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Abstract

Significance levels of the popular Wald’s Chi-squared statistic for simple goodness-of-fit (GOF) tests under one-stage cluster sampling are often

unreliable. A large number of alternatives to Wald’s GOF test with Type-I error rates more closely matching the nominal level of significance have

been proposed but not yet found their way into applied statistics. Type-I error rates with Wald’s test-statistic in cluster sampling from 10 actual

forest cover-type maps from 5 sites and 81 sample designs are compared to the error rates of 11 alternatives. The effects of site, sampling design,

evenness of cover-type class proportions, and intra-cluster correlation on Type-I error rates are quantified with logistic regressions for Wald’s

statistic and five promising alternatives. Our proposed second-order bias correction of Finney’s [Finney, D.J., 1971. Probit Analysis, vol. 3.

Cambridge University Press, p. 350] and Brier’s [Brier, S.S., 1980. Analysis of contingency tables under cluster sampling. Biometrika 67, 591–

596] method of moments correction of Pearson’s Chi-squared test statistic emerged as the overall best alternative in this study. It was the least

sensitive to design and cluster effects. Test power was investigated for the alternative simple hypothesis of equality of cover-type proportions in two

site-specific maps. The proposed alternative test statistic had slightly (3%) less power than Wald’s test for designs with a power of 80% or greater,

yet a consistently better odds ratio of a correct test decision.
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1. Introduction

The goodness-of-fit (GOF) test of a simple hypothesis about a

categorical attribute is frequently entertained in forest ecology

and management. The test arises naturally when one wish to

compare a sample-based estimate of the distribution of class

valuesof a categorical variable against, for example, a benchmark

distribution. Tests concerning distributions of age-classes, forest

cover-types, soil-types, and land-use are but a few examples.

Categorical forest attribute data are often obtained from

sampling (inventory). For practical and cost reasons, it is

customary to make several observations at each sample location

(Shiver and Borders, 1996). A sample plot with more than one
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observational unit is called a cluster in statistical terminology

(Cochran, 1977). In forestry a unit can be, for example, a tree, a

specified portion of a plot, or a sub-plot. Units within a cluster

often tend to be more similar in terms of class attribute values

than units sampled at random (Ridout et al., 1999). When this is

the case, we say that there is a positive intra-cluster correlation

of class attribute values (Gilliland et al., 2002; Hall and

Severini, 1998; Stoner and Leroux, 2002). A statistical

consequence of a positive intra-cluster correlation (cluster

effect) is that the variation among clusters with, say, m units in

each cluster is larger than the variance among groups of m

randomly selected units. Note, the intra-cluster correlation is

class-specific and may vary among classes. A positive intra-

cluster correlation may or may not be of consequence in the

context of statistical testing and inference (Legendre, 1993). It

depends on the hypothesis and the assumptions accompanying

the statistical test (Dale and Fortin, 2002; Gregoire, 2004).



S. Magnussen, M. Köhl / Forest Ecology and Management 221 (2006) 123–132124
The most popular GOF test statistics are Pearson’s Chi-

squared statistic (x2), the likelihood ratio statistic (G2), and

Wald’s generalized (x2
W) statistic (Agresti, 1992; Lloyd, 1999).

It is well known that both x2 and G2 are seriously inflated by

‘‘cluster effects’’ when data come from a sample design

employing clusters or strata (Bedrick, 1983; Cerioli, 2002a,

1997; Clifford et al., 1989; Cohen, 1976; Holt et al., 1980; Rao

and Scott, 1981). An inflated test statistic increases the risk of

falsely rejecting a null hypothesis (Type-I error rate). The

inflation of the Type-I error rate will depend on the class-

specific intra-cluster correlation coefficients (Rao and Scott,

1981; Cerioli, 2002b).

Wald’s Chi-squared test statistic generalizes readily to a

complex sampling design (Koch et al., 1975). However, it relies

on asymptotic expectations and a design-consistent estimator of

the covariance matrix under the null hypothesis. In practice

sample sizes may be too small to justify asymptotic

expectations, and a sample-based estimate of the covariance

matrix is used in place of a design-consistent estimate of the

covariance matrix under the null hypothesis (Rao and Scott,

1981). Wald’s test-statistic is, therefore, quite sensitive to

design settings (sample size, cluster size) and data character-

istics such as the number of classes, the proportions themselves,

and the intra-cluster correlation. Typically the false rejection

rate increases rapidly with the number of classes for a fixed

cluster and sample size (Thomas et al., 1997). As a

consequence, the analyst should always be careful when

drawing inference from a Wald’s statistic (Agresti and Caffo,

2000; McCullagh and Nelder, 1989; Pawitan, 2000).

