monthly basis for a 30-year period [see Lenihan and Neilson (1993)
for further details]. These variables are expected to be among those that determine the
distribution of vegetation at the geographical scale and they are also the variables likely to
respond to global warming.

The three estimation methods detailed in Section 3 were applied to produce estimates
for the second-order autologistic model of the two vegetation types. The initial values for
the MPL and MCMC-SA methods were set to be θ0 = 0 whereas the initial values and the
reference point for the MCL method were the MPL estimates. For the MCL method, we
used a burn-in of 200 iterations and a spacing of 2. A total of 10,200 random samples were
generated, but only 5,000 random samples were used. In the MCMC-SA algorithm, we set
(a1, a2, b1, b2,m,K0, η1, η2) = (0.4, 0.8, 2.0, 1.0, 10000, 100, 0.1, 0.001), h0 and Γ0 = I

the identity matrix. However, for the boreal evergreen forest, using the MPL estimate as
the reference point for the MCL estimate did not yield reasonable results. Thus, the MLEs
obtained from the MCMC-SA algorithm were instead used as the reference point for the
boreal forest. The estimated results are presented in Tables 2 and 3. For comparison, the
results for the standard logistic regression assuming no spatial correlation and for the first-
order logistic regression are given in the tables. Furthermore, for the application purpose,
reduced models estimated via the MCMC-SA are also presented in the tables for the sub-
arctic woodland and the boreal forest, respectively. It is worth mentioning that the nearly
identical reduced models were also produced using the MCL.

The various goodness-of-fit statistics and the AIC in Tables 2 and 3 show that the
second-order regression model improves the fitting of the standard and the first-order logistic
models to the data and is consistent with the results of Huang and Ogata (2001). For both
the subarctic evergreen woodland and the boreal forest, only γ1 and γ4 are significant
according to the outputs of the full models of MCL and MCMC-SA and the corresponding
reduced models (Tables 2, 3). This spatial structure is rather reasonable considering the
geographical variation of BC. The significance of γ1 describes the south-north tendency in
the distribution of vegetation, echoing the climate gradient from south to north, whereas
the significance of γ4 reflects the distribution of landscapes and vegetation in BC which
typically lay in the northwest-southeast direction. In contrast, the variation in west-east and
northeast-southwest directions is not important to the vegetation. In addition to the spatial
coefficients, degree-days (X2) seems to be most important in limiting the distribution of the
subarctic woodland, suggesting that the accumulation of physiological heat is critical for
the vegetation. The other significant variable is the depth of snowpack (X5) which is known
to control the upper limit (i.e., the tree line) of the subartic woodland. For the boreal forest,
the temperature for the coldest month (X1) and the degree-days (X2) significantly restrain
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the distribution of the forest, suggesting that the heat sum (X2) and the lethal temperature
(X1) together determine the boreal forest.

From resource management and policy-making perspectives, there is enormous inter-
est in projecting the redistribution of vegetation at various global warming scenarios. It is
predicted that an enhanced greenhouse effect (e.g., the doubling of atmospheric concentra-
tion of CO2) would increase the global mean temperature from 1.5 to 4.5◦C in the future
30 to 50 years, while the increase in temperature in Northern Hemisphere might be even
as high as 5-9◦C (Lamb 1977; Houghton, Jenkins, and Ephraums 1990). One advantage
of the autologistic regression model is that the climate change effect can be easily quantified

Table 2. Estimation Results for the Subarctic Evergreen Woodland in BC. EST: estimate, SD: standard
deviation. The reduced model was estimated using the MCMC-SA algorithm.

Logistic model (MLE)
β0 X1 X2 X3 X4 X5

EST 1.5510 0.0011 −0.0012 −0.0027 −0.0032 −0.0011
SD 1.1045 0.0214 0.0005 0.0069 0.0028 0.0003

SAE SSE SCP AIC Iteration
0.382 0.193 469 805.365 5

First-order auto-logistic model (MCMC-SA)
β0 X1 X2 X3 X4 X5 γ1 γ2

EST −0.8741 0.0106 −0.0007 0.0021 −0.0004 −0.0004 1.1987 0.7797
SD 0.8395 0.0145 0.0003 0.0048 0.0019 0.0002 0.1832 0.1722

