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Abstract

Over the last decade the analysis of Earth observation data has evolved from what were predominantly per-pixel multispectral-

based approaches, to the development and application of multiscale object-based methods. To empower users with these emerging

object-based approaches, methods need to be intuitive, easy to use, require little user intervention, and provide results closely

matching those generated by human interpreters. In an attempt to facilitate this, we present multiscale object-specific segmentation

(MOSS) as an integrative object-based approach for automatically delineating image-objects (i.e., segments) at multiple scales from

a high-spatial resolution remotely sensed forest scene. We further illustrate that these segments cognitively correspond to individual

tree crowns, ranging up to forest stands, and describe how such a tool may be used in computer-assisted forest inventory mapping.

MOSS is composed of three primary components: object-specific analysis (OSA), object-specific upscaling (OSU), and a new

segmentation algorithm referred to as size constrained region merging (SCRM). The rationale for integrating these methods is that

the first two provide the third with object-size parameters that otherwise would need to be specified by a user. Analysis is performed

on an IKONOS-2 panchromatic image that represents a highly fragmented forested landscape in the Sooke Watershed on southern

Vancouver Island, BC, Canada.
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1. Introduction

Over the last decade there has been a noticeable shift

in the analysis of Earth observation (EO) data, from

what has been predominantly 30 years of per-pixel

multispectral-based approaches (Asner et al., 2003),
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towards the development and application of multiscale

object-based methods (Blaschke et al., 2000; Hay et al.,

2001, 2003; Castilla, 2003; Blaschke et al., 2004).

Multiscale denotes the multiple spatial dimensions at

which entities, patterns and processes can be observed

and measured. Object-based refers to the discretization

and attribution of such entities. A key driver in this

object-based shift has been the dramatic increase in

commercially available high resolution digital remote

sensing imagery that is characterized by spatial

resolutions 5.0 m and finer (Wulder, 1998; Wulder

et al., 2004). An important property of these data is that
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for many applications, they are also H-resolution (Hay

et al., 1996). H-resolution or H-res refers to a scene

model where image-objects are composed of many

individual pixels (Strahler et al., 1986). Image-objects

are groups of connected pixels having similar digital

numbers (DN) that visually represent objects in an

image that may correspond to real-world entities. Thus,

when a human interpreter views a high-resolution

image, she typically sees it filled with groups of pixels

with meaning in the real world (Schneider and

Steinwender, 1999). A key characteristic of image-

objects lies in the contextual (i.e., neighbourhood)

information imparted by pixel groups, which is highly

dependent upon the spatial resolution at which they are

viewed. Additional motives towards the development of

object-based approaches include:
� R
ecognition that individual pixels are not true

geographical objects. Instead, they are cells of an

arbitrarily imposed grid whose boundaries lack any

real counterpart, and whose content (DN) represents

an integration of energy from outside their spatial

(pixel) boundary (Fisher, 1997; Atkinson, 2004).
� A
n appreciation that humans do not view a world

composed of individual pixels, but as a continuum of

discrete objects, whose size, shape, spatial arrange-

ment and context change(s) depending upon the

scale(s) at which they are assessed (Marceau, 1999;

Marceau and Hay, 1999).
� N
umerous object-oriented tools, techniques, methods

and software already exist within the Computer

Science (Graham et al., 2001) and Geographic

Information Science communities (Longley et al.,

2001). When combined with high spatial resolution

imagery, and the notion of cognitively intuitive

discrete image-objects, new and powerful opportu-

nities exist for the object-oriented data-management,

-mining, -querying and -modelling of remote sensing

data with richer semantics, and greater integration

with vector-based geographic information systems

(GIS), than pixel-based approaches can provide

(Schiewe et al., 2001).
� S
ignificant advances in powerful low-cost computing,

increased access to sophisticated statistical, program-

ming, and image-analysis software, post September

11, 2001 security issues, and the daily generation of

terra-bytes of EO data, have provided the impetus for

new (automated and semi-automated) tools to analyze

and mine such voluminous data, opportunities to

develop new geo-information markets from the

results, and the promise to meet increasingly

sophisticated user demands.
� O
ur planet, and the ecosystems it sustains are complex

systems composed of a large number of spatially

heterogeneous components that interact in a non-

linear way and exhibit emergence, self-organization

and adaptive properties through time (Waldrop, 1992;

Prigogine, 1997; Kay and Regier, 2000; Wu and

Marceau, 2002). By their very nature, such systems

necessitate a multiscale approach in their analysis,

monitoring, modelling and management (Hay et al.,

1997, 2002). Furthermore, existing ecological the-

ories such as the Hierarchical Patch Dynamics

Paradigm (HPDP) (Wu, 1999) provide conceptual

frameworks for guiding and explaining the hierarch-

ical and multiscale structure of landscapes that can be

operationalized within an object-based approach

(Hay et al., 2001, 2003; Castilla, 2003).
� O
bject-based approaches represent viable solutions to

the modifiable areal unit problem (MAUP). Earth-

observation data represent the primary data source for

large area environmental mapping and updating;

however, they also represent a special case of the

MAUP (Marceau et al., 1994). The MAUP originates

from the use of arbitrarily defined and modifiable

spatial units used to acquire data over a geographical

area (Openshaw, 1984). Because these data do not

explicitly correspond to geographical entities, but

rather are an aggregation of the content of the spatial

units, the value of the analysis results based upon

them may not possess any validity independently of

the units that are used. One way to overcome the

MAUP is to focus the analysis on meaningful

geographical entities (i.e., image-objects) rather than

arbitrary defined spatial units (such as individual

pixels) (Fotheringham and Wong, 1991; Hay et al.,

2001).

In general, object-based approaches refer to image-

processing techniques that when applied either result in

the segmentation (i.e., partitioning) of an image into

discrete non-overlapping units based on specific

criteria, or are applied to define specific multiscale

characteristics—from which segmentation may then be

based (Hay et al., 2002; Hall and Hay, 2003). After

segmentation, attributes can be assigned allowing for

class designation (Schneider and Steinwender, 1999),

and topological relationships between segments (Bur-

nett and Blaschke, 2003). Segments refer to segmented

image-objects. Blaschke et al. (2004) provide an

overview of numerous segmentation techniques used

in remote sensing, though in theory, any image

segmentation algorithm could be used to partition a

remote sensing scene (Zhang, 1996). However, the real
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challenge is to define appropriate segmentation para-

meters (typically based on spectral homogeneity, size,

or both) for the varying sized, shaped, and spatially

distributed image-objects composing a scene, so that

segments can be generated that satisfy user require-

ments. Simply because a scene can be segmented, does

not imply that the resulting segments are visually

meaningful, or correspond to entities of ecological or

management interests. This issue is exemplified by the

fact that the meaning(s) and dimensions of segments

change depending upon their scale of analysis.

Furthermore, no single (spatial) scale is optimal for

characterizing the multitude of different scene compo-

nents, hence, the need for multiscale object-based

methods (Hay et al., 1997; Baatz and Schape, 2000; Hay

and Marceau, 2004).