Several proposed corrections and transformations of x2 and

G2 have a lower Type-I error rate than Wald’s test-statistic

(Brier, 1980; Fay, 1979; Fellegi, 1980; see Miao and Gastwirt,

2004 and references therein; Thomas and Rao, 1987). A first-

and a second-order correction of x2, and G2 for ‘cluster effects’

achieved Type-I error rates much closer to the nominal levels of

significance than possible with x2
W. Thomas et al. (1997)

confirmed these results in an extensive comparison of 16 test

statistics. Interestingly, the intuitively simple and appealing

method of moments correction of x2 first proposed by Finney

(1971) and later by Brier (1980) still awaits a formal evaluation.

Despite documented problems with x2
W and the availability

of potentially better alternatives, Wald’s test-statistic remains

popular. A recent scan of over 2000 ecological journal articles

published in 2004 found no less than 36 applications of Wald’s

GOF test under one-stage cluster sampling. One can be tempted

to surmise that the number of reported significant results may

have been skewed. The alternatives do not seem to have found

their way into mainstream applied statistics yet.

Given the widespread use of one-stage cluster sampling and

the importance of GOF hypothesis testing in forest ecology and

forest management, we think it is timely to demonstrate again the

problems with Wald’s test and to suggest a better alternative. We

narrow the choices for the applied statistician by conducting an

extensive assessment of 11 alternative GOF test statistics under

the null hypothesis anddata fromcluster sampling offorest cover-

types in five sites. Finney’s (1971) and Brier’s (1980) method of

moments correction and our proposed second-order bias
correction of their test statistic are included. Since a test statistic

must also exhibit a good power to reject the null hypothesis when

it is false, we also assessed test power (Lehmann, 1983). TheGOF

test statistic that improved the odds of making a correct decision

from a simple hypothesis test at a nominal significance level

a = 0.05 is recommended for practical use.

2. Material and methods

2.1. Sample data

Ten forest cover-type maps, two from each of five sites, were

used to simulate one-stage simple random cluster sampling of

forest cover-types. Each cover-type map was completely

tessellated into a regular array of N 30 m � 30 m units, each

assigned to a specific cover-type. Cover-type maps from a

single site were the result of a classification of a Landsat TM

image or an interpretation of aerial photography. Two maps

from a single site would differ due to the method of

classification or due to temporal land-use changes. Sites are

referred to as A, B, C, D, and E while map types within a site are

labelled I and II, respectively.

Site A – near Prince George British Columbia (Canada) –

cover-type data are from a classification of N = 121,104 units

in a 348 � 348 array (10,899 ha) of Landsat TM image pixels

from 1990 (map A.I) and 1999 (map A.II) to 15 cover-type

classes (Wulder et al., 2002).

Site B – near Hinton, Alberta (Canada) – data are from a cla-

ssification of N = 129,600 units in a 360 � 360 array

(11, 664 ha) of Landsat TM image pixels from 1985

(map B.I) and 1990 (map B.II) to 16 cover-type classes

(Goodenough et al., 2000).

Site C – near Latium, Viterbo (Italy) – data are from a photo-

interpretation (map C.I) and a classification of

N = 119,133 units (10,720 ha) in an array of Landsat-7

ETM+ image pixels (map C.II) to six cover-types classes

(Corona et al., 2002).

Site D – near Sussex, New Brunswick (Canada) – data are

from a photo-interpretation (map D.I) and a classification

(map D.II) of N = 135,806 units (12,223 ha) Landsat TM

pixels to 11 cover-type classes (Magnussen et al., 2004).

Site E – near Kuala Lumpur (Malaysia) – data are from a

1989 (map E.I) and a 1999 (map E.II) classification of

N = 166,467 units (14,982 ha) in a Landsat TM image to

eight cover-type classes (Suratman et al., 2004).

Site specific cover-type classes were collapsed to simplified

cover-type maps with three, four, or five broadly defined cover-

types. Thus, a total of 5 � 2 � 3 = 30 cover-type maps were

available for simulated one-stage cluster sampling.

2.2. Sample strategy

Simple random one-stage cluster sampling with n plots

(clusters) composed of a square array of m units (m = 9, 16, 25,

or 36) was simulated for each cover-type map. Sampling on
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sites A, B, and E was with plots of size 9, 16, and 25

(Magnussen et al., 2004) while plots of size 9, 16, and 36 were

employed in sites C and D (Magnussen, 2004).

Sample sizes (n) were 20, 40, . . ., 100, 150, . . ., 300.

Sampling under each design (s) of plot size (m) � sample size

(n) � number of cover-type classes, K = (3, 4, 5) was repeated

2000 times. A total of 3(K) � 3(m) � 9(n) = 81 designs were

employed for each of the 5 � 2 cover-type maps to a total of

810 designs.