SAE SSE SCP AIC Iteration
0.313 0.164 535 736.44 2548

Second-order auto-logistic model
β0 X1 X2 X3 X4 X5 γ1 γ2 γ3 γ4

MPL

EST −1.0611 0.0184 −0.0011 0.0094 0.0014 −0.0004 0.7339 0.5316 0.3168 0.5659
SD 1.3640 0.0246 0.0005 0.0077 0.0030 0.0004 0.1403 0.1558 0.1571 0.1507

SAE SAE SCP Iteration
0.311 0.157 537 5

MCL

EST −1.1001 0.0124 −0.0006 0.0019 −0.0002 −0.00036 1.0121 0.3213 0.2931 0.5896
SD 0.8743 0.0137 0.0004 0.0052 0.0019 0.0002 0.2502 0.2436 0.2098 0.2285

SAE SSE SCP Iteration
0.311 0.157 537 5

MCMC-SA

EST −1.2147 0.0109 −0.0007 0.0029 0.0001 −0.0003 0.9677 0.3254 0.2851 0.6070
SD 0.7959 0.0134 0.0003 0.0044 0.0017 0.0002 0.2055 0.2347 0.2033 0.2021

SAE SSE SCP AIC Iteration
0.312 0.159 533 729.77 3087

Reduced model

EST − − −0.0012 − − −0.0008 0.8234 − − 0.5216
SD − − 0.0001 − − 0.0002 0.1559 − − 0.1511

SAE SSE SCP Iteration
0.324 0.163 529 2688
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through odds ratio of the conditional probabilities. For example, if the minimum temper-
ature X1 increases by one degree while other variables remain constant, the odds ratio of
the conditional probabilities of vegetation presence is supposed to increase by a factor eβ1 .
For the boreal evergreen forest, β1 = −0.1404 according to the reduced model (Table
3) that equates the odds ratio of 0.8690 (= e−0.1404) for increasing 1◦C in temperature,
that is, the odds of forest presence in each 0.5◦ latitude ×0.5◦ longitude cell will decrease
approximately by 13.10% with a 95% confidence interval (7.34%, 18.86%). This result
suggests that the boreal evergreen forest in BC will be reduced by global warming. Simi-
larly, if degree-days (X2) increases 350 (approximately equivalent to 1◦C increase in daily

Table 3. Estimation Results for the Boreal Evergreen Forest in BC. EST: estimate, SD: standard devi-
ation. The reduced model was estimated using the MCMC-SA algorithm.

Logistic model (MLE)
β0 X1 X2 X3 X4 X5

EST −23.3924 −0.3654 0.0031 0.0306 0.0040 −0.0095
SD 2.4621 0.0482 0.0008 0.0118 0.0043 0.0019

SAE SSE SCP AIC Iteration
0.162 0.078 631 383.49 9

First-order auto-logistic model (MCMC-SA)
β0 X1 X2 X3 X4 X5 γ1 γ2

EST −11.0660 −0.1180 0.0014 0.0075 0.0004 −0.0020 2.3902 0.8973
SD 1.8504 0.0373 0.0006 0.0083 0.0027 0.0012 0.3430 0.2463

SAE SSE SCP AIC Iteration
0.095 0.048 657 280.55 4646

Second-order auto-logistic model
β0 X1 X2 X3 X4 X5 γ1 γ2 γ3 γ4

MPL

EST −13.1997 −0.1263 0.0012 0.0204 0.0029 −0.0008 2.2362 0.0305 0.5001 1.1820
SD 3.4094 0.0705 0.0012 0.0018 0.0060 0.0020 0.3529 0.3545 0.3370 0.3504

SAE SSE SCP Iteration
0.087 0.046 662 8

MCL

EST −10.9824 −0.1099 0.0013 0.0099 0.0008 −0.0022 2.2699 0.3567 −0.2709 1.0795
SD 1.7925 0.0346 0.0006 0.0082 0.0027 0.0011 0.3876 0.5546 0.4065 0.4145

SAE SSE SCP Iteration
0.092 0.046 661 3

MCMC-SA

EST −10.9264 −0.1096 0.0013 0.0095 0.0008 −0.0019 2.2634 0.3612 −0.2796 1.0671
SD 1.8074 0.0363 0.0006 0.0084 0.0027 0.0012 0.3868 0.5541 0.4094 0.4198