Anecessary condition for the acceptance and adoption

of object-based approaches is the development of image-

analysis methods that closely match (and ideally exceed)

the results of those produced by the innate multiscale

object-processing capabilities of human interpreters. For

instance, in the domain of biomedical imaging, the

automated detection and delineation of image-objects

(i.e., organs and tumours) is already considered opera-

tional (Dynapix, 2004). InEarth observation, a number of

promising methods have also been explored including

object-specific forest-texture mapping (Hay and Nie-

mann, 1994; Hay et al., 1996), individual tree crown

classification (Gougeon, 1995), object-specific multi-

scale analysis and upscaling (Hay et al., 1997, 2001; Hay

andMarceau, 2004), object-based change detection (Hall

and Hay, 2003), object-based lidar models for forest

inventory update (Wulder and Seemann, 2003), multi-

scale object-based land-cover mapping (Hall et al.,

2004), scale-space sedimentary analysis (Stewart et al.,

2004), multiscale watershed analysis (Steinhardt and

Volk, 2003), and tree-crown-based forest stand delinea-

tion (Leckie et al., 2003). However, the majority of these

(and other studies prior to year 2000) are typically

conductedwith software developed in-house for research

purposes.

In 2000, eCognition became the first (non-research

focused) commercially available software for multi-

resolution segmentation and object-oriented fuzzy-rule

classification, specially suited for high-resolution ima-

gery (Burnett and Blaschke, 2003; Van der Sande et al.,

2003; Benz et al., 2004). Segmentation follows a

proprietary bottom-up region merging technique (Baatz

and Schape, 2000) starting with one-pixel objects, which

are iteratively merged into larger objects based primarily

on a user defined scale parameter. In previous research,

Blaschke and Hay (2001) attempted to use pre-defined
object-specific spatial measures to automate, and guide

the selection of this scale parameter, but were largely

unsuccessful, as there is no recognizable relationship

between the scale parameter in eCognition (which is

unitless) and spatial measures (i.e., area) specific to the

image-objects composing a scene. Consequently, users

have to finduseful segmentation levels on a trial and error

basis (Blaschke and Hay, 2001). While eCognition does

provide a commercially available toolset that incorpo-

rates interesting segmentation, topological and semantic

components, the setting of an important ‘scale parameter’

largely responsible for object segmentation that is not

intuitively linked to a specific spatial scale or object size,

nor to an associated ecological framework, represents

serious limitations for some users (Hay et al., 2003).

The primary objective of this paper is to present

multiscale object-specific segmentation (MOSS) as an

integrative object-based approach for automatically

segmenting meaningful forest-objects at multiple scales

from a high-spatial resolution EO scene. Segmentation

is based on spatial measures explicitly related to the

varying sized, shaped, and spatially distributed image-

objects that compose a scene rather than on arbitrarily

defined scale parameters.

MOSS is an integrative three-part methodology

(Section 3.1) that builds upon prior research (Section

3.2) by incorporating components of object-specific

analysis (OSA; Section 3.2.1) and object-specific

upscaling (OSU; Section 3.2.2), with a new segmenta-

tion sequence referred to as size constrained region

merging (SCRM; Section 3.3). This sequence includes

a new image smoothing algorithm (Section 3.4) and

edge detection method (Section 3.5), a watershed

transform (Section 3.6), and new region-merging

(Section 3.7) and vectorization components (Section

3.8). Once presented, we show how object-specific

histogram information may be used to automatically

define dominant image classes (Section 4.1), and

illustrate how MOSS can be used to automatically

delineate image-objects at multiple scales (Section

4.2) that correspond to a range of objects from

individual tree crowns, to forest stands (Section 4.3).

We then discuss how such a tool could be used for

computer-assisted forest inventory mapping (Section

5.1), and describe how SCRM parameters can be

extended with a simple model, to allow for larger area

analysis (Section 5.2). We then summarize our

findings (Section 6).

We note that previous research using OSA and OSU

on multispectral IKONOS-2 (4 m) data (Hall et al.,

2004), and (user-defined) SCRM on multispectral

Thematic Mapper (30 m) data (Castilla, 2003, 2004;
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Castilla et al., 2004) have shown favourable results.

However, in this communication, we present these three

components as an integrated automated approach and

restrict our analysis to a single channel H-res pan-

chromatic IKONOS-2 scene, which is considered

analogous to the digitized air photos used for Canadian

forest inventory purposes.

2. Data and field site

While much of the information needed to generate

forest inventory datasets in Canada are still derived

from ortho-correct panchromatic airborne imagery, the

use of high-resolution satellite imagery is increasingly

available, and becoming more commonly used for large

area forest inventories. In this research, analysis is

performed on a 1000 � 1000 pixel sub-image extracted

from an IKONOS-2 panchromatic scene (1.0 m spatial

resolution), that is representative of the digitized air

photos used for Canadian forest inventories.
Fig. 1. Scen
This 100 ha sub-image of Rithet Creek (acquired on

July 17, 2000) represents a highly fragmented forested

landscape located in the Sooke Watershed, on southern

Vancouver Island, BC, Canada (Fig. 1). In this area, the

very dry maritime Coastal Western Hemlock biogeocli-

matic subzone dominates, though a small component of

moist maritime Coastal Douglas-Fir subzone also

exists. Due to its longevity, and the area history of

repeated fire and windthrow disturbances, successional

processes on any site unit rarely proceed to a climax

forest; as a consequence Coastal Douglas-Fir [Pseu-

dotsuga menziesii (Mirb.) Franco var. menziesii] is the

dominant seral tree species (GVWD, 1993).

Although detailed forest inventory maps (GVWD,

1993) for this sub-area distinguishes between 28

different forest polygons, three principal stand types

are readily visible in the image, each of which illustrates

the dominant seral tree species (Coastal Douglas-Fir)

(Fig. 2). Throughout this paper, they will be referred to

as mature, young, and immature. The mature stands are
e map.
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Fig. 2. IKONOS study site, forest polygons overlays, and four primary cover types.

1 Unless explicitly stated, Dr. G.J. Hay wrote all object-specific

code in IDL v 5.2-6.0 (interactive data language) and all SCRM code

was written by Dr. G. Castilla in IDL 6.0 and ENVI 4.0 (environment

for visualizing images, http://www.rsinc.com/idl).
represented by a dark coarse image-texture, and are

located at image center, and top- and bottom-right

image quadrants. They consist of trees approximately

141–250 years old, 55–65 m tall, with a crown diameter

of 9–15 m and a crown-closure of 56–65%. Young

stands (visually displayed in medium coarse toned

textures are located north of image center and mid-

lower left) range in age from 35 to 40 years, with

heights of 19–28 m, a crown diameter of 5–7 m and a

crown closure of 76–85%. The immature stands

(represented by relatively smooth toned textures) are

located principally at the top left andmid-right portions

of the image. They range in age from 12 to 19 years,

with heights of 0–10 m, a crown diameter of 2–5 m

and a crown closure of 0–45%. There is also a mixed

class that includes bare ground (bright tones), and

herbaceous and shrub layers (in smooth light grey

tones/textures). Three main gravel roads (linear

features) vertically segment the scene, with one road

(in the upper left image quadrant) bisecting into two

smaller ‘Y’-shaped roads.

