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Large-area mountain pine beetle infestations: 
Spatial data representation and accuracy

by Trisalyn Nelson1, Barry Boots2 and Michael A. Wulder3

ABSTRACT
Point data generated from helicopter surveys are used to determine the location and magnitude of mountain pine beetle
infestations. Although collected for tactical planning, these data also provide a rich source of information for scientific
investigations. To facilitate spatial research, it is important to consider how to best represent spatially explicit mountain
pine beetle infestation data. This paper focuses on the spatial representation of point-based aerial helicopter surveys,
which can be difficult to represent due to issues associated with large data quantities and data uncertainty. In this paper,
the benefit of using a kernel density estimator to convert point data to a continuous raster surface is demonstrated. Field
data are used to assess the accuracy of the point-based aerial helicopter survey data and the kernel density estimator is
extended to incorporate data uncertainty. While the accuracy of point-based aerial surveys is high, with 92.6% of points
differing by no more than ± 10 trees, there is a general tendency to overestimate infestation magnitude. The method
developed for incorporating uncertainty into the kernel density estimator reduces overestimation and improves the cor-
respondence between estimated infestation intensities and field data values.
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RÉSUMÉ
Des points de données tirées de sondage par hélicoptère sont utilisés pour déterminer la localisation et l’importance des
infestations de dendroctone du pin. Même si elles ont été recueillies pour des raisons de planification tactiques, ces 
données constituent également une importante source d’information pour les études scientifiques. Afin de faciliter la
localisation spatiale, il est important d’étudier comment on peut représenter le mieux les données explicites en terme de
localisation des infestations de dendroctone du pin. Cet article porte sur la représentation spatiale des points tirés des
sondages par hélicoptère, ce qui peut être difficile à réaliser compte tenu des questions entourant les grandes quantités de
données et l’incertitude qu’elles comportent. Dans le cas présent, l’avantage de l’utilisation d’un estimateur de noyau de
densité pour la conversion des points de données en surface continue est démontré. Des données de terrain sont utilisées
pour évaluer la précision des points de données du sondage aérien par hélicoptère et l’estimateur de noyau de densité est
conçu pour comprendre l’incertitude entourant les données. Même si la précision des points de données par sondage
aérien est élevée, 92 % des points ne différant par pas plus de ± 10 arbres, on retrouve une tendance générale de sures-
timer l’étendue de l’Infestation. La méthode élaborée pour incorporer l’incertitude au sein de l’estimateur de noyau de
densité réduit la surestimation et améliore la correspondance entre les intensités d’infestation estimées et les valeurs en
provenance des données du terrain.
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Introduction
Mountain pine beetle populations in British Columbia are
increasing exponentially.Warmer temperatures combined with
an over-abundance of mature lodgepole pine have led to an
epidemic that is much larger than any previously recorded. The
current mountain pine beetle infestation has affected 7 million
ha of British Columbia’s forest (Westfall 2005), and projections
indicate that 80% of the lodgepole pine may be affected unless
a major weather-stopping event occurs (Eng et al. 2004).

As the epidemic grows so does recognition that forest
management requires a new understanding of mountain pine
beetle dynamics. Fundamental research questions surround-
ing landscape level, spatial dynamics of the mountain pine
beetle await exploration. These questions include research
that would improve knowledge of spatial processes such as how
mountain pine beetle disperse and select hosts. Such insights
would benefit modelling efforts and decision-making. As
well, the current knowledge regarding the mountain pine
beetle is typically based on stand- or finer-scale studies and
little evidence is available to indicate if processes operate sim-
ilarly at the landscape level.

The coupling of improvements in spatial data acquisition
with intensive forest monitoring efforts has led to the avail-
ability of large-area, spatially explicit data on the impacts of
the mountain pine beetle. Used to target mitigation and other
activities, spatial point data on infestations are a valuable asset
for forest planners. A spin-off benefit is that spatially explicit
data sets provide scientists with a new mechanism for inves-
tigating large-area spatial mountain pine beetle dynamics.