SAE SSE SCP AIC Iteration
0.092 0.046 661 276.96 4546

Reduced model
EST −12.1182 −0.1404 0.0017 − − − 2.3385 − − 1.3289
SD 1.8532 0.0335 0.0003 − − − 0.3302 − − 0.2573

SAE SSE SCP Iteration
0.092 0.046 656 4460
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temperature), the odds ratio for the subarctic woodland is 0.6610 (= e−0.4140), that is, the
presence of the woodland in each cell is estimated to be reduced by 33.90% with a 95%
confidence interval (29.4%, 38.60%). The impacts of climate change on the distributions
of the two vegetations assessed using the reduced models are shown in Figures 2 and 3.

6. DISCUSSION

The logistic regression model has been used to model spatially correlated binary data
in two different ways. One is the so-called marginal model in which spatial correlation
is explicitly defined by fitting theoretical variogram models (Albert and McShane 1995;
Gotway and Stroup 1997; Gumpertz, Wu, and Pye 1999). Another is the autologistic model
studied in this article that models incidence probability by conditioning on the incidence
in neighboring cells. In this study we focused on comparing three estimation methods
for the second-order autologistic regression model in the application to the distribution of
vegetation.

The MCL and MCMC-SA methods give nearly identical results in all aspects of es-
timation including ESM, ESD, and goodness-of-fit statistics both in the simulations and
applications, while the MPL tends to produce somewhat different results. Based on the
various goodness-of-fit statistics, the fit to the two vegetation types by the MPL estimates
seems no worse than those obtained from the MCL and MCMC-SA methods. This result
suggests that the MPL may be sufficient for most applications if statistical inference is not
the major concern. However, proper precaution is necessary when using these goodness-
of-fit statistics since it is not yet known what is the best way to measure the goodness-of-fit
for autologistic models.

In all simulation studies, we used the MPL estimates as initial values and reference
points for the MCL method and the algorithm worked well as suggested by Huffer and
Wu (1998). However, for the boreal forest the MCL method using the MPL estimates as
a starting point failed to produce reasonable results. The problem is likely caused by the
large differences in β0 and γ3 between the MPL and the MCL methods (Table 3). This
finding suggests that the MCL algorithm may not converge when the MPL estimates as
initial values are not close enough to the resulting MCL estimates. This is not unusual with
real data involving large spatial correlations or many covariates. For such data it frequently
happens that the MPL estimates gives a bad reference point which leads the MCL algorithm
to produces either no parameter estimates at all (the program crashes) or very bad ones.
As suggested by a reviewer, when this happens various ad hoc approaches may be used to
find a better reference point (e.g., Geyer and Thompson 1992). Huffer and Wu (1998) used
the first step of the Newton–Raphson output as a new reference point. A better approach
sometimes used is to obtain the reference point by a crude Robbins–Monro style stochastic
approximation scheme. Stage I of the MCMC-SA algorithm is probably an excellent way
to obtain these reference points, as suggested by the reviewer.

In summary, this study aims to evaluate the usefulness of the autologistic regression
model for modeling the impacts of climate change on the distribution of vegetation and
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species, and to compare the three algorithms. The results suggest that for species distribu-
tion data any of the three methods is probably adequate in estimating the autologistic model
although the Monte Carlo likelihood method is favored because of its superior performance
in the simulations. In our experience, the Markov chain Monte Carlo stochastic approxi-
mation is the most robust one. It worked rather well even for some very “nasty” problems
(e.g., highly correlated data) on which both the pseudo-likelihood method and the Monte
Carlo likelihood method failed. The disadvantage of the stochastic approximation method
is its high demand on computation time. Considering the superiority and disadvantage of
MCMC-SA, an ideal approach may be to combine the MCMC-SA and MCL algorithm as
follows: compute the parameter estimates via MCL, but use the first stage of the MCMC-SA
algorithm to compute the reference point required by MCL.

The applications of the autologistic regression model to the vegetation in BC have led
to an important conclusion for studying the impact of climate change: different vegetation
or species likely respond differently to different sets of climate variables. The effective
assessment of climate change should be performed on the basis of individual vegetation or
species.
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