3. Methods

3.1. MOSS: an overview

Multiscale object-specific segmentation represents

an integration of three methods for automatically
segmenting a remote sensing image into a meaningful

object-based hierarchical representation that corre-

sponds cognitively to visual interpretation. These

methods are: object-specific analysis, object-specific

upscaling, and size constrained region merging.1 In

general terms, OSA is a multiscale approach that

employs varying sized adaptive kernels to automatically

define unique spatial measures specific to the individual

image-objects composing a remote sensing scene (Hay

et al., 1997, 2001, 2003). This results in the generation

of three related images, the variance, area, and mean

images. Object-specific spatial measures from the area

image are then used in a weighting function to

automatically upscale (OSU) the mean image to a

coarser spatial resolution (Fig. 3). OSA and OSU are

then iteratively applied to the newly generated upscaled

(mean) images, resulting in a multiscale hierarchy of

variance, area, and mean images. Spatial statistics are

automatically extracted from each of the area images

and used in SCRM to automatically segment the

original image into a hierarchy of topologically discrete

multiscale segments that correspond to objects typically

http://www.montes.upm.es/Servicios/biblioteca/tesis/GCastillaTD_Montes.pdf
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Fig. 3. Hierarchy of area (A1–5) and upscale images (U1–4) compared to the original image (OI).
defined using visual interpretation. SCRM is a

segmentation sequence comprised of image smoothing,

a gradient watershed transform and region merging. The

following sections provide a more detailed explanation

on all of these procedures.
3.2. Object-specific analysis and object-specific

upscaling: an overview

The underlying goal behind OSA/OSU is to provide

an object-based mechanism (model) that allows for
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spatially dominant image-objects to evolve through

scale in an attempt to understand process morphology

from the resulting multiscale patterns. As such, an

underlying premise of OSA is that all pixels within an

image are considered high spatial resolution samples

(Strahler et al., 1986) of the image-objects they model,

even though, both high- and low-spatial resolution

(L-res) samples exist in a single image. L-res refers to

instances where pixels have a larger spatial extent than

the realworld-objects they model; thus, a single pixel

represents an integration of many smaller image-

objects. Recall that H-res refers to situations where

pixels have a smaller spatial extent than realworld-

objects; thus, a single image-object is composed of

many individual pixels. Therefore, in OSA, individual

pixels (the fundamental image primitive) are used to

define the larger image-object(s) they are a part of. A

brief overview of OSA and OSU methodology follows;

however, detailed accounts have previously been

defined (see Hay et al., 2001; Hall and Hay, 2003;

Hay and Marceau, 2004).

3.2.1. OSA

Hay et al. (1997) noted that when plotting the

variance of digital values generated by sampling image-

objects within increasingly larger kernels, the resulting

plots produced curves with distinct breaks, or ‘thresh-

olds’ in variance as the analyzing kernel contacted the

image-object’s edges. Evaluation of the shape of these

variance curves (Hay et al., 1997, 2001, 2003) enabled

the creation of a set of robust heuristics that define the

spatial extent (i.e., kernel area) where an individual

pixel is spectrally related to the (larger) image-object it

is a part of. This object-specific spatial measure is

critical for further analysis. Essentially, it can be

considered as a measure of the maximum extent of the

spatial autocorrelation between a pixel and its

neighbours.

The primary OSA heuristic is composed of three

different percentage values, each of which represents

the difference in variance defined between two

concurrent kernels (one smaller than the other) over a

specific range of kernel sizes. If the difference in

variance between the two kernels is less than or equal to

the heuristic threshold value, processing is stopped. The

corresponding mean, variance, and area values are then

recorded for the pixel under analysis within the

specified kernel. This dynamic process is then applied

to the remaining pixels within the original image (OI),

resulting in the generation of corresponding variance

(VI), area (AI), and mean (MI) images. These three

images are referred to as the first image-set and this type
of adaptive-kernel processing is referred to as object-

specific analysis. These object-specific data can then be

used to guide an appropriate segmentation algorithm as

outlined in this paper (Section 3.3) or as previously

defined using marker controlled watershed segmenta-

tion (Hall and Hay, 2003; Hall et al., 2004; Hay and

Marceau, 2004). The variance image is essentially a

gradient or edge image. The area image defines the

spatial influence, i.e., the kernel size or number of pixels

‘spectrally related’ to the pixel under analysis. The

mean image is composed of an average of the H-res

pixels that constitute part of individual objects assessed

at their respective scales. In each of the area images

illustrated in Fig. 3, dark tones indicate that a small

object-specific kernel was defined, while bright values

indicate that a large kernel was assessed.

3.2.2. OSU

To evaluate how image-objects evolve through scale,

the first mean image is resampled to a coarser resolution

(i.e., grain) by applying an object-specific weighted

algorithm (OSU), and the OSA process is iterated on the

new upscaled image (U1) (Fig. 3). The upscale pixel size

can either be user defined, or automatically defined

based on a one-fourth resampling heuristic (Slater,

1980) in relation to the smallest analyzing kernel and

the spatial resolution of the image (Hay et al., 2001).

When defined automatically, this results in an upscaling

heuristic of 1.6 (see Hay and Marceau, 2004). That is,

each pixel in the first upscale image has a grain equal to

1.6 pixels in the original image (OI). Thus, the extent of

the new upscale image is obtained by dividing the

length of the original image (i.e., 1000 pixels) by 1.6,

resulting in 625 pixels (in both x- and y-directions)

(Fig. 3)

For upscaling to occur, the upscale kernel is used as a

mask to generate a weighted area value for each pixel as

follows. Beginning at the origin, the upscale kernel is

overlaid on the corresponding AI, and the DN of each

area pixel (within the mask) is divided by the sum of all

area pixels in the mask. This generates a fractional area

weight that sums to one. Each area weight (in the mask)

is multiplied by its corresponding original grey value,

and then summed. This summed value represents the

new area weighted upscale value that corresponds to the

original pixels in the upscale mask. The non-over-

lapping upscale kernel is then applied to the remaining

image resulting in a new upscale image (U1). To

determine the upscale spatial resolution, this process is

iterated by dividing the length of the newly upscaled

mean image (U1) by 1.6. Thus, at the next iteration, the

image size is (625/1.6) = 391 pixels2 with a spatial
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resolution of (1000/391) = 2.56 pixels2. For more detail

on OSU see Hay and Marceau (2004). In the illustrated

example (Fig. 3), we present four upscale images and

the five corresponding area images (A1–5), as beyond

this number, the images become too small for visual

assessment.