For the ith sample plot (i = 1, . . ., n) the vector yi = {y1, y2,

. . ., yK} of cover-type class counts was noted (K = 3, 4, 5). A

sample-based estimate of the cover-type class proportions

under design s was obtained as:

p̂s ¼
1

ns

Xns
i¼1

pi ¼
1

ns � ms

Xns
i¼1

yi (1)

where pi is the K length vector of class proportions in the ith

plot. Suffixes identifying sites (A, . . ., E) and maps (I and II)

have been suppressed for notational convenience. The sample-

based estimate of the covariance matrix Ŝs of p̂s was obtained

by standard calculus (Lehmann, 1983) and adjusted for finite

population size by a factor fs = 1 � ns � ms � N�1.

Map-wide cover-type class proportions ps for K = 3, 4, and 5

are in Table 1. For K = 3, the most prevalent cover-type

occupies between 39% and 69% of a study site, and the least

common type between 3% and 23%. With K = 5, the

corresponding figures were 21–67% and 1–17%, respectively.

Within-site class-specific map differences averaged 5.2%

(range 0–11%).

2.3. Test statistics

A simple GOF test under the true null hypothesis H0 : p̂s ¼
ps was carried out for each of the 1,620,000 estimates of ps (10

maps � 81 design � 2000 replicates).
Table 1

Cover-type proportions (%) in site specific (A–E) cover-type maps (I and II)

A.I A.II B.I B.II C.I

K = 3

1 39 50 65 67 63

2 38 28 18 16 34

3 23 23 17 17 3

K = 4

1 39 50 65 67 62

2 23 23 17 17 34

3 22 19 15 7 3

4 15 8 3 9 1

K = 5

1 23 26 65 67 62

2 23 23 15 7 34

3 22 8 10 11 2

4 16 24 7 5 1

5 15 19 3 9 1

All entries have been rounded to the nearest integer percent value.
Wald’s test-statistic (x2
W) and 11 alternatives were computed

for each hypothesis test. Computational details are only

provided for x2
W and the five most promising alternatives

(see below). Nine of the 11 alternatives have been detailed,

among others, by Rao and Scott (1981), Thomas and Rao

(1987), and Thomas et al. (1997). The nine previously tested

alternatives were: GF an F-ratio transform of the likelihood

ratio test statistic G2, G2
JK a jackknifed estimate of G2, FW an F-

ratio transform of Pearson’s Chi-squared test statistic x2, x2
RS1 a

first-order Rao–Scott correction of x2, x2
RS2 a second-order

correction of x2, FRS1 an F-ratio transform of x2
RS1, FRS2 an F-

ratio transform of x2
RS2, x2

F Fellegi’s Chi-squared statistic, and

x2
RW Singh’s robust version of x2

W. The last two have not been

formally evaluated. They were x2
C Finney’s (1971) and Brier’s

(1980) method of moments corrected Chi-squared statistic, and

x2
BC our proposed second-order bias correction of x2

C.

Computational details are only provided for Wald’s statistic

and five of the most promising alternatives (see below). Wald’s

GOF test statistic (Wald, 1941) is:

x̂2
W ¼ ns � ðp̂�s � p�s Þ

0Ŝ
�1

s ðp̂�s � p�s Þ (2)

where p* denotes the first K � 1 elements of p and Ŝ
�1

s denotes

the inverse of the sample-based estimate of the covariance

matrix of p�s . Under the null and a consistent estimate of the

covariance matrix x̂2
W is asymptotically distributed as a Chi-

squared random variable with K � 1 degrees of freedom.

To correct for ‘cluster effects’ a first-order correction factor

l to x2 has been proposed by several authors:

x̂2
RS1 ¼ x̂2

s � l̂
�1

and l̂ ¼ trðP̂�
s ŜsÞ � ðK � 1Þ�1

(3)

where x̂2
s is Pearson’s Chi-squared test statistic

x̂2
s ¼ ns � ms �

XK
k¼1

ð p̂k � pkÞ2

pk
(4)
C.II D.I D.II E.I E.II

63 69 63 62 53

29 21 20 23 14

7 10 18 15 33

59 51 43 42 41

29 21 20 23 14

7 18 20 20 12

4 10 18 15 33

59 27 26 27 21

29 24 17 23 14

7 21 20 20 12

4 18 20 15 33

1 10 18 14 21
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p̂k is the estimated proportion of the kth class, and P̂s ¼ Dðp̂sÞ �
p̂sp̂

0
s the multinomial covariance matrix of p̂s, and tr is the trace

operator yielding the sum of the elements on the diagonal in a

square matrix. l̂ is an estimate of the average (across classes)

‘cluster effect’. Under H0 and no among-class variation in the

intra-cluster correlations x̂2
RS1 is distributed asymptotically as a

Chi-squared random variable with K � 1 degrees of freedom.

