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Abstract National estimates of deforestation rates may
be based on a survey. Precise estimation requires an
efficient design. When deforestation rates are low
(<1%) large sample sizes are required with traditional
sampling designs to meet a precision target. This study
explores the efficiency of adaptive cluster sampling
(ACS) for this estimation problem. The efficiency is as-
sessed by simulated ACS sampling from 18,200 ·
200 km populations with 78–10,742 deforestation poly-
gons (DFP) of different shape and size and average 10-
year deforestation rates between 0.2% and 1.0%. Each
population is composed of four million square 1 ha
population units (PU) in a regular grid. Relative root
mean square errors (RMSE) of ACS were, depending on
sample size, 30–50% lower than comparable errors with
simple random sampling (SRS) designs. ACS achieves
this advantage by adaptively adding PUs to an initial
SRS sample of size n. Realized ACS sample sizes were,
on average, twice the nominal size (n). Three measures of
ACS efficiency indicated that the costs of adaptively
increasing the sample size are critical for the effectiveness
of ACS. Population effects were manifest in all estima-
tors. Estimates of the abundance, size, and shape of
DFPs will allow a prediction of these effects. Popula-
tions dominated by a few large DFPs were clearly
unsuited for ACS. The performance of ACS relative to
that of SRS was similar across plot sizes of 1, 10, and
40 ha. The general conclusion of this study is that the
lower RMSE of ACS remains attractive when the
average cost of adaptively adding a PU to the initial
sample is low relative to the average cost of sampling a
PU at random.

Keywords Design efficiency Æ Network sampling Æ
Expected sample size Æ Predicted efficiency

Introduction

National and regional estimates of totals or densities of
rare species, events, or attributes in forested ecosystems
are critically needed for a sustainable resource man-
agement, monitoring and control, and assessments of
biodiversity, diseases, and ecological integrity. The per-
manent loss of forested lands to non-forest use caused
by human activity is an example of a topical rare event
(Koop and Tole 2001) with global significance (Fitz-
simmons 2002; Stier and Siebert 2003). National esti-
mates of deforestation areas are needed, primarily in
countries that are signatories to the Kyoto Protocol
(Dessai and Schipper 2003; Leaf et al. 2003). Local
deforestation areas, henceforth called deforestation
polygons (DFP) sum to national and regional defores-
tation areas. A periodic census of DFPs would deliver an
estimate correct to within the bounds of measurement
errors (Levy and Milne 2004), an ideal that is rarely
possible; instead estimates can be obtained from some
sort of sampling.

Choosing an effective sampling strategy for the
estimation of the density of a rare species, event, or
attribute is a challenge. Only reliable estimates provide
the information needed for effective policies and man-
agement of forest ecosystem resources. Imprecise esti-
mates can distort issues and policies if acted upon.
Sample sizes needed to achieve a desired precision are
often large and expensive (Green 1993; Madden and
Hughes 1999; Christman 2000; Venette et al. 2002).
Survey designers meet this challenge with stratified,
sequential, or inverse sampling strategies (Christman
2000; Christman and Lan 2001; Su and Quinn 2003),
or unequal probability sampling (Ståhl et al. 2000;
Williams 2001a). The variance efficiency of these de-
signs often depends critically on the population struc-
ture (Lo et al. 1997; Brown and Manly 1998; Acharya

Communicated by Michael Köhl
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et al. 2000; Hanselman et al. 2003; Smith et al. 2003;
Brown 2003).

Adaptive cluster sampling (ACS) has been suggested
as an efficient sampling design for estimation of the
population density of a rare attribute when the spatial
distribution of the attribute is aggregated (Thompson
1990, 1991a, 1991b). An attribute has a spatially
aggregated distribution when there is a positive corre-
lation between the presence/absence of the attribute in
spatially adjoining population units (PU) (Upton and
Fingleton 1985). Here, the attribute is presence/absence
of deforestation, the attribute value is the area of
deforestation (DFA), and a PU is a square piece of land
with a fixed constant area. Clearly, the spatial distribu-
tion of the attribute depends on the size of the PU and
the size distribution of the DFPs. Each DFP is inter-
sected by one or more spatially contiguous PUs, with the
actual number depending on the PU area. The defores-
tation areas in each of the intersecting PUs are non-zero
and their sum is equal to the area of the intersected DFP
(within rounding). When the area of a PU is a fraction of
the average area of a DFP, the spatial distribution of the
attribute deforestation is clearly aggregated at the scale
of the PU.

The concentration of DFPs in and around centers of
human economic activity may create another aggregated
spatial distribution of DFPs at the scale of economic
activity zones (Sader et al. 2001; Srivastava et al. 2002;
Fitzsimmons 2002; Evelyn and Camirand 2003; Fuller
et al. 2004). The purported efficiency of ACS is for
populations where spatial aggregation of the attribute is
at the level of PUs. In this study, we assess the efficiency
of ACS when the size of a PU is about one half the size
of an average DFP.

In ACS, the data collection procedure depends on the
data collected. Data collection begins with a simple
random sampling (SRS) of a fixed number of PUs. In
locations where the attribute is observed in a sampled
PU, additional PUs are added to the sample according
to a specific set of rules. The benefit is a larger yield of
sampled PUs with the rare attribute and consequently
more precise estimates of population parameters asso-
ciated with the attribute—a benefit that comes at the
expense of an uncontrolled increase in the number of
sampled PUs. The magnitude of the increase will depend
on the spatial distribution of the attribute (Lo et al.
1997; Acharya et al. 2000; Hanselman et al. 2003; Smith
et al. 2003; Brown 2003). Capping the number of PUs
sampled by a stopping rule has proven difficult and
invariably introduces a bias in estimates of population
parameters (Mohammad and Seber 1997; Morgan 1997;
Brown and Manly 1998; Christman and Lan 2001;
Pollard et al. 2002; Su and Quinn 2003).

Practical experience with ACS for estimating the
density of a rare forest resource attribute remains scant.
To our knowledge only two studies have been published:
one for the estimation of the density of three rare tree
species in a 40-ha forest in Nepal (Acharya et al. 2000),
and the other for a simulated point sampling of tree

species densities with a variable plot radius within a
3.1 ha mixed species stand in Maine (Roesch 1993).
Both confirmed the potential (variance) efficiency of
ACS but also pointed to the risk of cost overruns due to
the adaptive increase in sample size. To assess the
effectiveness of ACS, relative to that of SRS, for a re-
gional (national) estimation of deforestation rates, this
study compares bias, root mean square errors (RMSE),
and variance efficiency (E) of ACS and SRS in simulated
sampling. Sampling is from 18 artificial populations
representing an important range of presumed variation
in sizes, shapes, and spatial distribution of DFPs in
Canada. We also explore the potential for predicting the
sampling variance and thus the efficiency of ACS from
descriptive statistics of DFP attributes.