3.3. Size constrained region merging: an overview

Size constrained region merging (Castilla, 2003)

represents a segmentation sequence that may be

summarized as follows. A geocoded input image

(Fig. 4a) is filtered with gradient inverse weighted

edge preserving smoothing (GIWEPS; Castilla, 2003)

to remove superfluous gradient minima represented by
Fig. 4. Integrated OSA/OSU
coarse image-textures. The output of this newly

developed filter (GIWEPS) is an almost piecewise

constant image, in which each uniform region

represents the area of influence of a gradient minimum

(Fig. 4b). A gradient magnitude image (i.e., an edge

image) is then computed (Fig. 4c), and the output image

is searched for local minima. The area of influence of

each minimum is contoured and labelled with a

watershed algorithm (Fig. 4d). Then the resulting

regions are iteratively merged by increasing dissim-

ilarity until they exceed the size [expressed in working

pixel units (WPS)] of the minimum mapping unit

(MMU), and are close to the mean segment size (MSS)

specified from OSA/OSU statistics. Finally, a labelled

image, composed of merged ‘watersheds’ that cogni-
and SCRM—workflow.
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tively represent individual image-objects, is converted

into a vector layer (Fig. 4e), and attributes are optionally

compiled.

3.3.1. SCRM background

The SCRM algorithm builds upon a number of ideas

from previous research. The first is the stepwise

optimisation algorithm of Beaulieu and Goldberg

(1989). It begins by considering single pixels as the

initial segments. At each iteration, the two adjacent

segments that show the highest degree of fitting are

merged. Thus, the candidate pair merged at each pass is

the one that produces the least increment in hetero-

geneity. Segments are merged gradually in this way

until there is no candidate pair below a user-defined

threshold. The final partition is considered optimal

regarding the minimization of the heterogeneity

criterion, but the procedure is slow as it allows only

one merge per pass (a strategy known as global mutual

best fitting). Based on this work, Woodcock and

Harward (1987) introduced a faster algorithm that

allowed multiple merges per pass and included size

constraints. As these authors noted, the global threshold

alone led to inadequate results, since there was often a

great disparity in size of the output regions. Areas

marked by coarse texture will consist of many small

regions (often individual pixels), whereas smooth

uniform areas are segmented into large regions.

Therefore, they supplemented their algorithm with size

constraints that prevented excessive growing in smooth

areas and forced the development of segments exceed-

ing the minimum required size in areas with high local

variance.

Another way of tackling the uneven growth of

segments between areas of smooth and coarse texture is

to enable multiple merges per pass, by distributing the

candidate pairs to be merged at each iteration as far as

possible away from each other in the image. This is the

strategy followed by the segmentation algorithm

embedded in eCognition (Baatz and Schape, 2000).

In this way, it achieves a uniform growth of segments

throughout the image, so that the final segments all have

a similar size. Since a conservative (small) threshold

permits fewer merges than a greater one, the mean size

of segments will grow with the value of the threshold.

A major pitfall of these three methods is that they

start the merging sequence with individual pixels.

Apart from being computationally expensive, pixels

are artificial units, without an explicit geographic

reality (Fisher, 1997). Away to tackle this incongruity

is to start the region merging process with blobs instead

of single pixels (Castilla, 2003). Blobs are tiny
homogeneous regions, darker, brighter or of different

hue than their surroundings (Marr, 1982; Lindeberg,

1994). Therefore, just as pixels are the building blocks

of an image, here, blobs are the perceptual primitive

counterparts (Castilla, 2003). An effective method to

contour blobs, assuming they correspond to catchment

basins of gradient minima, is the watershed transform

(Vincent and Soille, 1991), the principalmorphological

segmentation method. We note, a variation referred to

as marker-controlled watershed segmentation (MCS;

Meyer and Beucher, 1990) – where segmentation

occurs only at user defined (i.e., marked) locations –

has been successfully used for object-based multi-

spectral land cover segmentation and classification

(Hall and Hay, 2003; Hall et al., 2004). However, MCS

is not used in this study since SCRM replaces the need

of choosing the markers with the filtering of the input

image.

The use of a segmentation sequence consisting of

image smoothing and/or gradient magnitude simplifica-

tion, watershed transform, and region merging, has also

been reported previously (Ji and Park, 1996; Fjørtoft

et al., 1998; Haris et al., 1998; Weickert, 1998).

However, none of these studies were related to land

cover mapping. Furthermore, except for the watershed

transform, the algorithms proposed here are new, and

our method is conceptually consistent with object-

oriented analysis, an asset that many segmentation

algorithms lack.

3.3.2. Applying SCRM

In order to use SCRM (Fig. 4), three spatial

parameters (two of which are based on object-size)

must be specified:
(i) th
e working pixel size (WPS);
(ii) th
e minimum mapping unit (MMU);
(iii) th
e mean segment size (MSS).
These can be defined either by a user, or

automatically extracted from the area images generated

at each OSA/OSU iteration (see Section 4.2 for details).

WPS represents the spatial resolution (i.e., grain) of the

image, and is defined as the length of the side of the

original pixel. It also corresponds to the desired spatial

accuracy of boundaries to be generated, since the mean

distance between vertices in the output vector layer is

roughly double this length. MMU represents the

minimum size required for segments, which is given

in original pixel (areal) units. From an object-specific

perspective, MMU is represented by the minimum DN

of the associated area image(s). MSS corresponds to the
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desired average size of output segments. This can be

defined by finding the mean of the corresponding area

images. Once specified, the next step involves filtering

the input image (Fig. 4a).

3.4. Image smoothing

An intrinsic characteristic of remotely sensed images

(at any spatial resolution) is image-texture, the local

variation of DNs within an image-object, and between

different image-objects resulting from the relationship

between sensor spatial resolution, and the size, shape,

spatial configuration, and spectral characteristics of the

scene components being viewed (Hay and Niemann,

1994; Hay et al., 1996). If a gradient magnitude image

(i.e., an ‘edge’ image) is computed without pre-

conditioning of the input image (OI), the computation

will result in an intricate structure full of edges and local

minima, especially in areas with coarse image-texture.

Therefore, the structure of the image has to be

simplified so that gradient minima resulting from

coarse image-textures are removed. Coarse texture can

be interpreted as being caused by objects with a

recurrent pattern of distribution that cannot be resolved

by the sensor. Therefore, they should be grouped into

larger image-objects that can only be delineated after

having suppressed the effects of the smaller objects. We

note that the suppression of coarse texture in order to

obtain a first delineation of the scene does not preclude

the ability to define a specific texture measure at a latter

stage, as segment statistics are not computed from the

DNs of the smoothed image, but from the original one.

Ideally, simplification should be performed only upon

the unresolved elements of the scene that generate

image-texture, leaving untouched the elements corre-

sponding to edges. Such a process is commonly called

edge preserving smoothing (EPS) (Abramson and

Schowengerdt, 1993).