In order for empirical mountain pine beetle data to be used
for scientific purposes, an optimal approach for data represen-
tation is required. While large-area spatial mountain pine bee-
tle data sets are collected using various approaches (Wulder et
al. 2004), the focus of this paper is point-based, aerial survey
data. Such data are generated via helicopter surveys during
which the spatial location of an infestation cluster is marked
using a GPS and the number of infested trees is estimated.
Unless specifically noted, the mountain pine beetle aerial sur-
vey data referenced throughout this manuscript are GPS point
data collected through helicopter surveys, and differ from
polygon format aerial survey data collected from fixed-wing
aircraft and used to support broader-scale strategic planning.

There are several issues to consider when representing
point-based mountain pine beetle data collected via aerial
surveying. The first issue, which is a conceptual consideration
for all spatial data representation, is the nature of mountain
pine beetle processes. Although endemic populations mark
the landscape with periodic and spatially discrete pine mor-
tality, the mountain pine beetle is ubiquitous in pine forests
(Carroll and Safranyik 2004). During an epidemic, pine mor-
tality becomes spatially continuous, with infested trees occur-
ring throughout the forest and discrete boundaries becoming
difficult to delineate. Particularly when data reflect epidemic
mountain pine beetle conditions, there is a conceptual bene-
fit to utilizing a spatially continuous data representation.

A second factor to consider in representing aerial survey
point data on beetle populations is that the points correspond
to areas, but the size of the corresponding areas varies and is
typically not recorded. A spatial representation that links
points to areas may be advantageous; however, standard area
conversions are difficult due to variability in the size of areas
represented by each point.

The large number of points collected during aerial survey-
ing is a third consideration in data representation. Point-
based mountain pine beetle data sets have many points and
the associated number of infested trees ranges from one to
400. As a result, when using point representations, visualiza-
tion of the spatial variation in infestation intensity is
obscured by symbol overlap. Standard cartographic methods,
such as proportional symbols or colours, become insufficient
to allow for meaningful interpretation of data.

Data uncertainty is a fourth consideration when repre-
senting aerial survey data on mountain pine beetle infesta-
tions. All aerial surveys of mountain pine beetle infestations
use indicators of pine mortality, mainly changes in crown
foliage colour, to monitor mountain pine beetle activity.
When a pine tree is attacked by the mountain pine beetle,
usually in mid-summer, crown foliage changes successively
from green to yellow, to brown, to red, and eventually needles
drop off the tree leaving the grey stem and branches
(Safranyik et al. 2002). While the first visually detectable
change to foliage colour usually occurs in the spring follow-
ing attack, hot and/or dry summer conditions may cause
foliage to begin changing in the fall (Safranyik et al. 2002).
Typically, one year after attack, crown foliage is yellow-green
or yellow-brown (Safranyik et al. 2002). By two years after the
attack, the foliage often becomes red and needles fall off in the
third year. The rate of foliage change varies substantially. For
instance, crown foliage may become red in a single year and
trees may retain red and brown needles for as long as three
years (Safranyik et al. 2002). Most often, by the time foliage
has turned red and attacks are clearly visible, mountain pine
beetle have emerged and moved to a new host (Safranyik et al.
2002). Uncertainty resulting from the variable rate of foliage
discolouration impacts scientific investigation. As the num-
ber of mountain pine beetle infestation data points increase,
so do the impacts of uncertainty and errors can compound
when multi-temporal data are investigated. While it is always
beneficial to consider data uncertainty, when mountain 
pine beetle data are used for large-area spatial and spatial-
temporal investigations, representations that deal with error
are necessary to ensure the integrity of analysis results.

The goal of this paper is to describe an appropriate
method for representing point-based, landscape scale data on
mountain pine beetle when: 1) data sets are large, and 2) data
are uncertain. To meet this goal three objectives were the
focus.
1) A kernel density estimator is presented as an effective

approach for representing large, point-based, mountain
pine beetle data as continuous surfaces (grids).