Fellegi (1980) proposed an F-ratio transform of the Chi-

squared GOF test statistic. F-ratio transforms of Chi-squared

statistics are more conservative (fewer rejections of the null

hypothesis) especially for smaller sample sizes (n < 80) and

K > 3. Application of the F-transform to x̂2
RS1 yields:

F̂RS1 ¼ ns � K þ 1

ðK � 1Þðns � 1Þ � x̂2
RS1 (5)

where under H0 F̂RS1 is asymptotically distributed as an F-ratio

variable with K � 1 and ns � K + 1 degrees of freedom, respec-

tively.

Holt et al. (1980) and Rao and Scott (1981) argued for a

second-order adjustment of l to capture the effect of variation

among classes in the intra-cluster correlations. Their Sat-

terthwaite-type correction yields:

x̂2
RS2 ¼ x̂2

RS1 � ð1 þ â2Þ�1
(6)

where

â2 ¼
P

k

P
k0 ŝkk0 ð p̂k p̂k0 Þ�1 � K � l̂

2

ðK � 1Þl̂2
(7)

where ŝkk0 is the sample estimate of the covariance of pk and pk0

(i.e. the elements of Ŝs). Under H0 x̂2
RS2 is asymptotically

distributed as a Chi-squared random variable with n degrees of

freedom with n ¼ Rnd½ðK � 1Þ=ð1 þ â2Þ�.
Finney (1971) and later Brier suggested a simple intuitively

appealing method of moments correction of Pearson’s Chi-

squared statistics x̂2
C ¼ x̂2 � Ĉ

�1
with

Ĉ ¼ 1

ðns � 1ÞðK � 1Þ
Xns
i¼1

ðyi � ms � p̂sÞ2

ms � p̂s
(8)

Intuitively appealing because C is the average Chi-squared

statistic for testing equality of the ns cluster-specific probability

vectors pi divided by the degrees of freedom (K � 1). In

absence of cluster effects the expected value of C is one. C is,

asymptotically, free of any unknown parameters. The allowed

range for Ĉ is between 1 and ms, values of Ĉ outside this range

are truncated to the nearest allowed value.

A second-order Taylor-Series expansion of (8) around ms �
p̂s will show that the correction factor C is downward-biased.

We, therefore, propose the test statistic:

x̂2
BC ¼ x̂2 � ðĈþ v̂Þ�1

with v̂ ¼ 1

K

XK
k¼1

ð p̂2
k þ ŝ2

kÞŝ2
k

ns � ms � p̂2
k

(9)

Again, the allowed range for Ĉþ v̂ is also between 1 and ms,

with values outside of this range truncated as above. Note, a
bootstrap estimation of C would also correct for this bias (Efron

and Tibshirani, 1993).

2.4. Type-I error

The performance of each test statistic is measured in terms

of the Type-I error rate, viz. the rate of rejection (âs) of a true H0

at a nominal significance level of a. Here, a = 0.05 as it remains

the most common level in applied statistics. For each test

statistic and the 810 design combinations we counted the

number of times the true null hypothesis was falsely rejected in

2000 replications of a sample design (#reject) and computed

âs ¼ reject � 2000�1. With 2000 replications, the standard

error of âs is approximately 0.005 (Serfling, 1980). Results with

a = 0.01 and a = 0.10 were very similar (not shown).

A ranking of the observed error rates of the 12 test statistics

was obtained for each of the 810 designs. The ranking criterion

was Abs½0:05 � âs�. A test statistic with a ranking of 6 or higher

in 75% of the 810 design settings was eliminated from further

consideration. Only the above five alternative test statistics

were retained after this screening. Wald’s statistic would have

been eliminated by this screening, but it was retained for reason

of comparison.

2.4.1. Predicting Type-I error rates

The Type-I error rate of an ideal test statistic under the null

should closely match the nominal significance level a and it

should not depend on ‘nuisance’ effects like sample size, plot

size, number of classes, ‘site’ factors, or ‘cluster effects’. To

summarize the ‘nuisance’ effects on observed Type-I error rates

we fitted a logistic regression model (Hosmer and Lemeshow,

1980) with âs as the dependent variable and an intercept

(constant), design factors (ns and ms), an index of evenness of

ps, and the average intra-cluster correlation as independent

predictors. It is known that Chi-squared tests are sensitive to the

‘evenness’ of class proportions. We used Simpson’s index of

evenness of proportions (Patil, 1982) which is computed as

p0sð1 � psÞ. Simpson’s index reaches a maximum when all class

proportions are equal and a minimum when class proportions

tend towards the extremes of 1 and 0. Simpson’s index is

restricted to values between 0 and 1.

A logistic regression model for an ideal test statistic would

have an intercept of log(0.05) = �2.99573 and no statistically

significant ‘nuisance’ effects. A comparison of estimated

logistic regression coefficients allows us to quantify the

sensitivity of a test statistic to ‘nuisance’ factors. In this

regression context, the two cover-type maps per site are

regarded as within-site replications.