Unlike conventional smoothing techniques such as

simple averaging or Gaussian filtering, EPS filters adapt

to the structure of the image, so that the local operator is

different at each position. A simple example is the

median filter. In GIWEPS, the new digital number of a

given pixel is the weighted mean of the DNs of its eight

neighbours. The weight of each neighbour is propor-

tional to its similarity to that pixel, and the degree of

proportionality is governed by a diffusivity parameter.

The filter is applied iteratively, up to a point where

change between consecutive output images is negligible

(Fig. 4b). We note that output images beyond this point

still resemble the original image over thousands of

iterations (Castilla, 2003).
3.5. Gradient magnitude image

If one considers a given grey-level image as a digital

elevation model (DEM), then the gradient magnitude

image is the slope map that corresponds to that DEM.

Thus, at each pixel of a grey-level image, the gradient

magnitude is the slope of the steepest descent line

crossing that pixel. The dissimilarity measure used here

is the Euclidean distance between points (i.e., pixel

signatures) in the feature space (Castilla, 2004). Thus,

gradient minima are those pixels whose gradient is

lower than that of their eight neighbours in the gradient

magnitude image (Fig. 4c). In the unusual case of

plateaus (regions with equally low-valued pixels), there

are no proper minima, and the centroid of the plateau is

selected as a local minimum representing the region. If

we consider gradient minima as perceptual attractors,

then their basins of attraction are the primal regions

building the spatial structure of the image. By adopting

this analogy, the area of influence of each gradient

minimummay be viewed as a blob in the filtered image.

Though beyond the scope of this paper to further

explore, this analogy is the foundation of semiophysic

image analysis (Thom, 1988), as it enables a

correspondence between structural–functional units in

an image and the imaged landscape (see Castilla, 2003

for details).

3.6. Watershed partition

The topographic concept of watershed was first

introduced to the field of image analysis by Beucher and

Lantuéjoul (1979), and implemented into an efficient

algorithm by Vincent and Soille (1991). The basic idea

is to consider the gradient magnitude image (Section

3.5) not as a slope map but as a DEM in itself, with the

goal being to find the drainage divides, or watersheds, of

that virtual territory. Watersheds define a network of

ridges that enclose the dales, or catchment basins, where

each drop of rain would drain. If the gradient magnitude

image (Fig. 4c) were visualized as a DEM representing

a lunar-scape, full of craters (dark areas) with ridges

(bright areas) of different heights, then each crater

would correspond to a blob in the filtered image.

Conceptually, the applied watershed transform

simulates a gradual immersion of a surface. Imagine

that crater bottoms (i.e., gradient minima) are springs

where pressurized underground water upwells. As this

process occurs, water will begin to flood areas adjacent

to each spring. Further suppose that the flow at each

spring is such that the altitude of the water plane of the

submersed areas is the same for the entire image-scape
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(hence the analogy with immersion rather than flood-

ing). Now, in places where the water flowing from two

different crater bottoms would merge, we build a dam of

1-pixel thickness, slightly taller than the highest crater

of the scene. When the latter is completely submersed,

we stop the immersion. The resulting dams are the

watersheds of the pseudo-topographic scene, which in

turn define a complete partition of the image. In the

output partition, watershed pixels are set to zero

(Fig. 4d), whereas non-zero pixels have as DN the

numeric label of the segment to which they belong.

3.7. Region merging

In this step, the regions of the watershed partition

(i.e., blobs) are aggregated into segments until all

regions in the partition are larger than the specified

minimum size (MMU), and the merging sequence is

such that the homogeneity of the resulting regions is

maximal given the size constraint (MMU andMSS).We

note that many region-merging algorithms include a

size constraint (Woodcock and Harward, 1987; Hagner,

1990; Baraldi and Parmiggiani, 1994); however, in

these examples thresholds are set on a dissimilarity

measure, which is typically a non-intuitive input

parameter based on spectral magnitudes that can only

be defined meaningfully after numerous iterations. The

input parameters defined by SCRM are directly related

to the size (i.e., area) of the image-objects in the scene

as defined either by a user, or by iterative OSA/OSU.

In SCRM, the signature of a segment is the mean

value of the pixels belonging to it. Therefore, the

signature of a new segment is the weighted (by size)

mean of the signatures of the two merged segments. In

this way, segment signatures are computed from the

original image only once, at the beginning of the

merging procedure. The same can be said about the

adjacency table (an array returning the list of

neighbours of any given segment), which is first

computed from the watershed partition and then

updated using Boolean algebra. From this adjacency

table (AT) and the signature list (SL), the identification

of the most similar neighbour (MSN) to each segment is

trivial (Castilla, 2004).

The utility of table-based updating of both signatures

and adjacency is that it is very fast, and it enables the use

of the global mutual best fitting strategy (see Section

3.3.1), which is computationally slow. Consequently, in

each iteration only a candidate pair – for which the

dissimilarity criterion is minimal – is merged. Next, the

AT, SL, and MSN arrays are updated, and a new

iteration proceeds. This process continues until the sum
of the number of segments currently larger than MMU

(Narea>MMU), plus the result of dividing byMSS the area

currently occupied by segments smaller than MMU

(Sarea<MMU), is less than the result of dividing the area

of the image (Iarea) by MSS:

Narea>MMU þ Sarea<MMU

MSS
<

Iarea
MSS

(1)

Eq. (1) represents a partial stop criterion that guarantees

that the final mean size of segments (MSS) will be close

to the desired size. Once met, the segment size is taken

into account in the merging procedure, so that the best

fitting pair is allowed to merge only if at least one of

both segments is smaller than the MMU. In this way,

homogeneous regions are formed first, and then dis-

similar regions smaller than MMU are progressively

incorporated to the former until all segments are larger

than MMU.

The actual merging of two segments involves

replacing the label of one with the label of the other

in the final label list (FLL). FLL is an array of length

equal to the number of segments (i.e., blobs) in the

initial watershed partition. At any point during the

merging process, there is a link that keeps track of blobs

composing each segment, so that FLL can be easily

updated. Once the merging is completed, a new raster

layer (referred to as the baseline image) is created from

the watershed partition by replacing the DN of pixels

inside each blob with the new label registered in the

corresponding position of FLL. Finally, watershed

pixels lying in the interior of final segments are filled

with the numeric label of the corresponding segment.

3.8. Vectorization

Once the baseline image has been generated, an

optional last step is to convert it into a vector layer. The

centres of boundary pixels (zero-valued) are considered

the initial vertices forming the arcs. Note that this is

analogous to considering boundary pixels as a transition

zone between patches that can be represented by its

medial axis. The nodes (i.e., junctions between arcs) are

identified, so that each polygon is defined by the set of

arcs bounding the corresponding segment. In order to

give a smooth appearance to arcs (Fig. 4e), a spline

interpolation is applied to the centroid of each of three

consecutive vertices. Once the image is vectorized, a

database can then be generated with associated attribute

information (i.e., radiometric and spatial) for each

segment. These vectors can also optionally be used to

generate associated attribute raster layers. The resulting
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(vector) layers may then be used in a GIS as an efficient

method for automatically defining training and or

sampling ‘regions of interest’ for supervised classifica-

tions, for object-based analysis and or classification

(Devereux et al., 2004), and as a guiding template for

computer-assisted photointerpretation. This last use is

discussed further in Section 5.1.