2) The nature of uncertainty in point-based, aerial survey
mountain pine beetle data is explored through compar-
isons with field data.

3) The kernel density estimator is extended to generate a rep-
resentation of the mountain pine beetle data that incorpo-
rates data uncertainty.

Study Area and Data Description
The Morice Timber Supply Area (TSA), in western British
Columbia, Canada (Fig. 1), is currently experiencing epidem-
ic numbers of mountain pine beetle. Covering an area of
approximately 1.5 million ha, Morice includes five biogeocli-
matic zones: Sub-Boreal Spruce (59%), Engelmann Spruce-
Subalpine Fir (26%), Alpine Tundra (11%), Coastal Western

244 MARS/AVRIL 2006, VOL. 82, No 2 — THE FORESTRY CHRONICLE



Hemlock (3%), and Mountain Hemlock (1%). Morice is bor-
dered by Tweedsmuir Provincial Park in the south and topog-
raphy is gentle to the north and east, becoming more moun-
tainous in the southwest. There are three major rivers in the
area (the Bulkley, the Morice, and the Nadina) and two large
lakes (Babine and Ootsa).

Managers of the Morice TSA monitor mountain pine bee-
tle infestations using point-based, GPS aerial surveys. During
aerial surveys, clusters of visually infested trees are identified
and a GPS is used to map cluster centroids as points. For each
cluster, the number of infested trees is estimated and the
infesting insect species recorded. This data set is unique in
that the number of infested trees, rather than an infestation
severity class, is assigned to each point. The maximum area
represented by a point is 0.031 km2, equivalent to a circle with
a radius of 100 m. Although many points represent smaller
areas, variations in circle radii are not recorded. From 1999 to
2002, 5682 field data were collected for aerial survey points.
Field surveys verified the cause of lodgepole pine mortality. If
trees were killed by mountain pine beetle the number of
infested trees and the timing of attack was recorded.

In this work the aerial survey accuracy was assessed using
all field data. However, development and verification of rep-
resentation methods focus on data collected in 2002. The
2002 aerial survey had 8777 points, and field data were col-
lected for 2820 of locations.

Methods
Data representation via kernel density estimation
Kernel density estimators are a powerful and flexible method
for generating a spatially continuous representation of point
data (Silverman 1986, Gatrell 1994, Bailey and Gatrell 1995).
Instead of representing clusters of infested trees as discrete
events (points), kernel density estimators can be used to cre-
ate a continuous surface that displays the intensity of infested
trees over the study area (Fig. 2). A continuous representation
of the mountain pine beetle data has conceptual benefits,
improves visualization, and overcomes issues of point-area
associations.

Conceptually, the intensity  � (z) at a particular location z
in a study area A can be estimated by the naïve kernel density
estimator:
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Fig. 1. Morice TSA in Western British Columbia, Canada is centered on Houston (54˚ 24’ N, 126˚ 38’ W).



[1] 

A more precise estimate, ��(z), is defined by 

[2]

where z and A are defined as above, � is the radius of a 
disk centred on z, k( ) is the kernel or a probability density
function which is symmetric around about the origin,
zi (i = 1, …, n), are locations of n observed events, and yi is the
attribute value at zi. The term is an
edge correction equivalent to the volume under the scaled
kernel centred on z which lies inside of A (Diggle 1985).

There are three issues that are commonly considered when
working with kernel density estimators: the type of kernel k( ),
the size of disk radius �, and edge effects. The kernel deter-
mines how events within the disk radius will be weighted. For
example, in this research a kernel with a quartic distribution
function, which weights events in terms of their distance from
z, was used. Although kernel definition may be theoretically
important, it does not have a large impact on kernel output.