Materials and methods

Populations

Eighteen artificial spatial populations of DFPs were
studied. Each population covers an area of 200 ·
200 km2. The number, area, shape, and spatial distri-
bution of DFPs in these 18 populations are presumed to
mirror an important range of concurrent regional dec-
adal deforestation patterns in Canada. The patterns
were derived from a variety of sources, including actual
decadal deforestation events obtained from multi-tem-
poral analysis of satellite images and aerial photogra-
phy, known landscape patterns, and expert knowledge.
Each population contains between 78 and 10,742 DFPs
(median 1,540). The outline (shape) of a DFP is ‘‘rect-
angular,’’ ‘‘linear,’’ or ‘‘irregular.’’

DFPs were placed at random inside the population
area with a correction for overlap. A fraction (0.2, 0.4,
0.5, 0.6, 0.7, 0.9, or 1.0) of the DFPs were placed inside
square areas with a higher than average density of
DFPs. The size of the high-density areas varied from 25
to 2,500 km2 and in numbers from 2 to 243 per popu-
lation with a marked tendency to an inverse relationship
between their frequency and size. Table 1 summarizes
statistics on the number and areas of DFPs. A sample of
representative DFPs is in Fig. 1. The DFPs in this figure
have been scaled for display purposes only. The spatial
and area distribution of DFPs in four randomly selected
populations are portrayed in Fig. 2.

Defining population units

A population is assumed to exist in the form of a clas-
sified binary (deforestation, no deforestation) image. In
practical applications, only the outline of the population
and the sampled parts of the image will be known; non-
sampled parts remain, in principle, unknown. The
sampling design for estimation of population-specific
deforestation rates can be based on a point sampling of
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image locations (each population is composed of an
infinite number of points), or on a sampling frame which
uniquely subdivides the image of the population into a
finite set of units of known size, shape, and location
(Särndal et al. 1992). We chose the latter as ACS is
conveniently suited for implementation when the sample
frame is fixed. For the sample frame to be fixed, the unit
size, the unit shape, and the unit locations must be un-
iquely defined for all units in the population. Practical
and statistical considerations and context dictates the
choice of units. A frame constructed by a tessellation of
the image of a population into a regular grid of square
cells appeals on grounds of simplicity, convenience, and
congruence with remotely sensed imagery.

In the current study, there is no natural subdivision of
the population into PUs. Given that ACS can only be
efficient if a majority of the DFPs have an area larger
than that of a PU (Thompson 1990), we chose a unit size
that would be smaller than the median DFP of all 18
populations (2.1 ha) but also larger than the average of
the smallest 5% DFPs (0.51 ha). We chose—mainly for
reasons of computational convenience—a unit size of
100 · 100 m2 (1 ha). Although a survey designer would
not have access to an area distribution of DFPs, subject
knowledge would exist to guide the choice of PU. A
preliminary study indicated that the relative perfor-
mance of ACS and SRS, in terms of variance efficiency,
was only slightly affected by the choice of PU size, at
least as long as the area of a square PU was between 0.25
and 4 ha. With the choice of a 1-ha square PU, the
sample frame becomes a regular grid of N= 4 · 106 PUs
in 2,000 rows and 2,000 columns.

The DFA in each of the 4 million PUs was deter-
mined by intersecting the DFPs with the PUs. Parti-
tioning of the area of a DFP to PUs was done to
an accuracy of ±5 m2. After partitioning the total

deforestation areas to individual PUs, a calibration of
PU deforestation areas was done to ensure that their
total matched that of the total of the DFP areas. At the
scale of a PU, the size of a DFP is defined as the number
of PUs intersecting the DFP. The deforestation rate of a
PU is the 10-year deforestation area (unit: ha) in the PU
divided by the area of the PU (1 ha).

Sample plots

Sample plots are composed of one to several spatially
contiguous PUs. We assess the performance of plots
composed of m PUs (m = 1, 10, or 40). The multi-unit
plots are columnar plots formed by stacks of 10 and 40
PUs. They emulate adaptive line sampling. It is known
that for a given plot area, a long narrow plot is more
(variance) efficient than square plot of the same size
(Correll and Cellier 1987; Magnussen 2001). For each
plot size (m), the number of plots M in the population is
M= N · m�1 or, specifically, 4 · 106, 25 · 104, and 105.

Sampling objectives and sampling attribute

Our sampling objective is the estimation of population-
specific 10-year rates of deforestation (lDFA) defined
here as the total 10-year deforestation area divided by
the area of the population. In our study, lDFA is
equivalent to a density estimate since the DFPs embody
the 10-year total of deforestation. In the context of this
study, the terms density and rate are exchangeable.

Let yij denote the DFA (unit: ha) in the jth PU in the
ith plot ( j = 1, ..., m; i = 1, ..., M). An unbiased
estimator of lDFA is the expected value of yij over all
PUs divided by the area of a PU (|PU| ” 1 ha).

Table 1 Population (POP) rates of deforestation (lDF), number of
deforestation polygons (DFP), median (DFAmed), mean (DFA-

mean), and maximum (DFAmax) polygon deforestation areas (unit: ha).

The last two columns are the average number of population units
per network of deforestation units ð�nWDFA

Þ and the average perim-
eter-to-area ratio �RP :A of the DFP, respectively. See text for details

POP lDFA% DFP DFAmed DFAmean DFAmax �nWDFA
�RP :A

1 0.25 2,604 2.2 3.7 87.7 21 5.4
2 0.49 5,258 2.2 3.6 92.8 22 5.8
3 0.96 10,742 2.1 3.4 93.7 24 6.3
4 0.24 1,430 1.8 6.1 186.0 25 3.9
5 0.49 2,857 1.8 6.2 249.2 27 5.4
6 0.98 5,796 1.8 6.2 202.7 27 4.6
7 0.23 2,348 1.9 3.9 108.9 34 17.9
8 0.45 4,774 1.9 3.8 121.1 35 17.3
9 0.19 1,911 2.0 4.5 82.9 59 39.9
10 0.24 768 6.7 11.5 147.4 67 28.8
11 0.49 1,524 7.0 12.0 203.7 69 24.7
12 0.94 3,143 6.2 11.1 222.1 67 21.8
13 0.22 78 0.7 102.9 6,586.4 227 3.2
14 0.44 162 0.7 100.8 9,002.7 259 14.3
15 0.88 341 0.7 94.9 7,606.2 262 49.9
16 0.24 1,540 2.7 5.8 185.7 24 2.2
17 0.49 310.4 2.7 5.7 242.6 24 2.8
18 0.98 6,259 2.5 5.7 137.3 25 2.5
Mean 0.48 3,036 2.6 54.7 1,420.0 74 14.3
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Simple random sampling designs and estimators

