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Abstract 
Point data generated from helicopter surveys are used to determine the location and magnitude 
of mountain pine beetle infestations. Although collected for tactical planning, these data also 
provide a rich source of information for scientific investigations. To facilitate spatial research, it is 
important to consider how to best represent spatially explicit mountain pine beetle infestation 
data. This paper focuses on the spatial representation of point-based aerial helicopter surveys, 
which can be difficult to represent due to issues associated with large data quantities and data 
uncertainty. In this paper, the benefit of using a kernel density estimator to convert point data to a 
continuous raster surface is demonstrated. Field data are used to assess the accuracy of the 
point-based aerial helicopter survey data and the kernel density estimator is extended to 
incorporate data uncertainty. Although the accuracy of point-based aerial surveys is high, with 
92.6% of points differing by no more than ±10 trees, there is a general tendency to overestimate 
infestation magnitude. The method developed for incorporating uncertainty into the kernel density 
estimator reduces overestimation and improves the correspondence between estimated 
infestation intensities and field data values. 

Keywords: Mountain pine beetle, data representation, visualization, kernel density estimators, 
uncertainty 

Résumé 
Des points de données tirées de sondage par hélicoptère sont utilisés pour déterminer la 
localisation et l’importance des infestations de dendroctone du pin. Même si elles ont été 
recueillies pour des raisons de planification tactiques, ces données constituent également une 
importante source d’information pour les études scientifiques. Afin de faciliter la localisation 
spatiale, il est important d’étudier comment on peut représenter le mieux les données explicites 
en terme de localisation des infestations de dendroctone du pin. Cet article porte sur la 
représentation spatiale des points tirés des sondages par hélicoptère, ce qui peut être difficile à 
réaliser compte tenu des questions entourant les grandes quantités de données et l’incertitude 
qu’elles comportent. Dans le cas présent, l’avantage de l’utilisation d’un estimateur de noyau de 
densité pour la conversion des points de données en surface continue est démontré. Des 
données de terrain sont utilisées pour évaluer la précision des points de données du sondage 
aérien par hélicoptère et l’estimateur de noyau de densité est conçu pour comprendre 
l’incertitude entourant les données. Même si la précision des points de données par sondage 
aérien est élevée, 92 % des points ne différant par pas plus de ± 10 arbres, on retrouve une 
tendance générale de surestimer l’étendue de l’Infestation. La méthode élaborée pour incorporer 
l’incertitude au sein de l’estimateur de noyau de densité réduit la surestimation et améliore la 
correspondance entre les intensités d’infestation estimées et les valeurs en provenance des 
données du terrain. 

Mots clés : dendroctone du pin, représentation des données, visualisation, estimateurs de noyau 
de densité, incertitude 
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Introduction 
Mountain pine beetle populations in British Columbia, Canada, are increasing exponentially. 
Warmer temperatures combined with an over-abundance of mature lodgepole pine have led to an 
epidemic that is much larger than any previously recorded. The current mountain pine beetle 
infestation has affected 7 million ha of British Columbia’s forest (Westfall 2005), and projections 
indicate that 80% of the lodgepole pine may be affected unless a major weather-stopping event 
occurs (Eng et al. 2004). 

As the epidemic grows, so does recognition that forest management requires a new 
understanding of mountain pine beetle dynamics. Fundamental research questions surrounding 
landscape-level, spatial dynamics of the mountain pine beetle await exploration. These questions 
include research that would improve knowledge of spatial processes such as how mountain pine 
beetle disperse and select hosts. Such insights would benefit modelling efforts and decision-
making. As well, the current knowledge regarding the mountain pine beetle is typically based on 
stand- or finer-scale studies, and little evidence is available to indicate if processes operate 
similarly at the landscape level. 

The coupling of improvements in spatial data acquisition with intensive forest monitoring efforts 
has led to the availability of large-area, spatially explicit data on the impacts of the mountain pine 
beetle. Used to target mitigation and other activities, spatial point data on infestations are a 
valuable asset for forest planners. A spin-off benefit is that spatially explicit data sets provide 
scientists with a new mechanism for investigating large-area spatial mountain pine beetle 
dynamics. 

In order for empirical mountain pine beetle data to be used for scientific purposes, an optimal 
approach for data representation is required. While large-area spatial mountain pine beetle data 
sets are collected using various approaches (Wulder et al. 2004), the focus of this paper is point-
based, aerial survey data. Such data are generated via helicopter surveys during which the 
spatial location of an infestation cluster is marked using a GPS and the number of infested trees 
is estimated. Unless specifically noted, the mountain pine beetle aerial survey data referenced 
throughout this manuscript are GPS point data collected through helicopter surveys, and differ 
from polygon format aerial survey data collected from fixed-wing aircraft and used to support 
broader-scale strategic planning. 