Kernel density estimators are much more sensitive to �,
which controls data smoothing. As � increases, so does the
amount of data smoothing (Kelsall and Diggle 1995); if � is
too large, data variability will be lost, while if too small, data
trends will not be visible. Ideally, kernels need to be calculat-
ed for several values of � and kernel outputs compared. In this
study, a 2-km disk radius was chosen to optimize tradeoffs
between detail and representations of infestation trends. The
2-km disk radius is also large enough to be relatively robust
with respect to errors in point locations, and is reflective of
stand-scale research, which indicates that a high proportion
of local beetle dispersal occurs within 2 km of emergence
(Safranyik et al. 1992).

Kernel density estimators may also be impacted by edge
effects. In this study, edge effects do not have a large impact,
as the study area is large relative to �, so the edge correction
term in eq. 2 was not implemented. An additional issue,
which arises in software used to implement kernel density
estimators, is the definition of raster cell size. Here a 200 �
200-m grid cell is used, which is approximately equal to the
maximum area represented by an aerial survey point.

In this study, to compare the kernel density method to
other standard representations of point data, the aerial survey
data were displayed using points, proportional symbols, and
proportional colours.

Aerial survey accuracy assessment
The availability of field data to assess the accuracy of point-
based aerial surveys was capitalized upon. As field data do not
include information on the spatial error of points, this assess-
ment focuses on the number of infested trees recorded for
each point location. However, Morice TSA data collectors and
users have suggested that the spatial error of aerial survey
points is approximately ±25 m (Nelson et al. 2004).

Data collected in the field were manually partitioned
based on the timing of the mountain pine beetle attack. This
enabled us to link the aerial survey data, indicative of visibly
detectable attack, to infestations that were recorded as occur-
ring one year previously. Green attack is a recent infestation
that has not yet led to a visible response in the lodgepole pine
foliage. Green attack, also recorded in the field, is not used for
accuracy assessment, as it is not captured by aerial surveys. In
the remainder of this paper, reference to field data indicates
only data for infestations that were recorded as occurring one
year prior to the aerial survey.

An error matrix was used to assess the correspondence of
the number of infested trees collected via field and aerial sur-
veys. For low numbers of infested trees (1–15), each value is
considered a unique category in the error matrix. Higher
numbers of infested trees, with fewer occurrences, are grouped
into the following classes: 16–20, 21–25, 26–50, and 51–400.

Extending kernel density estimation to include uncertainty
By extending the kernel density estimator to incorporate
uncertainty, data error can be considered when spatially rep-
resenting point data on mountain pine beetle infestations.
Generally, the approach to incorporating uncertainty in ker-
nel surfaces is to generate a number of possible realizations of
the aerial survey point data, produce a kernel density surface
for each, and compute the average infestation intensity for all
surfaces (Fig. 3).

The distribution of GPS error in either the x- or y-axis is
typically near normal (Leva et al. 1996). Therefore, spatial
error was simulated by randomly selecting values from a nor-
mal distribution with a mean of zero and standard deviation
of 1. Drawn values were scaled between ± 25 and added to
both the x and y locations of each point. For each point this
procedure was carried out 100 times, allowing 100 realiza-
tions of aerial survey point locations.

In this analysis, field values are considered to represent
true infestation levels. The frequency distribution of field val-
ues can therefore be used as the basis for simulating realiza-
tions of the number of infested trees identified during aerial
surveys. Since there are many low values in the field data and
the associated frequency distribution is skewed right, the val-
ues can be modelled by a gamma distribution. However, the
gamma is a positively valued, continuous distribution, while
the number of infested trees is discrete and includes zeros
(reflecting aerial survey errors). Thus, two corrections have to
be made in order to use the model gamma distribution in
simulating the number of infested trees. First, zero values are
randomly assigned to the same proportion of aerial survey
points as field data sites. Then, discrete values are generated
for the remaining aerial survey points by binned values drawn
from the gamma distribution (Yang 1994).