SRS without replacement with a sample (s) of n plots of
size m PUs was simulated in each population. Sample
sizes (n) were 200, 400, ..., 3,000 for m = 1; 100, 150, ...,
800 for m = 10; and 50, 75, ..., 400 for m = 40. These
designs reflect an anticipated trade-off between the
number of plots and number of units sampled. As plot
size increase fewer plots are sampled. Sampling within
each population, plot size, and sample size was repeated
400 times. An unbiased design-consistent SRS estimator
of the true lDFA is (Cochran 1977)

^̂lDFA ¼
1

n
�
X

i2sðnÞ

��yi; ð1Þ

where ��yi is the mean DFA per unit area in the ith plot.
An unbiased estimator of the sampling variance of ^̂lDFA

is (Cochran 1977)

dvar ^̂lDFA

� �
¼ 1� n=Mð Þ

nðn� 1Þ �
X

i2sðnÞ

��yi � ^̂lDFA

� �2
: ð2Þ

The mean of ^̂lDFA over the 400 repeat samples is de-
noted

^̂��lDFA; and the replicate variance of ^̂lDFA is
Varð^̂lDFAÞ: From theory, we know that the expected
value of the SRS estimates ^̂lDFA will equal the true
population value; however, after just 400 repeat samples
we can only expect that

^̂��lDFA ffi lDFA: Any discrepancy
between

^̂��lDFA and lDFA is due to sampling error, which
should be accounted for when comparing an SRS esti-
mator with an ACS estimator. The RMSE of

^̂��lDFA in
Eq. 3 is therefore used for design comparisons (Cochran
1977)

RMSEDFA ¼ ^̂d
2

DFA þ Var ^̂lDFA

� �
; ð3Þ

where
^̂dDFA ¼ ^̂��lDFA � lDFA: In the comparison between

SRS and ACS, we use the term bias for
^̂dDFA:

Adaptive cluster sampling

ACS begins with a SRS of n plots of size m from the M
plots in the population (Thompson 1990, 1991a, 1991b),
where n and m take the same values as outlined for SRS.

Fig. 1 Examples of
deforestation polygons (DFP)
in four randomly selected
populations (POP). The DFPs
have been scaled in size while
centered at their actual location
to allow all DFPs in the area to
be displayed. Shown is the
10 km · 10 km quadrant with
the maximum number of DFPs
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Each sample plot is then adaptively expanded in size
according to a rule that applies whenever certain con-
ditions are met. The rule of expansion can be varied
freely; we opted for the rule given in Thompson (1990)
which is quite easy to implement although it may at first
appear cumbersome. Each PU in the SRS sample is
queried about whether it contains a positive deforesta-
tion area (yij > 0) or not. In the affirmative case, the
four adjacent PUs (above, below, left, and right) are
added to the plot in which the PU with the positive DFA
resides. A union of the originally sampled PUs and the
adaptively added PUs then creates n plots with size ‡ m.
Hence, no PU is added more than once to a specific
sample plot. This process is iterated until the plot sizes
remain constant between iterations. Plot sizes will cease
to increase when the deforestation area in all PUs lo-
cated next to the outside edge of the expanded plots is
zero.

From this adaptive rule, it follows that whenever a
PU in the initial SRS sample intersects with a DFP that
all PUs intersecting this DFP will be included in the
sample. Also, any DFP separated by less than one PU
from a DFP intersected by the initial SRS sample is
included as well. Two DFPs separated by less than one
PU are connected. Thus, a single DFP may be included
in more than one expanded sample plot. In our popu-
lations this rarely happened.

The number, size, shape, and spatial distribution of
DFPs are clearly important factors determining the
adaptive expansion of sample plots. A graphical illus-
tration of the adaptive plot expansion is given in Fig. 3
for plot sizes of one and ten PUs. A DFP with a DFA of
3.57 ha is portrayed as a black rectangle. Nine PUs
intersect the DFP, and they are displayed in a dark-gray
tone. Any initial sample with plots of size one that in-
cludes one of the nine dark-gray PUs will be adaptively
expanded to include the 21 PUs outlined by a dashed
line (Fig. 3 top). An example of the adaptive expansion
of a 1 · 10 PU plot when it intersects the same DFP is in
the lower half of Fig. 3 where the plot is expanded to 27
PUs.

Networks of PUs with deforestation

To appreciate the following presentation of ACS esti-
mators of lDFA and sampling variance, it may be helpful
to regard a population as composed of three types of
PUs. One type is the PUs with yij = 0 and not adjacent
to a PU with yij > 0. This type of a PU is only sampled if
they are part of the initial SRS sample; they do not
trigger any adaptive expansion of the sample. The
probability of including this type of PU in the original
sample is obtained by first principles (Cochran 1977).

Fig. 2 Generalized
deforestation polygons (DFP)
in four randomly selected
populations (POP). Each DFP
is drawn as a circle scaled to an
area suitable for the display of
location and relative DFP sizes.
Scaling factors are given in each
subplot
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The second type has a DFA of zero but is adjacent
(edge) to a DFP. This type is selected if intersected by
the initial sample or if it is adjacent to a DFP intersected
by one or more PUs in the initial sample. Selection
probabilities of this second type depend on the size of
adjacent and connected DFPs. The third type are the
PUs intersecting one or more DFPs. Given the adaptive
protocol, all PUs intersecting a DFP or a set of con-
nected DFPs have the same inclusion probability, which
is proportional to the size of the intersected DFP plus all
DFPs connected to it.

The PUs intersecting a DFP or a set of connected
DFPs are collectively referred to as a deforestation
network (Psi). The size of a deforestation network is
the number of PUs in the network. Selection of one PU
in a deforestation network leads to the selection of all
other PUs in the network. All PUs in a deforestation
network are connected. A PU with yij = 0 is a non-
deforestation network of size one. A population can
thus be viewed as consisting of, say, K distinct non-
overlapping networks.