2.5. Type-II errors

In practice the analyst will, of course, not know whether a

simple test hypothesis is true or not. Provided the test statistic is

consistent the analyst controls Type-I errors through the choice

of a. It is, of course also important not to accept a hypothesis

when it is false (Type-II error). For a given design and

significance level the best test statistic is the one that minimizes
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the Type-II error rate bwhile keeping the Type-I error rate at the

nominal level. A minimum Type-II error rate provides

maximum test power (1 � b) for discrimination between

hypotheses at a fixed a.

To evaluate b, we formulated the alternative simple

hypothesis H1 stating that a sample-based estimate of cover-

type proportions for map I was equal to the known cover-type

proportions of map II (and vice versa). Tests of this nature arise

naturally in applied settings where one might, for example,

compare estimates from remotely sensed images to estimates

from ground-based sampling. Here, the alternative hypothesis

H1 is false (Table 1). The Type-II error rate b of a test statistic is

the number of times H1 is accepted divided by the number of

replicate tests of the hypothesis.

2.5.1. Odds of a correct test decision

For a given a and a given sample design, a test statistic

presents a trade-off between Type-I and -II errors. The decision

to reject or accept a hypothesis is made on the significance of

the test statistic. The chance of a correct acceptance or rejection

of a hypothesis is captured by the (log) odds ratio of a correct

decision c (Fleiss, 1981)

c ¼ log

 correct acceptance of H0 þ
correct rejections of H1

false acceptance of H0 þ
false rejections of H1

!
(10)

where the logarithm provides a convenient scaling. We com-

puted c for all 810 design settings.

3. Results

Site and map specific average Type-I error rates (âs) of

Wald’s statistic and the five best alternatives are in Table 2. For

Wald’s statistic, the error rate was significantly above the

nominal 5% level on all sites (P < 0.05). In addition, the

variability of Type-I error rates obtained with Wald’s statistics

is an order of magnitude larger than expected from random

variation due to sampling, and also about four to five times

larger than the variability observed with the five best
Table 2

Average Type-I error rates (âs) in % of Wald’s statistic and the best five alternatives

and II)

Site.Map x̂2
W x̂2

RS1 F̂RS1

A.I 7.5 (3.7) 5.5 (0.8) 5.2 (0

A.II 7.6 (3.8) 5.7 (1.0) 5.4 (0

B.I 11.7 (7.7) 5.9 (1.6) 5.6 (1

B.II 11.4 (8.4) 6.3 (1.6) 6.0 (1

C.I 7.4 (4.2) 6.0 (3.0) 5.7 (2

C.II 9.0 (6.0) 4.3 (2.0) 4.3 (1

D.I 8.3 (4.3) 4.3 (0.7) 4.0 (0

D.II 7.9 (3.4) 3.3 (0.8) 3.2 (0

E.I 8.4 (4.4) 5.0 (0.7) 4.7 (0

E.II 9.0 (4.9) 5.3 (0.8) 5.0 (0

All 8.8 (5.5) 5.2 (1.7) 4.9 (1

Standard deviations of error rates are in brackets. Nominal error rate is 5%.
alternatives. Strongly inflated error rates were concentrated

in designs with small sample sizes and five cover-types.

Type-I error rates of the five best alternatives to Wald’s GOF

test statistics are clustered much more closely around the

nominal level of 5%. Not only are the rates much closer to 5% but

their variability is also substantially less. AnF-transform of x̂2
RS1

improves slightly the performance of the first-order correction of

Pearson’s Chi-squared statistic. A second-order correction (x2
RS2)

generates a conservative test with fewer rejections than at the

nominal significance level. Finney’s (1971) and Brier’s (1980)

method of moments correction of Pearson’s Chi-squared test

statistics appears overall attractive in terms of average absolute

deviation from a, consistency across sites (maps), and a low

variability of error rates. Our proposed bias-correction of this

statistic (x2
BC) mostly improves performance. An improvement

that was approximately equal to the effect of an F-transform of a

Chi-squared test statistic. Type-I error rates of x2
BC were most

often (52%) the alternative closest to the nominal level and only

occasionally (9%) the alternative furthest away. Only one in

seven of the observed error rates for x2
BC differed significantly

from the nominal level. The corresponding figure forx2
W was two

in three. The runner up to x2
BC was x2

C with a ratio of one in five.

x2
BC is not uniformly better than x2

W. However, in the 14% of the

810 test scenarios where the Type-I error rate of Wald’s was

closer to the nominal level their differences were trivial (average

0.3%) and never exceeded 0.5%. A graphical summary of the

Type-I error rates in Fig. 1 captures the erratic performance of

Wald’s test and the improved performance of the alternatives, in

particular that of x2
BC.