Although these solutions may lack elegance, the alternative
is to generate a distribution based on the observed data,
which would be “chunky” and requires the assumption that
the observed data represent the entire error population,
rather than a sample of possible errors. Furthermore, this
paper focuses on developing an approach to incorporating
data uncertainty when data are represented continuously
using kernel density estimation. While this method requires a
model of data error, the error model is not the focus.
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Fig. 2. Kernel density estimators are used to convert points (A) to continuous surfaces (grid) (B). Darker coloured cells have higher infes-
tation intensities.

Fig. 3. Summary of method for incorporating the spatial and attribute uncertainty of points when generating kernel density estimated surfaces.
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Fig. 4. Comparison of data visualization techniques. A) Aerial survey points with no enhancements. B) Aerial survey point attributes 
represented as proportional symbols. C) Aerial survey point attributes represented as proportional grey tones. D) Aerial survey point
attributes represented using a kernel density estimator with a 2-km disk radius, quartic kernel shape, and 200-m cell size. 



A kernel density surface was estimated for each of 100 real-
izations of the point data incorporating both spatial and
attribute value uncertainty. These 100 surfaces were then
averaged to produce a single continuous representation of
infestation intensity that incorporated uncertainty.

To verify the effectiveness of the correction method, field
data were compared to estimates generated using the basic
kernel density estimator and the kernel density estimator
modified to incorporate uncertainty. Field data from 2002
were gridded using a cell size of 200 by 200 m to allow spatially
explicit comparisons with kernel density estimated values.
Frequency histograms of the differences between field and
kernel estimated values were used to verify the effectiveness of
the correction.

Results and Discussion
Data representation via kernel density estimation
In Fig. 4, a basic point representation of the aerial survey data
(4a) is compared with proportional symbol mapping (4b),
proportional grey tone mapping (4c), and kernel density esti-
mation (4d). Visual comparisons indicate that kernel density
estimators lead to a more effective representation of point
data. By generating a continuous representation of the data,
kernel density estimators remove point overlap and spread
attribute values over areas. Improvements in data representa-
tion are both conceptual and applied with kernel density esti-
mators improving visualization and communication of infes-
tation conditions.

Aerial survey accuracy assessment
Overall, only 17.4% of points had the same number of infest-
ed trees identified in both the field and aerial surveys and
commission and omission errors are high. However, it should
be recalled that the aerial surveys are intended as estimates
and are not meant to be exact counts of infested trees. For the
purpose of management, estimates provide sufficient detail
and accuracy for planning and mitigation. Thus, it is worth
noting that 34.6% of aerial survey points have an error rang-
ing between ± 1 tree; 50.5% have errors between ± 2 trees;
80.5% have errors ranging between ± 5 trees and 92.6% have
errors of ± 10 trees (Table 1).

The investigation into the nature of uncertainty in the
number of infested trees is summarized in the error matrix
shown in Table 2. This error matrix is not the standard square
form as there are no values of zero when the number of
infested trees is determined during aerial surveys. Associa-
tions between the number of infested trees and errors of
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Table 1. Percentage of aerial survey points with the correct
number of infested trees. Accuracy is determined through
comparison with field data and calculated for several error
ranges. 17.4% of aerial survey points have the same number
of infested trees in both field and aerial surveys. However,
92.6% of aerial survey points have numbers of infested trees
that deviate only ±10 trees relative to field attributes.

Aerial survey points having 
Error range the number of infested trees 

(number of trees) within the error range

0 17.4%
± 1 34.6%
± 2 50.5%
± 5 80.5%

± 10 92.6%

Fig. 5. Kernel density estimated surfaces for 2002. A) Kernel density estimate with no correction. B) Kernel density estimate with cor-
rection. C) Differences between corrected and uncorrected kernel density estimated surfaces. 



omission or commission are weak. The dominant trend
noted in the error matrix is the prevalence for aerial surveys
to overestimate the number of infested trees. While the reason
for overestimation cannot be determined from the existing
data, a possible explanation is the variable rate for foliage dis-
colouration. It is likely that aerial surveyors are identifying
additional trees that were infested less than one year previous-
ly and have a fast foliage response, as well as trees attacked
more than one year previously with a slow foliage response.
Other causes of overestimation could include the misidentifi-
cation of the cause of tree mortality and operational issues
such as surveyor inexperience.