ACS can be viewed as a SRS of networks. Each
sample plot will intersect with one or more networks, a
majority of which will be non-deforestation networks of
size one. The number and size of sample plots deter-
mines the probability of intersecting a network. Since all
PUs in a network intercepted by an initial SRS plot are
included in the final ACS sample, it follows that the
DFA per PU value for a specific plot type and location is
that of the associated network(s). Said otherwise, in
ACS the within-network variance of DFA per PU has
been eliminated from the sample variance. ACS sam-
pling variance is therefore exclusively due to the among-
network variance in DFA per PU. From this follows
that the (variance) efficiency of ACS will depend on the
relative magnitude of the within-network variance of
DFA per PU. Networks of size one have, by definition, a
within-network variance of zero.

ACS estimators of deforestation rates

We present two ACS estimators of the deforestation rate
(density) and sampling variance, the modified Hurwitz–
Hansen (HH) estimators and the modified Horvitz–
Thompson estimators (HT). ThemodifiedHH estimators
view ACS as SRS of network deforestation rates (densi-
ties). The modified HT estimators exploit the post-sam-
pling estimates of the inclusion probabilities of the
networks composed of the three types of PUs. These
inclusion probabilities, in turn, are used for the derivation
of ‘‘classical’’ HT estimators for sampling with unequal
inclusion probabilities (Thompson 1990). Both the HH
and the HT estimators are asymptocally design-unbiased,
that is, as sample size increase the expectation of a sample
estimator approaches the true population value. Al-
though the modified HH estimators can be less efficient
than the modified HT estimators (Lo et al. 1997;
Christman 2002) they are said to be less sensitive to the
spatial structure of the population attribute (Salehi 2003).

The modified HH estimator of lDFA is

^̂lDFA:HH ¼
1

n
�
Xn

i¼1

XK

k¼1
dik � lDFA:Wk

; ð4Þ

where lDFA.Wk is the deforestation rate (density) in the
kth network, and dik is an indicator value taking the
value of 1 if the kth network is intersected by the ith
sample plot and zero otherwise. A plot of size one (m =
1) can only intersect one network, but a plot of size m (m
> 1) can intercept more than one network. All plots
intersecting a specific network contribute the same
deforestation rate (density) value to the modified HH
estimator in Eq. 4. Equation 4 applies to any plot shape
and size that completely tessellates the population. The
effect of plot size is through dik. For a fixed sample size n,
increasing m simply increases the number of intercepted
networks. Note, the HH estimator in Eq. 4 appears to be

Fig. 3 Examples of adaptive
plot expansions. a m = 1. The
black rectangle is a
deforestation polygon
(population# 1, polygon#
2,153) located in a regular array
of 1 ha population units. The
associated deforestation
network of units with a positive
deforestation area is in a dark-
gray tone. The outline of an
adaptively expanded plot is
indicated by dashed line. b m =
10. Initial SRS sample plot is in
light-gray tone. See text for
details
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an un-weighted mean of rates. Recall, however, that
networks are sampled with probability proportional to
their size (number of PU) and that the total deforestation
area in a network is size multiplied by lDFA.Wk. Hence,
network size cancels out of the estimator. The associated
estimate of the sampling variance of ^̂lDFA:HH is

dvar ^̂lDF:HH

� �
¼ ð1� n=MÞ

nðn� 1Þ

�
Xn

i¼1

XK

k¼1
dik � ^̂lDFA:Wk

� ^̂lDFA:HH

� �2
:

ð5Þ

We also computed the average of HH estimates of

deforestation in repeat sampling
^̂��lDFA:HH; bias

^̂dDFA:HH;
and RMSEDFA.HH as outlined for SRS and the extension
of notation. The modified HH estimators in Eqs. 4 and 5
are essentially well-known SRS estimators if one con-
siders the network deforestation rates (density) as the
attribute of interest.

The modified HT estimators are derived from the
probability of having an observation from the kth net-
work in the sample; accordingly the modified HT esti-
mator of the deforestation rate (density) is

^̂lDFA:HT ¼
1

m�M
�
XK

k¼1

yWk � dk

ak
; ð6Þ

where yw_k is the total deforestation area in the kth
network, ak is the probability that network k will be in
the sample, and dk is an indicator value taking the value
1 if the kth network is intercepted by the initial random
sample and zero otherwise. The probability of having
the kth network intercepted by the sample is

ak ¼ 1� M � xk

n

� �
� M

n

� ��1
; ð7Þ

where xk is the number of plots (of size m PUs) that
intersect network k. An unbiased modified HT estimator
of the variance of ^̂lDFA:HT is

dvar ^̂lDFA:HT

� �
¼ 1

M2

�
XK

k¼1

XK

h¼1

yWk � yWh �dk�dh akh�akahð Þ
akahakh

;

ð8Þ

where akh is the probability that the initial sample
intersects both network k and h at least once.

akh ¼ 1

� M � xk

n

� �
þ M � xh

n

� �
� M � xk � xh

n

� �� �

� M
n

� ��1
;

ð9Þ

with the convention that akh=ak · ah if h=k. Again, we
see that the effect of plot size is on the network inclusion
probabilities (M declines with increasing plot size).

In ACS, both ^̂lDFA:HH and ^̂lDFA:HT rely on ‘‘realized
inclusion probabilities’’ since the true inclusion proba-
bility of a unit (plot) is not known in advance of sam-
pling. As such the estimators are asymptotically
unbiased.

Estimators
^̂��lDFA:HT; bias

^̂dDFA:HT; and RMSEDFA.HT

were obtained as outlined above for SRS.

Among- and within-network variance of deforestation
rates

In ACS, the attribute recorded for each of the initial n
SRS plots is lDFA.Wk the rate (density) of deforesta-
tion in the network or possibly networks (if m > 1)
intersected by the plot. In SRS, it is the DFA per unit
plot area within each plot that is recorded. Hence, the
variation in DFA among PUs within a deforestation
network does not contribute to the sampling variance
in ACS as it does in SRS. The variance efficiency of an
ACS sampling design therefore depends on the mag-
nitude of the within-network variance r2

lDFA
ðwithin WÞ

relative to that of the among-network variance
r2

lDFA
ðamong WÞ (Thompson 1992). We obtained pop-

ulation-specific values of these two variances to gauge
the expected relative efficiency of the ACS designs
(Table 2). The within-network variance of deforesta-
tion rates (density) was in most populations about one
half the among-network variance but less than one
tenth the among-network variance in three populations
(average 0.30). These ratios play an important role for
the variance efficiency of an ACS design relative to
that of SRS.