The sensitivity of Type-I error rates to ‘nuisance’ effects is

captured by the logistic regression coefficients in Table 3. An

ideal test statistic would show no sensitivity to these factors. All

error rates were significantly influenced by ‘site’ but âsðx̂2
CÞ and

âsðx̂2
BCÞ were the least affected with an average absolute site

coefficient of just 0.06 compared to 0.15 for Wald’s, and a

surprisingly high average of about 0.5 for

x̂2
RS1; x̂

2
FRS1; and x̂2

RS2. Effects of K were non-significant for

âsðx̂2
CÞ and âsðx̂2

BCÞ but highly significant for the others. Type-I

error rates of x̂2
W ; x̂

2
RS1; x̂

2
FRS1; and x̂2

RS2 increased at a rate of

about 20–40% for every increase in the number of cover-type
across 81 sample designs in five sites (A–E) and two cover-type maps per site (I

x̂2
RS2 x̂2

C x̂2
BC

.7) 4.4 (0.6) 5.6 (0.9) 5.3 (0.7)

.8) 4.5 (0.6) 5.7 (0.9) 5.4 (0.7)

.4) 4.9 (1.0) 4.6 (0.5) 4.5 (0.6)

.4) 4.7 (1.0) 5.3 (0.8) 5.0 (0.7)

.8) 5.4 (2.3) 5.4 (1.1) 5.0 (1.0)

.9) 4.0 (1.6) 5.9 (0.9) 5.6 (0.7)

.6) 4.0 (0.6) 5.2 (0.6) 4.9 (0.6)

.7) 3.0 (0.6) 5.5 (0.6) 5.2 (0.5)

.6) 4.7 (0.6) 5.0 (0.6) 4.8 (0.6)

.6) 4.7 (0.6) 5.3 (0.8) 5.0 (0.6)

.5) 4.4 (1.2) 5.4 (0.9) 5.1 (0.8)
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Fig. 1. Histograms of Type-I error rates (a) for Wald’s GOF test statistic x2
W and five of the best alternatives (see text for details). Nominal significance level (a) = 5%.

Relative frequencies are in % of 810 estimates of a each based on 2000 replicates of a specific combination of sample design, site, and cover-type map.

Table 3

Maximum likelihood estimates of the regression coefficients in the logistic model predicting the Type-I error rate of Wald’s test-statistic âsðx2
WÞ and of five

alternatives (âsðx2
RS1Þ; . . . ; âsðx2

BCÞ)

dsite is an indicator variable taking the value of 1 if observations are from site and 0 otherwise (site = A, . . ., E). Site A is taken as the reference for site estimates, i.e

dA � 0. RMSE = root mean square error of model. R2
adj: = adjusted squared correlation coefficient. Shaded table entries are not statistically significant (P � 0.05)
.

.
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classes (P � 0.05). Plot size (m) had only a minor effect on

error rates. Wald’s test was the only test statistic with a

significant effect of sample size. Its error-rate would decrease

about 0.4% for every cluster (plot) added to the sample.

Evenness of cover-type proportions (Simpson’s index) had

a very strong and significant impact on error rates of

x̂2
W ; x̂

2
RS1; x̂

2
FRS1; and x̂2

RS2. Least and non-significantly

impacted were âsðx̂2
CÞ and âsðx̂2

BCÞ. A similar pattern were

seen in the effect of the average intra-cluster correlation

coefficient. Finally, one should notice that the only two logistic

models with a constant term close to the nominal target of 2.996

for a = 0.05 are those for âsðx̂2
CÞ and âsðx̂2

BCÞ.
Type-II error rates for the alternative test of equality of a

sample-based estimate of map I cover-type proportions and

map II proportions (and vice versa) for Wald’s test were, as

expected, somewhat lower than for any of the five best

alternatives. However, for the 65 site and map specific designs

with a test power of 80% or better (i.e. Type-II errors are less

than 20%) the differences were in the 0–5% range with an

average of 2.7%. Typical results exemplified by sites D and E

are in Fig. 2. For designs with a good test power (>90%) the

Type-II errors of the five best alternatives were within 1%

(average 0.3%) of Type-II errors incurred with Wald’s test.

A simultaneous consideration of Type-I and -II errors shows

that the bias-corrected version of Finney’s (1971) and Brier’s

(1980) corrected Chi-squared test statistic provides the overall

best odds of correctly accepting or rejecting a simple test
Fig. 2. Type-II error rates (b̂s) and log-odds of a correct test decision (c) of x̂2
BC in s

and 2000 replications per design.
hypothesis. For x2
BC, the log-odds ratio c was consistently

higher (range 0.7–2.2, mean 1.1) than the log-odds ratio for x2
W

and also consistently the highest among the five best

alternatives. Typical results exemplified by sites D and E are

in Fig. 2.