These results do not provide a true appraisal of omission
error. As the location of field surveys are based on the pres-
ence of infested trees detected during aerial surveys, field data
provide no information on any infested trees missed entirely
during aerial surveying. Factors that impact omission errors
and generate underestimates include variable rates of crown
foliage discolouration, survey sample design, and operational
issues such as aircraft speed, flying height, and weather con-
ditions.

Several approaches to large-area aerial surveying of moun-
tain pine beetle infestations use infestation classes, rather than
the number of infested trees (Wulder et al. 2004). Common
infestation classes are: 1 to 5, 6 to 10, and greater than 10.
Therefore, to extend the understanding of the information
provided by aerial surveying it is helpful to consider the
nature of data uncertainty when infestation intensity classes
are employed. An error matrix associated with the above
infestation classes is presented in Table 3 and indicates that
errors of commission and omission increase for larger infes-
tation classes. These results indicate that to maximize accuracy
in the estimated number of infested trees there may be bene-
fit to aerial survey designs that favour many survey locations
(points) with small infestation classes. Also, regardless of the
infestation class size commission errors are more frequent
then omission errors. These results are consistent with error
analysis for the non-classed numbers of infested trees.
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Table 2. Error matrix comparing the number of infested trees detected during all years of aerial and field surveys. Columns repre-
sent the number of attacked trees detected in the field and rows represent the number of attacked trees detected during aerial
surveys.

Aerial/ 16– 21– 26– 51–

Field 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 50 400 n Commission

1 69 123 6 3 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 204 39.7

2 110 76 157 34 15 8 4 1 3 0 1 0 0 0 0 0 1 0 0 0 410 61.7

3 388 236 233 223 69 35 26 15 8 5 1 4 2 2 1 1 3 2 4 2 1260 82.3

4 198 69 107 106 109 41 25 6 9 8 3 4 1 2 1 2 1 2 1 0 695 84.3

5 227 67 67 99 97 118 46 37 21 13 11 6 2 8 2 4 9 3 1 1 839 85.9

6 107 25 34 60 33 39 52 24 19 11 13 10 5 2 3 3 3 2 1 0 446 88.3

7 36 10 12 20 25 25 31 23 15 11 6 5 3 1 2 2 1 0 1 1 230 90.0

8 52 17 18 17 23 23 21 23 35 16 17 9 4 5 5 3 12 3 2 0 305 88.5

9 12 3 2 2 3 6 4 6 3 10 2 1 0 2 0 0 1 0 1 0 58 82.8

10 89 13 21 24 11 17 17 20 17 10 39 17 13 17 20 9 16 8 6 6 390 90.0

11 2 1 4 1 0 1 0 2 1 2 2 4 0 0 0 1 1 0 0 0 22 81.8

12 26 5 7 3 4 7 4 10 6 0 10 3 11 6 4 5 9 4 4 0 128 91.4

13 6 2 0 1 0 0 0 0 0 2 0 1 0 3 0 1 1 0 0 0 17 82.4

14 6 3 0 0 1 1 0 0 1 0 0 0 0 1 2 0 0 0 1 0 16 87.5

15 44 2 5 2 4 6 8 4 6 6 8 3 8 2 6 9 30 20 14 2 189 95.2

16–20 36 3 3 4 3 1 2 0 2 4 6 4 1 6 4 7 17 5 1 3 112 84.8

21–25 20 3 3 2 0 0 1 0 0 3 1 0 1 0 0 3 13 5 7 3 65 92.3

26–50 34 5 0 4 1 2 2 1 2 2 3 0 0 0 0 2 14 6 16 5 99 83.8

51–400 11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 3 5 2 27 92.6

n 1473 664 679 605 400 330 243 172 149 103 123 72 51 57 50 52 136 63 65 25 5512 –

Omission 0.00 81.5 76.8. 63.1 72.8 64.2 78.6 86.6 76.5 90.3 68.3 94.4 78.4 94.7 96.0 82.7 87.5 92.1 75.4 92.0 – –

Table 3. Error matrix comparing classes of the number of
infested trees detected during all years of aerial and field sur-
veys. Columns represent classes of the number of attacked
trees detected in the field and rows represent classes of the
number of attacked trees detected during aerial surveys.