Expected ACS sample sizes

In ACS, the adaptive expansion of the initial n SRS plots
means that the number of sampled PUs will be larger
than the nominal n · m units. Let n · m* denote the
number of PUs actually sampled under an ACS design
with an initial sample size of n plots of size m PUs. The
realized ACS sample size m in plot equivalents is n · m* ·
m�1. It follows that m is a design-dependent random
variable that will vary between repeat sampling a pop-
ulation. In a known population, the expected value E(m)
of m is (Thompson 1990)

E mjmð Þ ¼
XM

i¼1

Xm

j¼1
1� M � xij � aij

n

� �
� M

n

� �
; ð10Þ

where xij is the number of plots of size m PUs inter-
secting the network containing the jth PU in the ith plot
and aij is the number of PUs in networks with defor-
estation that adjoins the jth PU in the ith plot. Hence, aij
accounts for the adaptive inclusion of edge units, aij is
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zero if the jth PU in the ith plot is not located next to
any deforestation network.

Efficiency of ACS relative to SRS

For any given initial sample size n, plot size m, and
population, the sampling variance of an ACS estimate of
deforestation rate (density) will be less than the variance
of the corresponding SRS estimate simply because more
PUs are sampled with an ACS design. Implementing the
adaptive sampling procedure incurs costs that are not
encountered in SRS. The magnitude and structure of
these costs will vary depending on the actual context,
technology, and data capture procedures. A realistic
comparison of ACS and SRS must consider the impact
of the adaptive sampling on both cost and realized
variance. Within an image analysis framework, however,
the additional resources employed for the adaptive
component of the ACS design may be reasonable.

The potential variance efficiency of an ACS design
can be gauged by the maximum inflation kmax of n · m
that can be allowed before a SRS sampling of kmax · n ·
m PUs would yield the same expected sampling variance
as the ACS design. Thompson (1992, p. 275) provides
details for calculating kmax which involve estimators of
the within- and among-network variance of deforesta-
tion rates (density). For a constant cost of sampling one
PU, ACS is only attractive if kmax · n > E(m |m).

The ratio Em of the expected sampling variance of an
ACS estimate of deforestation rate to the expected
sampling variance of an SRS estimate of deforestation
rate when m plot equivalents are sampled in both cases
provides another measure of ACS efficiency. A value of
Em below 1.0 indicates that ACS is more (variance)
efficient than SRS for a constant sample size of m plots.

Em does not, however, consider that the total cost of
sampling under the two designs with equal m may differ.

A third measure of ACS efficiency, Cmax, is the upper
limit that can be paid by ACS for every m PUs added
adaptively to the initial sample under the assumption of
equal expected sampling variances and equal total
sampling costs. Should actual costs exceed Cmax then,
for fixed total costs, ACS will be less (variance) efficient
than SRS. We use the relative cost ratio Cmax/C where C
is the cost of sampling m PUs under a SRS design as the
benchmark of this efficiency. This relative cost ratio is
not influenced by the value of C, for convenience we
chose C = 1.0.

Auxiliary statistics for prediction of ACS performance

The expected relationship between population structure
and the efficiency of ACS makes it desirable to have
models that can predict the expected performance of
ACS relative to that of SRS from a set of readily
available auxiliary statistics. A survey designer could
then use these models to gauge whether ACS is an
attractive design option or not. Auxiliary statistics could
come from a pilot study of DFP in a couple of repre-
sentative areas (Leckie et al. 2002).

Since all aspects of the DFPs in the 18 populations
are known to us, we can explore the potential for pre-
dicting the relative performance of ACS from a set of
predictors such as, for example, rate of deforestation,
number, shape, and size of DFPs, nearest neighbor
distances of DFPs, and indices of aggregation of PUs
with deforestation. Several candidate predictors were
significantly correlated with the expected ACS sampling
variance and to the above three measures of ACS design
efficiency. The most parsimonious yet promising set of

Table 2 Among- r2
lDFA
ðamong WÞ and within-network variance of deforestation rates r2

lDFA
ðwithin WÞ: Columns 4–7 are the expected

values of indicators of ACS efficiency. See text for definitions of indicators

POP
r2
DFA

ðplotjm ¼ 1Þ · 102
r2
DFA

ðwjm ¼ 1Þ · 102 E(m)/n kmax Em Cmax

1 0.162 0.070 1.2 1.8 0.7 3.8
2 0.315 0.137 1.5 1.8 0.8 1.7
3 0.614 0.276 1.8 1.8 1.0 1.0
4 0.174 0.053 1.2 1.4 0.8 2.3
5 0.350 0.106 1.9 1.4 1.4 0.5
6 0.698 0.215 2.2 1.5 1.5 0.4
7 0.128 0.056 1.6 1.8 0.9 1.2
8 0.253 0.109 2.3 1.8 1.3 0.6
9 0.086 0.042 2.4 1.9 1.2 0.7
10 0.160 0.051 2.1 1.5 1.5 0.4
11 0.334 0.115 3.0 1.5 2.0 0.3
12 0.633 0.219 3.7 1.5 2.5 0.2
13 0.196 0.009 1.6 1.0 1.6 0.1
14 0.390 0.021 3.1 1.1 3.2 0.1
15 0.768 0.076 6.4 1.1 6.3 0.1
16 0.171 0.060 1.1 1.5 0.7 4.8
17 0.340 0.120 1.3 1.5 0.8 1.9
18 0.680 0.243 1.5 1.6 0.9 1.2
Mean 0.358 0.109 2.2 1.5 1.6 1.2
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predictors was the rate of deforestation lDFA, the
average number of PUs in a deforestation network
ð��nWDFA

Þ; and the average perimeter-to-area ratio of DFP
ð��RP :AÞ: The latter was computed as (1/16)P2 · A� 1

where P is the perimeter of a DFP (unit: m) and A its
area (unit: m2). A perfectly square DFP would have a
RP:A value of 1. DFPs with a ‘‘linear’’ shape have very
large ratios. Population-specific averages of these pre-
dictors are in Table 1. It is intuitive that these three
predictors would have an effect on the efficiency of ACS.
We expect that the prediction models developed here
will be useful for pre-survey evaluations of design-
options.