4. Results

4.1. Object-specific histograms and scene structure

The evolution of image-objects captured in U1–4

histograms, reveal a shift through scale from single, to

multi-modal peaks, which in turn visually correspond

to dominant object classes in the landscape. Thus,

without a priori information, it may be possible to use

the multi-modal histogram information generated

from the family of object-specific upscale images

(U1–4) to automatically define ‘meaningful’ image

classes that correspond to the visually dominant

image-objects in the scene (Fig. 5). To illustrate that

this form of histogram information is only available

with the use of object-specific analysis, we evaluated

three non-object-based resampling strategies in order

to examine the shape of their resulting histograms

through scale.

Evaluation was conducted by upscaling (i.e., res-

ampling) the original image to four different spatial

resolutions using nearest neighbour, bilinear, and

bicubic interpolation that spatially corresponded to

the hierarchy of images with the same x and y

dimensions as U1–4 (Fig. 3). Resampling was conducted

in Matlab using the imresize function.2 We note that

visually similar histogram results were obtained using

each of the three resampling algorithms for each set of

four upscale images; however, the images resulting

from bicubic interpolation were perceptually closer to

those in Fig. 3. In addition, due to the strong similarity

in histogram shape between each of the histograms

generated with bicubic resampling, we have only

selected OI�bicubic ðU4Þ for a comparison with the four

object-specific histograms (U1–4) illustrated in Fig. 5.

OI�bicubic ðU4Þ results from applying bicubic resampling

to the original image (OI) with the same x and y

dimensions as U4. Though the number of samples

between OI and OI�bicubic ðU4Þ is very different, the
2 Imresize automatically applies a low-pass filter to the image

before interpolation. This filtering reduces the effect of Moiré pat-

terns—ripple patterns that result from aliasing during resampling

(MATLAB 6.1, Release 12.1).
general shape of their single mode histograms is

visually similar, which is in stark difference to the

multi-mode histogram of U4 (Fig. 5).

Although numerous forest polygons and four general

forest classes exist in the initial scene (Fig. 2), these

classes are all represented in OI and OI�bicubic ðU4Þ by a

single-mode near Gaussian distribution. Due to the

shape of these curves we conclude that it would be

difficult if not impossible to confidently extract unique

class specific information from OI or OI�bicubic ðU4Þ,
based exclusively on the shape of their histograms. In

contrast, at least four principle classes could be

automatically isolated from U3–4 images using classic

signal processing methods e.g., defining the zero

crossings of the histogram curves, or using simple

histogram thresholding (i.e., density slicing). We note

that DNs around the large peak at 100 visually represent

the mature class while those near 160 represent the

young class—especially those located in the lower left

quadrant of the image (Fig. 2). DNs clustering around

180 represent the immature class, prevalent along the

middle right edge of the image as a long vertical

rectangle, and those near 220 represent the very bright

values corresponding to bare areas in the upper left

quadrant of the image.

4.2. Automatically defining WPS, MMU, and MSS

from multiscale area images

Since object-specific analysis and upscaling allow

spatially dominant image-objects to evolve through

scale, object size parameters can be generated for use in

SCRMby defining theminimum and average statistics of

all pixels in each area image in relation to their

corresponding spatial resolution (Fig. 3). Recall that

each area DN is an object-specific measure that defines

the spatial extent (i.e., the area) of an image-object it (the

pixel) is a part of. When these size statistics are defined,

Table 1 shows that at a spatial resolution orworking pixel

size (WPS) of 1 m2, the minimum mapping unit (MMU)

for A1 corresponds to segments with a minimum area of

0.0018 ha (18 pixels � 1 m2) and a mean segment size

(MSS) of 0.0053 ha (53 pixels � 1 m2). ForA2, theWPS

is 1.6 m2, the MMU is 0.0046 ha, and the MSS is

0.0188 ha. CorrespondingWPS, MMU, andMSS values

are also defined in Table 1 for A3–5. As expected, the

general trend of these results shows that larger image-

objects exist (in each scene) as spatial resolution

coarsens, as evident by the increasing MMU and MSS

values.

If the frequency histogram (i.e., DN frequency over

DN value) of an Area image were normally distributed,
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Fig. 5. A comparison of histograms showing how class structure changes through scales with object-specific analysis and upscaling: original image

(OI), upscale images (U1–4), and a bicubic resampling of OI to the same spatial resolution as U4 (OI�bicubic ðU4Þ).
the image mean (which is equivalent to the MSS), along

with the mode and median would each represent a

cumulative distribution of 50% of the total DNs

composing the image. That is, the resulting segments
would spatially represent 50% of the different sized

image-objects constituting the scene at this scale.

However, when the frequency histograms of A1–5 are

assessed in relation to their MSS, we find that the MSS
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Table 1

SCRM statistics automatically extracted from area (A1–5) images.

Area images x, y (p) WPS (m2) MMU (ha) MSS (ha) Cumulative %

A1 1000 1 0.00018 0.0053 66.67

A2 625 1.6 0.0046 0.0188 56.07

A3 391 2.56 0.0118 0.0661 73.19

A4 244 4.096 0.0302 0.2954 88.09

A5 153 6.554 0.0773 1.0308 94.46

ha, hectares; m, meters; p, pixel units.

Table 2

Vector layer results from five iterations of multiscale SCRM

Vector layers # Watershed segments # Merged segments Merging time (s) Mean size (ha) Processing time (s)

VL1 43969 13265 119 0.007538 161.828

VL2 20072 2960 27 0.033783 42.922

VL3 8205 610 6 0.164249 13.687

VL4 3111 137 1 0.729086 6.109

VL5 1089 39 >1 2.57797 4.437

3 Processing was conducted using a Pentium IV, 2.53 GHz work-

station, with 1.5 GB of RAM.
for A1 represents a cumulative value of nearly 67% of

the entire image (Table 1, Cumulative %). Conse-

quently, this MSS spatially represents nearly 67% of

all possible image-objects composing the scene at

this WPS. The MSS for A2, A3, A4, and A5,

respectively, represents 56%, 73%, 88%, and 94%

of all different sized image-objects that populate each

corresponding image (U1–4 in Fig. 3). Thus, in A5,

only 6% of the image-objects composing the scene

are larger than the segments defined by the MSS of

1.0308 ha (Table 1). This suggests that automatically

defined multiscale MSS values constitute highly rep-

resentative spatial samples (of all possible image-

objects composing a scene), regardless of the scale

being assessed.