Aerial/
Field 0 1–5 6–10 > 10 n Commission

1–5 992 2100 244 72 3408 38.38

6–10 296 483 445 205 1429 68.86

> 10 185 95 94 294 668 55.99

n 1473 2678 783 571 5505 –

Omission 0 21.58 43.17 48.51 – –



Extending kernel density estimation to include uncertainty
Representations of mountain pine beetle point data using a
standard kernel density estimation approach and a modifica-
tion that considered data uncertainty are shown in Fig. 5a and
5b, respectively. Locations on the figures with zero values are
considered to have no infestation. The differences in correct-
ed and uncorrected values are mapped in Fig. 5c. Generally,
the correction leads to lower estimated values, which is
encouraging given the tendency to overestimate the number
of infested trees during aerial surveying. Locations where the
correction produces a lower estimate of infestation intensity
occur primarily at the edges of the spatial extent of the epi-
demic.

The frequency distributions of differences between field
values and kernel density estimated values generated with and
without consideration of uncertainty are shown in Fig. 6.
When interpreting these frequency histograms it is interesting
to note that kernel density estimators smooth data. As a
result, an underlying effect of kernel density estimation is a
reduction in the magnitude of values. The drawback to such
an approach is that actual extreme infestation intensities
could be artificially reduced. However, given that most errors
in point aerial survey values occur as overestimates, the basic
kernel density estimator is likely to implicitly lead to a data
representation that is more reflective of actual conditions.
Results indicate that this is so, as kernel density estimators
that incorporate uncertainty lead to better correspondence
between estimates of infestation intensity and field data. The
distribution of errors associated with the uncorrected sce-
nario is more skewed to the left, showing a greater tendency
for kernel density estimated values to be higher than field val-
ues. As well, the frequency distribution of errors associated
with kernel density estimates that incorporate uncertainty has
a smaller range and more values at or near zero.

Conclusions
Kernel density estimators are a simple and effective tool for
representing infestation data and facilitate exploration and
mapping of spatial variation in infestation magnitude.
Conceptually, there are benefits to representing point data on
mountain pine beetle infestations as continuous surfaces,
implemented as a raster grid, using kernel density estimation.
Improvements to representation enhance the use of data for
large-area spatial investigations of mountain pine beetle
dynamics. Kernel density estimators also improve data visual-
ization allowing more effective communication with decision-
makers and improved public information dissemination.
Through kernel density estimation the study area is parti-
tioned into grid cells, and multi-temporal investigations 
are enabled as grid cells can be compared over many time
periods.

With 92.6% of aerial survey points having errors of ± 10
trees, the quality of data is appropriate for management and
monitoring efforts. However, these rich data may also be used
for science, and in the case of large-area spatial and or spatial-
temporal analysis small errors can have cumulative impacts
and need to be accounted for. Point-based helicopter aerial
surveys tend to generate overestimates of infestation levels. As
a smoothing technique, the basic kernel density estimator is
helpful for dealing with this. However, kernel density estima-
tors modified to incorporate data uncertainty further
improve representation of infestation intensities.

The method demonstrated for incorporating uncertainty
when undertaking kernel density estimation may be applied to
other applications when data sets are large, and uncertainty
and error can be modelled. In future work kernel density esti-
mated surfaces, generated from point-based GPS data on
mountain pine beetle infestations, can be used to generate a
new spatial understanding of landscape-scale beetle dynamics.
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Fig. 6. Difference between gridded field and kernel density estimated values. A) Kernel density values are not corrected. B) Kernel densi-
ty values are corrected.
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