Results

Bias

The three estimators of deforestation rates ^̂lDFA;
^̂lDFA:HH; and ^̂lDFA:HT are asymptotically design-unbi-
ased. An average of 400 repeat samples will, however,
only approximate the true fixed population value
of lDFA. For the sake of the comparison between SRS
and ACS, we consider the difference between the average
of 400 estimates of deforestation rates and the true
population value as bias. Edge effects caused by plots
straddling the population boundary (Williams 2001b,
Gregoire and Scott 2003) have not contributed to the
apparent bias since each population could be perfectly
tessellated by each of the used plot types. Modified HH
and HT estimates of deforestation rates both had a
consistent (across populations and sample sizes) bias of
�3% when sampling with plots of size one PU. Bias of
SRS estimators, in contrast, declined, as expected, with
sample size, from 4% for n = 200 to 0.5% for n =
3,000. Sampling with multi-unit plots (m = 10 and 40)
changed the bias profiles. For ACS, bias was positive
(�2%) for the smallest sample sizes and negative
(��4%) for the largest sample sizes. Bias of SRS esti-
mates started out negative (��10%) for the smallest
sample size and was near 2% for the largest sample size.
No single bias was statistically significant under
the design-consistent hypothesis of no bias (P > 0.24,
t-test). We also confirmed that the bias was neither sig-
nificantly correlated with any available population sta-
tistic nor with any of 18 spatial statistics characterizing a
population.

Empirical and expected sampling error

The reliability of the statistical estimators of sampling
error was assessed by a comparison to the observed
standard deviation of sample-based estimates in repeat
sampling. For m = 1 and n = 800, the standard devi-
ation of estimates ^̂lDF:HH and ^̂lDF:HT in 400 repeat
samples matched the expected average of the modified

HH and HT estimates of sampling error to within 4%.
The fit improved with increasing n. For n = 3,000,
discrepancies were less than 1%. Both ACS estimators
of sampling error were, for n £ 400, 10–15% lower
than their empirical counterparts (P > 0.19, Fmax test).
In five populations (1, 4, 13, 14, and 16) and n £ 400,
the averages of the modified estimators were signifi-
cantly below the empirical values. Similar problems were
encountered with SRS estimators. Modified HH and HT
estimators were, as a rule, within 2% of each other and
strongly correlated (average q = 0.98). Results for plot
sizes of 10 and 40 PUs were similar.

Root mean square errors

Modified HH and HT estimators of ACS relative mean
square errors (RMSE%) were practically indistinguish-
able (differences always <1.7%). For the sake of brevity,
we restrict our reporting of the main results to those
obtained with the HT estimators.

RMSE% declined as a power function of sample
size (RMSE%=a · n� b, r2 > 0.98) with population-
specific rates of decline (b) and ‘‘intrinsic’’ value (a).
Population effects on RMSE% were significant for all
test designs (P< 0.01, analysis of variance F-ratio tests).
Population rankings of RMSE% across sample sizes
were only moderately strong (coefficient of rank con-
cordance (Moroney 1951) was 0.35 for m = 1, and
about 0.7 for m = 10 and 40). Generally, a population
with a high RMSE% for low n would improve its rank
score as sample sizes increased and vice versa. An
average correlation of the trend coefficients a and b of
0.60 supports this observation.

For ACS with n < 800 and m = 1, the median
population RMSE% was above 40 (Fig. 4). Increasing n
to 3,000, lowered the median RMSE% to 20. The
RMSE% interval for the 16 centermost populations
runs about 50% above and 50% below the median trend
line. The median population RMSE% for SRS was 1.4
(n = 200) to 1.9 (n = 3,000) times higher than the
corresponding ACS value. The improved performance
of ACS for larger sample sizes was expected. As sample
size increases, the probability of intersecting a defores-
tation network increases which translates into a mar-
ginal reduction of the within-network sampling
variance—a reduction that is not possible under SRS.
The correlation between SRS and ACS estimators of
RMSE% was consistently strong and positive (q >
0.98) and the relationship was linear.

Designs with m = 10 and 40 confirmed the general
trends for m = 1 except for a noticeable increase in the
width of �90% confidence intervals. The performance
gap between the worst and the best in the group of 16
centermost populations was roughly twice as large when
m was 10 and 40 compared to the results for m = 1. An
increase in the relative variability of population-specific
results for m = 10 and 40 reflects the fact that a
concentration of sampling to fewer locations with larger
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plots is sensitive to the number, size, and spatial distri-
bution of DFPs. The sample yield in terms of DFA will
tend to vary as a function of the inverse of plot size. The
expected lower (variance) efficiency of multi-unit plots
(Magnussen 2001) in a design with a fixed number n · m
of sampled PUs confirmed this expectation by a general
inflation of RMSE% by a factor of about 1.4±0.2 for m
= 10 and 1.6±0.3 for m = 40.

Efficiency of ACS

ACS achieved a 30–50% lower RMSE% by increasing,
beyond the nominal n · m, the number of sampled PUs.
The ratio E(m) · n� 1 of the number of plot equivalents
sampled under ACS to that sampled under SRS was, on
average for the 18 populations, 2.2 (m = 1) but varied
from a low of 1.1 to a high of 6.4 (Table 2). Note that
the expected value of E(m)/n depends on n but within the
range of n/N-values considered in this study the changes
were minimal (<2%) and could safely be ignored.
Highest ratios were seen in populations with a relatively
high deforestation rate, DFP with a high perimeter-to-
area ratio, and a strongly skewed size distribution of
polygon deforestation areas. Individual population re-
sults for m = 10 and 40 were highly correlated with
those for m = 1 (0.98 and 0.91), but with averages 23%
and 27% lower, respectively.

The maximum ACS inflation kmax of n · m that
would give an SRS design with a sample size of kmax · n
· m PUs, the same expected sampling variance as an
ACS design with an initial SRS sample of n · m PUs,
averaged 1.5 across populations (Table 2). Since the
average of E(m) · n� 1 was 2.2 and in ten populations
larger than kmax it follows that the cost of sampling the
extra PUs becomes a pivotal criterion for accepting ACS
as a viable alternative. Only in seven populations was

E(m) · n� 1 below kmax (m = 1). The expected variance
efficiency Em of ACS in column 6 of Table 2 mirrors
these results. A direct consequence of these results is that
an increase in SRS sample sizes by a factor of kmax—in
order to match the expected realized sample sizes under
ACS—can be expected to give a sampling variance that
is about 1.6 times lower and only in seven cases higher
than the corresponding ACS sampling variance. Results
for m = 10 and 40 did not reveal any new trend except
for an overall downward shift of 10–20% in the expected
values.