4. An example of application

The practical consequence of switching from Wald’s test-

statistic x̂2
W to x̂2

BC, apart from an expected general lowering of

the Type-I error rates, depends, of course, on the decision riding

on the statistical inference. If it is a simple matter of either non-

rejection or acceptance of a null hypothesis the switch will

lower the rate of rejections when the null hypothesis is true or

we have low statistical power to reject the null when it is false.

Often, however, the two test statistics will lead to the same

conclusion. For example, when testing (a = 0.05) the null

hypothesis of equality of a sample-based estimate (n = 40,

m = 16)) of relative cover-type frequencies (K = 4) for map I

and a census result for map II (i.e. p̂Is ¼ pII) the null hypothesis

was rejected jointly by the two test statistics in 1806–1992

cases out of 2000 on sites A, B, D, and E. On site C, the squared

distance between p̂Is and pII is considerably smaller than on

any other site and the agreement is accordingly weaker (60%).

Our example will be from site C with the above design settings.

To appreciate the example we should mention that the design,

despite an appreciable sampling effort of 640 units, only has a
ites D and E plotted against those for x̂2
W. Estimates are from 81 sample designs
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statistical power of about 22% to declare an average difference

of 5% in relative cover-type frequencies significant at the 5%

level of significance. A claim of statistical significance should,

therefore, a priori, be carefully scrutinized.

Sample data for the example are in the Appendix A. The

sample mean of cover-type proportions for map I is p̂Is ¼
f0:640; 0:005; 0:333; 0:022g while the census estimate for map

II is pII = {0.592, 0.041, 0.294, 0.073}. Note that two sample-

based estimates are close to zero. As mentioned earlier, this has

negative implications for the performance of Wald’s test. The

sample variance-covariance matrix of relative cover-type

proportions was (rounded to nearest 0.001) was:

Ŝs ¼

0:165 0:001 �0:150 �0:004

0:001 0:001 �0:002 �0:000

�0:150 �0:002 0:152 �0:005

�0:004 �0:000 �0:005 0:009

0
BB@

1
CCA (11)

Wald’s test-statistic after dropping results for the second cover-

type (Eq. (2)) is hereafter:

x̂2
W ¼ 40 � ð0:048; 0:04;�0:051Þ0

61:363 47:472 61:220

47:742 1153:67 59:361

61:220 59:361 67:796

0
B@

1
CA

ð0:048; 0:04;�0:051Þ ¼ 18:49 (12)

The probability of obtaining a Chi-squared statistics with

4 � 1 degrees of freedom larger than 18.49 under the null

hypothesis is 0.0004. Had we chosen Wald’s test-statistic we

would conclude that there were significant differences between

the sample (from map I) and the census from map II. Pearson’s

Chi-squared statistic (Eq. (4)) for the same data is x̂2
s ¼ 49:00

and Brier’s correction factor (Eq. (8)) came to Ĉ ¼ 6:91. Our

bias correction of Ĉ (Eq. (9)) amounted to v̂ ¼ 0:32.

Accordingly, x̂2
BC ¼ 6:78 with Pðx2

3 � x̂2
BCÞ ¼ 0:08. Hence, if

we adopt Brier’s bias-corrected test statistic (Eq. (9)) and test at

the 5% level of significance, we would have some support of the

null hypothesis and would unlikely outright reject it. In light of

the low statistical power of the chosen sample design the latter

result is more reasonable than a rejection of the null hypothesis.

The near null results for two cover-types should, everything

else equal, signal problems with Wald’s test.

5. Discussion and conclusion

Our assessment of Type-I error rates of Wald’s GOF test

statistic under the simple null hypothesis and one-stage cluster

sampling of categorical data confirmed its sensitivity to factors

like the number of classes, evenness of class proportions, intra-

cluster correlation, and ‘site’. This dependency is a nuisance to

the applied statistician since an observed significance level is

likely skewed by one or more of these ‘nuisance’ effects. The

logistic regression models derived from this study may serve to

gauge their impact. Of the many available alternatives to Wald’s

test-statistic five appears to offer consistent and significant

improvements in Type-I error rates and the odds of a correct
decision to either reject or accept a simple GOF hypothesis.

These benefits come at the expense of a small loss of test power,

least for designs with a high test power (>90%), more for

designs with low or medium test power (<80%).

Six test statistics evaluated by Thomas and Rao (1987) and

Thomas et al. (1997) as reasonable alternatives to Wald’s

statistic performed too erratically in this study to be of much

practical value. The simulations by Thomas and Rao (1987) and

later Thomas et al. (1997) were simplified to equal probable

classes and a constant (among classes) intra-cluster correlation

of 0.12. Class proportions are rarely equal in ecological data

and the intra-cluster correlation of categorical classes is often

stronger, at least when the area of a ‘patch’ with a single

categorical class value is a multiple of the plot size (Cerioli,

1997; Ferguson and Bester, 2002; Garcia-Gigorro and Saura,

2005; Lichstein et al., 2002; Magnussen, 2001; Reed and

Burkhart, 1985). The demonstrated sensitivity of most test

statistics to ‘evenness’ of class proportions, intra-cluster

correlation, and ‘site’ confirms the importance of assessing

GOF test statistics with realistic data.