4.3. Automatic generation of five hierarchical

layers of multiscale segments

When the WPS, MMU, and MSS information from

Table 1, is applied iteratively in the SCRM workflow

(Section 3.3), they result in five separate layers of

multiscale vectors (VL1–5), which we hypothesize

represent the hierarchical evolution of dominant scene

structure through scale. Each layer is composed of a

different number of segments of different size, shape,

and spatial location, with an MSS greater than that

specified (compare mean size in Table 2, with MSS in

Table 1).

By applying the A1 parameters defined automatically

by OSA/OSU (Table 1), 43,969 watershed segments
were generated in the first SCRM iteration. These were

merged to produce a vector layer (VL1) composed of

13,265 segments with a mean size of 0.0075 ha. In the

second SCRM iteration, use of A2 parameters resulted in

20,072 watershed segments that were merged into 2960

segments comprising vector layer 2 (VL2). The resul-

ting mean segment size was 0.0337 ha. This procedure

was repeated with A3–5 parameters resulting in 610, 137,

and 39 merged segments for VL3–5, respectively. Total

processing time for these three layers ranged from 13.6

to 4.4 s3 (Table 2).

Due to the large number of total segments generated,

it is not feasible to present all possible layers in a single

figure. Therefore, in Fig. 6 we present all (39) segments

from VL5 (bold lines) and all (137) segments from VL4

(thin lines) overlaid on the original image. The white

square in the upper right image-quadrant represents the

location of sub-images displayed in Fig. 7, where the

corresponding hierarchical segments from VL1–4 are

shown in greater detail.

It is important to recall that specified MSS values

represent the average size of the segments to be

generated; however, the eventual segment size will vary

depending on the spectral and spatial characteristics of

the image-objects composing the scene in relation to the

MMU and WPS sizes specified. Simply because an

average segment size is specified, does not guarantee
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Fig. 6. Segment overlays from vector layer 5 (bold lines) MSS = 1.0308 ha and vector layer 4 (thin lines) MSS = 0.2954 ha.
that image-objects of corresponding size(s) actually

exist in the image. This may result when a scene is

composed of only very large and very small image-

objects, which produce an average object-size that is not

physically present in the landscape. For example, in

VL5, the 39 segments have a mean size of 2.57 ha even

though the specified MSS was 1.0308 ha, while in VL4,

the 137 segments have a mean size of 0.729 ha, even

though the specified MSS was 0.2954 ha (compare

results in Tables 1 and 2).

5. Discussion

An important characteristic of MOSS is that it

automatically provides a multiscale overview of the

dominant structure existing in the scene, based on the

scene components themselves, without any user

intervention. Visual inspection of vector layers VL1–5

(Figs. 6 and 7) reveal details ranging from individual

tree crowns, crown shadows, and canopy gaps, to larger

vegetation units that correspond to sub-dominant, and

dominant stand components. In this section, we

illustrate and discuss the potential of MOSS for

computer-assisted mapping, and describe how with a
simple model it could be extended to evaluate larger

landscape components than initially assessed with OSA

and OSU.

5.1. Can MOSS provide a computer-assisted

solution for forest inventory mapping and

information generation?

Manual aerial photo interpretation is the most

common approach for generating management forest

inventories, of which stand delineation and subsequent

attribution are critical components. However, inter-

pretation accuracy, consistency, and timeliness are

recurring concerns (Hall, 2003). For example, in

1:10,000 to 1:20,000 scale photography, accuracies

are generally 70–85% for main species in a stand, but

can be lower (Leckie et al., 2003). In addition, inventory

data volumes are often enormous, yet manual inter-

pretation typically completes only 5–15 photos per day.

This represents approximately one photo per hour, or

400 new hectares and 10–15 stands per hour (Leckie

et al., 1998; data of Leckie and Gillis, 1995). As a result,

the photointerpretation process is both time consuming

and represents a significant cost component of inventory
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Fig. 7. Sub-images of vector layer overlays (VL1–4), showing changing segment detail through scale.
mapping at around 25% (Leckie and Gillis, 1995).

Furthermore, new parameters are becoming increas-

ingly important such as stems/ha, stand gap size

distribution, number of snags or large trees, crown size

distribution, and other environmental strata-based forest

conditions (i.e., nesting habitat, change detection, and

damage assessments) (Gougeon and Leckie, 2001);

which can additionally burden the interpretation

process (Hall, 2003). As a result, forest managers are

increasingly considering computer-assisted interpreta-

tion aids to forest inventory mapping. However, such

techniques must fit current infrastructure using 1:10,000

to 1:20,000 scale digitized photography and or high

spatial resolution satellite imagery. Theymust be simple

to apply, not require sophisticated or expensive
equipment, nor require inordinate fine-tuning or trial

and error by the interpreter (Leckie et al., 1998), and

above all, they must produce meaningful results. If

these requirements can be met, then the incremental

inclusion of automated processing to the increasingly

digital photo interpretation process will create oppor-

tunities to increase interpretation accuracies and

efficiencies per unit area, provide new information

products, and lower costs.

Forest managers use interpretations of air-photos and

high-spatial resolution imagery to provide a general-

ization of complex forest ecosystems that enable logical

groupings (e.g., age, height, crown closure, etc.) upon

which management scenarios may be based and

implemented. Typically, photo interpreters operate by
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nitially delineating the most contrasting units, with a

second pass to delineate more subtle units, or units

worthy of more intensive characterization. Attribution

then proceeds once all spatial units have been

delineated (Leckie and Gillis, 1995). Based on this

approach, MOSS could be integrated within this

interpretation framework by providing the following

capabilities:
1. a
id interpreters in making object delineation deci-

sions;
2. p
rovide assistance with determination of sub-unit and

super-unit delineations.

Since object-based vector layers can be pre-

generated, a near real-time overview of the scene

structure at multiple scales will be available to the

analyst. Once overlaid on the original image, the analyst

can immediately begin to visually evaluate and verify

boundaries, and their (automatically defined spectral/

spatial) attributes. For example, in Fig. 6, visual

inspection shows that the VL5 segments model the

larger stand components in the scene with good

agreement. However, there are places [see A (upper-

middle) in Fig. 6] where components of different

vegetation cover (i.e., Mature and Young) have been

merged within the same (bold) segment. From the

perspective of a guiding template for computer-assisted

interpretation, if this merge or portions of it (i.e., the

arcs composing this polygon) were not desired, a user

could simply overlay finer segments, such as those from

VL1–4 (Fig. 7) to evaluate the smaller polygons the

larger segment is composed of. Thus, an interpreter

need not digitise new arcs, she merely selects and erase

(e.g., with mouse clicks) the arcs (of different scales)

considered most relevant. For example, finer segments

from VL4 (located directly below A in Fig. 6) reveal

forest structure that visually appears more accurate than

the corresponding Forest polygon boundary defined in

Fig. 2. With a simple mouse click these detailed

segments can be added to the working vector layer, and

components of the undesired (bold) polygon, can

simply be deleted. However, this first implies that the

segments correspond to features of interest for the

analyst.