To achieve a break-even of costs and sampling vari-
ances, the maximum price ACS can afford to pay for
every m PUs adaptively added to the initial sample is, on
average across the 18 populations, 1.2 times the price of
adding m such units in SRS (see Cmax in Table 2). In
eight populations and m = 1, the break-even price for
ACS is less than 0.5. The low break-even prices in three
populations of max 0.1 serve as a warning of the serious
implications ACS can have on costs. Results for m = 10
and 40 were almost identical (within 10%). The need to
screen out the ACS option for this type of population is
clear. Fortunately, this screening appears to be within
reach.

Predictions of ACS performance from auxiliary
statistics

The performance of ACS depends strongly on the
number, size, shape, and spatial distribution of DFPs. It
is therefore critical for a survey designer to have a rea-
sonable prediction of the expected performance in a gi-
ven population before adopting an ACS design. A
stratification of regions suitable and not suitable for
ACS would be the objective of this pre-survey analysis.
The predictors of ACS performance should be easily
available from pilot studies providing representative
maps of DFPs. We present a set of prediction models
derived from the 18 populations with the expectation
that these models can be used in practical settings to
predict the expected performance of ACS for the esti-
mation of deforestation rates.

The expected ACS sampling variance for m = 1
could be predicted with a standard error of prediction of
0.00033 · n�1 from the population level of deforesta-
tion lDFA, the average number of PUs in a deforestation
network ��nWDFA

; and the average perimeter-to-area ratio

of the DFPs in a population ð��RP :AÞ:

r2
DFA:HTjm ¼ 0:00061þ l1:548

DFA � ��n0:630
WDFA

� ��R�0:291P :A

� �

� n�1;
R2
adj ¼ 0:96:

ð11Þ

Predictive models for m = 10 and 40 (not shown) al-
lowed predictions with errors of 0.03 · n�1 (R2

adj=0.95)
and 0.14 · n�1 (R2

adj=0.99), respectively.

Fig. 4 Relative root mean square error (RMSE%) for ACS designs
versus sample size (n). Full black line: median trend line; dashed
lines are the upper and lower approx. 10% population quantile,
respectively. Full gray line: median trend line for the SRS designs
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The expected ACS sample size m for m = 1 could be
predicted with a standard error of prediction of 0.22 ·
n�1 from the following equation

_

E mjm ¼ 1ð Þ ¼ 1þ l0:484
DFA � ��n0:376WDFA

� ��R0:495
P :A

� �
� n;

R2
adj ¼ 0:97:

ð12Þ

Equations for m = 10 and 40 (not shown) obtained
equally good fit and their coefficients were within 10%
of those for m = 1. The expected variance efficiency and
other efficiency measures can be obtained via these
predictions and the within-network variance of defor-
estation areas in Table 2.

Discussion

ACS was introduced as a potential efficient design for
estimation of rates, densities, or totals of rare population
attributes with an aggregated spatial distribution
(Thompson 1990, 1991a, 1991b). Despite evidence that
ACS can achieve tangible variance efficiency gains, it is
also clear that sampling for estimation of rates of
deforestation with any reasonable precision (<20%)
will demand large sample sizes and costs. Under favor-
able circumstances, ACS can be very efficient in terms of
precision and cost. Practical experience with ACS re-
mains scant and the results so far indicate that both
design effects and costs can be highly variable (Lo et al.
1997; Brown and Manly 1998; Ringvall 2000; Christman
2002; Hanselman et al. 2003; Smith et al. 2003; Brown
2003). Modifications of ACS aimed at capping the
number of units sampled, by, for example, introducing a
stopping rule or by optimizing the adaptive protocol, do
not appear to have achieved gains of practical impor-
tance (Mohammad and Seber 1997; Lo et al. 1997;
Christman and Lan 2001; Su and Quinn 2003). Fortu-
nately, the performance can be gauged from prior
knowledge or pilot studies exploring the population
structure in terms of size, number, shape, and distribu-
tion of patches (polygons) displaying the attribute of
interest.

ACS is akin to unequal probability sampling of net-
works. Its efficiency depends critically on the correlation
between the inclusion probability and the network
attribute of interest (Brewer and Hanif 1983; Godambe
and Thompson 1988; Magnussen 2002)—a correlation
modified by network shape and size. In the context of
DFP, the correlation was relatively strong in popula-
tions dominated by polygons with an outline resembling
a square and relatively weak in populations dominated
by linear polygons of roads, hydro-lines, and similar
man-made structures. Yet the effect of population
structure on ACS efficiency remains complex. For
example, the mean perimeter-to-area ratio of the DFP
influences the efficiency of ACS. A low ratio decreases
the sampling variance but also increases the expected
sample size. The non-linear power functions predicting

the performance of ACS highlighted interdependencies
among the predictors and hence the need to explore
carefully the population structure before committing to
ACS. The cost of adaptively adding a PU to the sample
is likely to be the overriding critical factor for the
practical acceptance of ACS. Our results make it clear
that a ‘‘window of opportunity’’ for ACS clearly exists
in some populations but also that it is marginal in oth-
ers. A sizeable efficiency gain was only manifest in seven
of eighteen populations.

Forestry applications of ACS are scarce. Acharya
et al. (2000) applied ACS for the estimation of abun-
dance of three rare tree species in a 40-ha compact re-
gion in Nepal. The region was subdivided into a grid of
square (5 m · 5 m) PUs. ACS was highly efficient
compared to SRS for one species yet inefficient for the
other two. The species-specific performance of ACS was
attributed to species-specific differences in the spatial
distribution of presence/absence. Roesch (1993) devel-
oped estimators for a point adaptive sampling design.
They were tested in a trial with eight rare tree species
growing within a 3.1-ha stem-mapped forest stand in
Maine. Simulated sampling indicated that ACS was of-
ten more efficient than SRS, but it was not uniformly
superior across all eight species.

Although our study is based on simulated sampling
from artificial populations, the effort that went into
creating 18 realistic populations of DFPs and the non-
trivial size of a population vouch for the practical rele-
vance of our results. The sampling designs were limited
to sample sizes and plot sizes deemed sufficient for the
exploration of the performance of ACS relative to that
of SRS. Our sample populations reflect the expected
range of regional differences. It has been demonstrated
that for the same number of PUs in a plot, a long and
narrow plot will be relatively more efficient than a
square plot (Magnussen 2001). While a multi-unit plot
design is less (variance) efficient per PU of observation
than a single-unit plot design (Cochran 1977; Magnus-
sen et al. 1998), the concentration of the sampling effort
to fewer but larger plots may still be advantageous from
both a logistical and a cost perspective. Finding the most
suitable sampling design for estimation of deforestation
rates in Canada was beyond the focus of this study. Our
equations predicting the expected RMSE% for a given
sample size should give the survey planner a reasonable
prediction for designs outside the study range. The
search for a favorable national design is ongoing. Issues
and factors to consider at a national scale extend well
beyond what we have covered.