There are several issues to consider when representing point-based mountain pine beetle data 
collected via aerial surveying. The first issue, which is a conceptual consideration for all spatial 
data representation, is the nature of mountain pine beetle processes. Although endemic 
populations mark the landscape with periodic and spatially discrete pine mortality, the mountain 
pine beetle is ubiquitous in pine forests (Carroll and Safranyik 2004). During an epidemic, pine 
mortality becomes spatially continuous, with infested trees occurring throughout the forest and 
discrete boundaries becoming difficult to delineate. Particularly when data reflect epidemic 
mountain pine beetle conditions, there is a conceptual benefit to using a spatially continuous data 
representation.  

A second factor to consider in representing aerial survey point data on beetle populations is that 
the points correspond to areas, but the size of the corresponding areas varies and is typically not 
recorded. A spatial representation that links points to areas may be advantageous; however, 
standard area conversions are difficult due to variability in the size of areas represented by each 
point. 

The large number of points collected during aerial surveying is a third consideration in data 
representation. Point-based mountain pine beetle data sets have many points, and the 
associated number of infested trees ranges from one to 400. As a result, when using point 
representations, visualization of the spatial variation in infestation intensity is obscured by symbol 
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overlap. Standard cartographic methods, such as proportional symbols or colours, become 
insufficient to allow for meaningful interpretation of data.  

Data uncertainty is a fourth consideration when representing aerial survey data on mountain pine 
beetle infestations. All aerial surveys of mountain pine beetle infestations use indicators of pine 
mortality, mainly changes in crown foliage colour, to monitor mountain pine beetle activity. When 
a pine tree is attacked by the mountain pine beetle, usually in mid-summer, crown foliage 
changes successively from green to yellow, to brown, to red, and eventually needles drop off the 
tree, leaving the grey stem and branches (Safranyik et al. 2002). Although the first visually 
detectable change to foliage colour usually occurs in the spring following attack, hot and/or dry 
summer conditions may cause foliage to begin changing in the fall (Safranyik et al. 2002). 
Typically, one year after attack, crown foliage is yellow green or yellow brown (Safranyik et al. 
2002). By two years after the attack, the foliage often becomes red and needles fall off in the third 
year. The rate of foliage change varies substantially. For instance, crown foliage may become red 
in a single year, and trees may retain red and brown needles for as long as three years (Safranyik 
et al. 2002). Most often, by the time foliage has turned red and attacks are clearly visible, 
mountain pine beetle have emerged and moved to a new host (Safranyik et al. 2002). Uncertainty 
resulting from the variable rate of foliage discolouration impacts scientific investigation. As the 
number of mountain pine beetle infestation data points increase, so do the impacts of uncertainty, 
and errors can compound when multi-temporal data are investigated. Although it is always 
beneficial to consider data uncertainty, when mountain pine beetle data are used for large-area 
spatial and spatial-temporal investigations, representations that deal with error are necessary to 
ensure the integrity of analysis results. 

The goal of this paper is to describe an appropriate method for representing point-based, 
landscape-scale data on mountain pine beetle when: 1) data sets are large, and 2) data are 
uncertain. To meet this goal, three objectives were the focus:  

 

1. A kernel density estimator is presented as an effective approach for representing 
large, point-based, mountain pine beetle data as continuous surfaces (grids); 

2. The nature of uncertainty in point-based, aerial survey mountain pine beetle data is 
explored through comparisons with field data; 

3. The kernel density estimator is extended to generate a representation of the mountain 
pine beetle data that incorporates data uncertainty. 

 8



Study Area and Data Description 
The Morice Timber Supply Area (TSA), in western British Columbia, Canada (Figure 1), is 
currently experiencing epidemic numbers of mountain pine beetle. Covering an area of 
approximately 1.5 million ha, Morice includes five biogeoclimatic zones: Sub-Boreal Spruce 
(59%), Engelman Spruce–Subalpine Fir (26%), Alpine Tundra (11%), Coastal Western Hemlock 
(3%), and Mountain Hemlock (1%). Morice is bordered by Tweedsmuir Provincial Park in the 
south; topography is gentle to the north and east, becoming more mountainous in the southwest. 
There are three major rivers in the area (the Bulkley, the Morice, and the Nadina) and two large 
lakes (Babine and Ootsa).  