5.1.1. Additional forest applications

Since DN heterogeneity is lower within a segment,

than between segments, MOSS scenes could also be

used as part of a stratified sampling program. In such

cases, users need a means to determine what greater

structures exist in the landscape, and the level of
variability within these units. For example, sampling of

Lidar data, over a range of forest structural types, may

be guided by such an approach. The generated hierarchy

of multiscale segments could also find application in

individual tree and canopy gap analysis, baseline

mapping, polygon updating, change detection, object-

based classifications, and for verifying the accuracy of

existing forest polygons.

5.2. Can we extend MOSS results to provide

information about broader scales than those

initially evaluated?

In the GVWD, forest information is generated for

stands 2.0 ha and greater, which is in the typical range

of the minimum polygon sizes used in Canada (Gillis

and Leckie, 1993). Stands smaller than this are

generally aggregated into larger neighbouring units.

However, due to the size of the original image (OI), only

five iterations of OSA/OSU were applied (Section

3.2.2), resulting in a maximum defined MSS value of

1.0308 ha for A5 (Table 1). While we recognize that the

mean segment size generated from this 1.0308 ha value

was 2.57 ha (see Table 2 VL5, mean size), it caused us to

consider if there is a way to extend the current spatial

information to coarser scales to facilitate a more general

perception of the overall dominant scene structure,

while also providing a mechanism to define layer(s) of

interest with a MSS closer to the 2.0 ha requirements of

the GVWD? In addition, are there natural scene

measures that can be used to delineate coarse scale

segments based on the fine scale spatial structure of the

scene? By ‘natural’, we mean the values are not

arbitrarily defined by an analyst, but are instead derived

from the scene components themselves.

One solution is to use the previously defined WPS,

MMU, and MSS values resulting from A1–5, to model

(i.e., forecast) coarser scale SCRM parameters from

which new vector layers can be generated. In this

example, forecasting was done using a regression

approach with either an exponential or third order-

polynomial model for two additional scales (at half-

step intervals). Model selection was based on the

highestR2-value and howwell themodel visually fit the

input data.

5.2.1. Defining WPSmodel

Forecasting WPS values is relatively trivial as each

incremented value results from upscaling with a

resampling heuristic of 1.6 (see Section 3.2.2). Thus,

based on the five WPS values in Table 1, the spatial

resolution of the next two model area images (A6 and
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Table 3

Coarse scale model results from forecasting WPS, MMU, and MSS for two half-periods

Vector

model

WPS (m2) MMU (ha) MSS (ha) # Watershed

segments

# Merged

segments

Mean

size (ha)

Processing

time (s)

VL6 8.201 0.1210 1.8827 667 18 5.560 4.078

VL7 10.42 0.1953 3.3963 409 12 8.333 3.815

ha, hectares; m, meters; p, pixel units; s, seconds.

Fig. 8. Two additional hierarchical vectors layers (VL6,7) generated from model (MSS, MMU, and WPS) values.
A7) will be equal to 10.417 m2 (6.554 m � 1.6 m) and

16.667 m2 (10.417 m � 1.6 m). We also note that these

two results are exactly predicted with an exponential

model4 of the same five values, forecast for two periods

(R2 = 1). The efficacy of this model is that it also allows

values to be defined between the two periods (i.e., in

half-steps).

5.2.2. Defining MMUmodel

Based on the scene structure at each scale increment,

the minimum value(s) defined in A1–5 have been

constant at 18 pixels (for each image), even though the

minimum kernel size in OSA is composed of 5 pixels.

Thus, the forecast MMU values for the next two scales

are 0.1953 ha (18 pixels � 10.417 m2) and 0.500 ha

(18 pixels � 16.667 m2).

5.2.3. Defining MSSmodel

When the MSS values from Table 1 are forecast for

two periods then plotted and fitted with a third order
4 y = 0.625e0.47x where x can be substituted with the values 6 and 7,

which represent A6 and A7.
polynomial trend-line5 the resulting MSS values for A6

and A7 are 3.3963 ha and 10.47 ha, respectively, for

each period (R2 is 0.9994). These values are larger than

the 2.0 ha requirement for the GVWD. However, by

using a half-period forecast we are able to define a new

MSS of 1.8827 ha that fits between the previously

defined A5 MSS value of 1.038 ha, and the new A6 value

of 3.3963 ha. This new value along with its correspond-

ing WPS of 8.201 m2 (defined from the half-step

location in the WPS exponential model, Section 5.2.1)

and MMU of 0.1210 ha (18 pixels � 8.201 m2) enables

the generation of vector layer 6 (VL6), while the WPS,

MMU, and MSS values defined for A6 result in the

generation of vector layer 7 (VL7; Table 3). Those

values defined from A7 are not considered in this

example as they exceed the initial 2.0 ha criteria.

To simplify viewing, we have illustrated the new

layers in two associated graphics. In Fig. 8, the left image

displays an overlay of VL6 (bold) with finer scale vectors

fromVL5 (thin). The right image shows the coarser sized

vectors from VL7 that represent the upper-most layer in
5 The exponential model produced an R2 = 0.9893.
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this vector-layer triad.Themean size of segments in these

layers range from 2.57 ha for VL5, 5.56 ha for VL6 to

8.33 ha for VL7 (Table 3). By generating the initial

SCRM spatial parameters fromOSA/OSU then using the

results to model coarser segments, an interpreter will be

able to generate a hierarchical range of vector layers

which provide a larger area perspective of ‘naturally

occurring’ dominant scene structures.

6. Conclusion

Over the last decade there has been increasing interest

in the object-based analysis of EO data. To support this

trend, image-processing tools are required that can take

advantage of the H-res image-object information

inherent to high-resolution imagery. In addition, for

widespread adoption, such tools need to be easy to use, fit

within existing image-processing and ecological frame-

works, require minimal user ‘tweaking’ or ‘trial and

error’, have a sound theoretical underpinning, and most

importantly provide results that closely match or exceed

those generated by a human interpreter. In an effort to

meet these conditions, we have presented multiscale

object-specific segmentation as an integrative object-

based approach for automatically delineating cognitively

meaningful multiscale image-objects from high-resolu-

tion EO data. Segmentation is based on automatically

extracted spatial measures that are explicitly related to

the varying sized, shaped, and spatially distributed

image-objects that compose a scene.

When applied to a high-resolution forest image we

show that MOSS can be used to automatically delineate

a range of objects that correspond from individual tree

crowns to forest stands, and described how such a tool

could be used for computer-assisted forest inventory

mapping. We also discuss how SCRM parameters can

be extended with a simple model, to allow for larger

scale analysis. Presentation of the theoretical and

scientific workings of MOSS is intended to provide

users with an understanding of the segmentation

process. Using an application from forest inventory

illustrates how integrating a segmentation procedure

within an existing information generation framework

may increase the consistency of results, and indicates

how cost savings may be realized through an incre-

mental inclusion of automated processes to an increas-

ingly digital interpretation environment.
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