Intuitive models predicting the expected ACS sam-
pling variance, and the expected realized ACS sample
size confirmed a significant effect of deforestation rate,
the size of deforestation networks, and the shape of the
DFP on the performance of ACS. The real significance
of these models is that they allow a survey designer to
obtain a reasonable prior expectation about the perfor-
mance of ACS whenever the surveyor can get hold of
reasonable estimates of the predictors—information that
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is also useful for stratifying a population. Regional dif-
ferences in the characteristics of the predominant DFP
favor stratification. The recognized sensitivity of ACS
efficiency to population structure has been a serious
impediment to wider acceptance (Roesch 1993; Lo et al.
1997; Acharya et al. 2000; Hanselman et al. 2003; Smith
et al. 2003). Published ACS studies do not appear to
have attempted to relate the performance of ACS to
various descriptive population statistics.

Without a stopping rule, ACS runs a non-trivial risk
of serious cost overruns, a phenomenon well known to
practitioners of sampling with probability proportional
to predictions (Bonnor 1972; Mohammad and Seber
1997; Lo et al. 1997; Brown and Manly 1998; Christman
and Lan 2001; Muttlak and Khan 2002; Su and Quinn
2003). ACS is seemingly unattractive in populations with
a relative low number of DFP dominated by a few and
very large polygons unless the marginal cost of adding a
large number of PUs to the sample is low. The charac-
teristics of populations unsuitable for ACS ought to
make them relatively easy to screen out for a different
sampling design during a pre-stratification process.

Application of ACS to ecological field surveys has
been limited by the requisite subdivision of a population
into PUs of equal size and shape. The layout and ACS
sampling of units could be a costly and logistically
challenging endeavor (Roesch 1993; Acharya et al. 2000;
Christman 2000, 2002; Hanselman et al. 2003; Smith
et al. 2003). A recent extension of ACS to line intercept
sampling (Morgan 1997) and the aforementioned
extension to point sampling (Roesch 1993) alleviate this
problem to a degree. ACS sampling within a framework
of image analysis could, in principle, be fairly easy to
implement since image pixels would be the natural
sampling frame to work from. The costs incurred by the
adaptive protocol of ACS may in fact be low, especially
if the image analysis for the mapping of DFP is object
oriented (Coppin et al. 2004).

PUs are either defined naturally by the context, or
chosen by the survey designer. In the latter case, the size
of the unit will be important for the cost structure and
possibly the efficiency of ACS. With either extremely
small or large units, relative to the size of DFP, ACS
cannot be more efficient than SRS since the within-net-
work unit variance of deforestation areas vanishes at the
extremes. This happens at the high end because most
deforestation networks will fit entirely inside a unit and
at the low end because a vast majority of units in a
deforestation network will have a deforestation area
equal to the size of the unit. We examined the impact of
unit size by computing the among- and the within-net-
work variance of deforestation areas for units of size 50
· 50 m2 (0.25 ha), 150 · 150 m2 (2.25 ha), and 200 ·
200 m2 (4 ha). These calculations were done on a subset
of 12 populations and with at least 10% of the DFPs in a
selected population. Although preliminary in nature, the
results did not indicate any marked deviations in the
relative performances of ACS and SRS seen with the
1 ha PU. Expected sample size ratios stayed within 20%

of the results with the 1-ha unit without any discernable
trend across unit size. The same holds for the ratios of
SRS to ACS sampling variances. While the unit choice
of 1 ha was somewhat arbitrary, the choice seems
inconsequential within the above range of sizes.

Logical alternatives to ACS are sampling based on
model predictions (Ståhl et al. 2000; Williams 2001a)
and possibly ranked subset sampling in which cheap but
error-contaminated samples are collected first and
ranked for deforestation area, a much smaller error-free
but expensive sample is then taken in order to calibrate
the rankings (Barnett 1999; Chen 1999; Nabhas et al.
2002). The opportunity to expand an existing survey into
an adaptive one, would, everything else being equal,
favor ACS.

Both the modified HH and the modified HT estima-
tors of deforestation rates and sampling errors per-
formed well in terms of bias and their match to empirical
estimates of standard error. Modified HT estimators
have been reported to be less sensitive to population
structure (Su and Quinn 2003; Felix-Medina 2003;
Salehi 2003), an observation that was only partially
confirmed by this study. HT estimates were only slightly
less biased and less variable than HH estimates, and
differences were not considered as important. The
apparent complexity of the HT variance estimators may
be the decisive factor. By including both, however, one
also obtains an efficient check against programming er-
rors. A Rao–Blackwell reduction of the HT/HH sam-
pling variance estimates (Thompson 1991a; Salehi 1999;
Mohammad 2002) was not pursued here due to the large
number of deforestation networks (>1,000 in most
populations) which would make computations onerous.

Natural resource surveys are rarely designed for a
single attribute (Schreuder et al. 1993; Shiver and Bor-
ders 1996). Rather, the tendency is for surveys to collect
a wide array of tree, vegetation, and soil attributes
within a single survey. Sampling designs that are opti-
mized for sampling a rare attribute may be inefficient for
other attributes (Roesch 1993; Green 1993; Acharya
et al. 2000; Christman 2000; Dryver 2003). Thus, natural
resource designs tend to be compromises of several
conflicting demands (Nusser et al. 1998; Olsen et al.
1999; Corona et al. 2002). Rare attributes are therefore
usually estimated relatively poorly by multi-purpose
surveys (Green 1993; Christman 2002; Venette et al.
2002). When it becomes important to have reliable
estimates of a rare and spatially aggregated attribute, the
best sampling strategy may be to combine the results
from an existing multi-purpose survey with auxiliary
sampling (Samuel-Cahn 1994; Peña 1997). Fortunately,
the ACS design is flexible enough to permit integration
with an already existing survey (Roesch 1993).

The general conclusion of this study is that the 30–
50% lower RMSE achieved with ACS remains attractive
when the cost of obtaining each extra unit added to the
sample is not higher than the cost of sampling a unit
under SRS. Practical considerations will determine plot
size. ACS deserves careful consideration along with
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more traditional options when sampling for deforesta-
tion rates and other rare but spatially aggregated pop-
ulation attributes.
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