Type-I error rates of the five best alternative GOF test

statistics were also dependent on one or more ‘nuisance’

effects. Our proposed bias-correction of Finney’s (1971) and

Brier’s (1980) method of moments correction of Pearson’s

Chi-squared test statistic was, however, by far the least

sensitive. In consequence it showed the most consistent

performance in this study. In light of these results it may

seem surprising that Finney’s and Brier’s method of moments

correction has not before been formally evaluated. Both

Finney and Brier mention that their correction performed

well in some non-specified Monte Carlo simulations but no

results were given. We surmise that the necessary simplifica-

tions of artificially generated data unwittingly ‘masked’ the

robust property of this statistic, which, as far as we can tell,

is the primary attribute responsible for its improved

performance vis-à-vis alternatives based on Taylor-Series

approximation or Jackknifing. The truncation of the

correction factor to the allowed range of values achieves

the ‘robustness’. Our proposed bias-correction simply

improves the overall performance in a non-negligible and

consistent way.

The form of Finney’s and Brier’s test statistic lend itself

seamlessly to a bootstrap procedure. In an earlier study

(unpublished), we demonstrated a simple implementation of

such a procedure. A bootstrapped version of Brier’s and

Finney’s test statistic would eliminate the need for our proposed

bias-correction.

We restricted our study to sampling with plots with a

complete set of m units. In practice units will be missing from

some plots due to, for example, straddling of population

boundaries. Brier’s and Finney’s method of moments correction

adapts easily to data with missing observations. A correction

factor is computed separately for plots with 0, 1, . . ., m � 1

missing observations and then combined into a weighted

average. In a separate study (unpublished), we found this

scheme to work well for data with 5%, 10%, and 15% of the

units in a plot missing at random. No simple recourse to address
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the impact of missing data is readily available for Wald’s test-

statistic or any other of the studied alternatives.

Continued use of Wald’s test for a simple GOF null

hypothesis under one-stage cluster sampling with significant

design effects should be discouraged. A better alternative is

proposed here. An alternative with only slightly less test power

for designs with good test power (>80%) but with a consistent

improvement in the odds of making a correct decision to either

reject or accept a simple hypothesis. We reiterate that this

conclusion is limited to simple GOF hypotheses. Studies by,

among others, Thomas et al. (1997) indicate that the need for an

alternative to Wald’s GOF test involving a non-linear function

of class proportions, as in the test of independence of rows and

columns in a contingency table, is less clear.
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Appendix A

Sample data (yij) for detailed example. Site C: sample size

n = 40, plot-size m = 16 units, number of cover-types K = 4.

Sampling from photo-interpreted forest cover-type map.

yij = number of cover-type j units in sample plot i. Note

samples 21 and 22 have fewer than 16 units. They are both

located near the edge of the cover-type map I and have,

respectively, eight and four units outside the sampling frame.
Sample
 Cover type
1
 2
 3
 4
1
 16
 0
 0
 0
2
 0
 0
 16
 0
3
 1
 0
 15
 0
4
 13
 0
 0
 3
5
 14
 0
 2
 0
6
 2
 0
 14
 0
7
 16
 0
 0
 0
8
 13
 0
 3
 0
9
 2
 0
 12
 2
10
 6
 0
 10
 0
11
 4
 0
 12
 0
12
 10
 0
 6
 0
13
 16
 0
 0
 0
14
 0
 0
 16
 0
15
 16
 0
 0
 0
16
 6
 0
 10
 0
17
 16
 0
 0
 0
18
 16
 0
 0
 0
19
 16
 0
 0
 0
20
 16
 0
 0
 0
21
 0
 0
 8
 0
22
 0
 0
 12
 0
23
 4
 0
 12
 0
24
 14
 0
 2
 0
25
 16
 0
 0
 0
26
 13
 3
 0
 0
27
 16
 0
 0
 0
28
 16
 0
 0
 0
29
 16
 0
 0
 0
30
 4
 0
 12
 0
31
 16
 0
 0
 0
32
 16
 0
 0
 0
33
 7
 0
 0
 9
34
 16
 0
 0
 0
35
 7
 0
 9
 0
36
 6
 0
 10
 0
37
 0
 0
 16
 0
38
 16
 0
 0
 0
39
 4
 0
 12
 0
40
 16
 0
 0
 0
Mean
 10.05
 0.08
 5.23
 0.35
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