Managers of the Morice TSA monitor mountain pine beetle infestations using point-based, GPS 
aerial surveys. During aerial surveys, clusters of visually infested trees are identified, and a GPS 
is used to map cluster centroids as points. For each cluster, the number of infested trees is 
estimated and the infesting insect species recorded. This data set is unique in that the number of 
infested trees, rather than an infestation severity class, is assigned to each point. The maximum 
area represented by a point is 0.031 km2, equivalent to a circle with a radius of 100 m. Although 
many points represent smaller areas, variations in circle radii are not recorded. From 1999 to 
2002, 5 682 field data were collected for aerial survey points. Field surveys verified the cause of 
lodgepole pine mortality. If trees were killed by mountain pine beetle, the number of infested trees 
and the timing of attack was recorded.  

In this work, the aerial survey accuracy was assessed using all field data. However, development 
and verification of representation methods focus on data collected in 2002. The 2002 aerial 
survey has 8 777 points, and field data were collected for 2 820 of locations.  
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Figure 1. Morice TSA in 
Western British Columbia, 
Canada, is centered on 
Houston (54˚ 24΄ N, 126˚ 
38΄ W)  
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Methods 
Data Representation Via Kernel Density Estimation 
Kernel density estimators are a powerful and flexible method for generating a spatially continuous 
representation of point data (Silverman 1986; Gatrell 1994; Bailey and Gatrell 1995). Instead of 
representing clusters of infested trees as discrete events (points), kernel density estimators can 
be used to create a continuous surface that displays the intensity of infested trees over the study 
area (Figure 2). A continuous representation of the mountain pine beetle data has conceptual 
benefits, improves visualization, and overcomes issues of point-area associations. 

Figure 2. Kernel density estimators are used to convert points (A) to continuous surfaces (grid) 
(B). Darker coloured cells have higher infestation intensities. 

A B
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where z and A are defined as above, τ is the radius of a disk centred on z, k( ) is the kernel or a 
probability density function that is symmetric around about the origin, zi (i = 1, …, n) are locations 
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A∫ −= τ/τ is the attribute value at z . The term i i  is 

an edge correction equivalent to the volume under the scaled kernel centred on z which lies 
inside of A (Diggle 1985). 
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There are three issues that are commonly considered when working with kernel density 
estimators: the type of kernel k( ), the size of disk radius τ, and edge effects. The kernel 
determines how events within the disk radius will be weighted. For example, in this research a 
kernel with a normal distribution function, which weights events in terms of their distance from z, 
was used. Although kernel definition may be theoretically important, it does not have a large 
impact on kernel output.  

Kernel density estimators are much more sensitive to τ, which controls data smoothing. As τ 
increases, so does the amount of data smoothing (Kelsall and Diggle 1995); if τ is too large, data 
variability will be lost; if too small, data trends will not be visible. Ideally, kernels need to be 
calculated for several values of τ and kernel outputs compared. In this study, a 2-km disk radius 
was chosen to optimize tradeoffs between detail and representations of infestation trends. The 2-
km disk radius is also large enough to be relatively robust with respect to errors in point locations, 
and is reflective of stand-scale research, which indicates that a high proportion of local beetle 
dispersal occurs within 2 km of emergence (Safranyik et al. 1992).  

Kernel density estimators may also be impacted by edge effects. In this study, edge effects do 
not have a large impact, as the study area is large relative to τ, so the edge-correction term in 
Equation 2 was not implemented. An additional issue, which arises in software used to implement 
kernel density estimators, is the definition of raster cell size. Here, a 200m x 200m grid cell is 
used, which is approximately equal to the maximum area represented by an aerial survey point. 

In this study, to compare the kernel density method to other standard representations of point 
data, the aerial survey data were displayed using: points, proportional symbols, and proportional 
colours. 

Aerial Survey Accuracy Assessment 
The availability of field data to assess the accuracy of point-based aerial surveys was capitalized 
upon. As field data does not include information on the spatial error of points, this assessment 
focuses on the the number of infested trees recorded for each point location. However, Morice 
TSA data collectors and users have suggested that the spatial error of aerial survey points is 
approximately ±25 m (Nelson et al. 2004).  

Data collected in the field were manually partitioned based on the timing of the mountain pine 
beetle attack. This enabled us to link the aerial survey data, indicative of visibly detectable attack, 
to infestations that were recorded as occurring one year previously. Green attack is a recent 
infestation that has not yet led to a visible response in lodgepole pine foliage. Green attack, also 
recorded in the field, is not used for accuracy assessment, as it is not captured by aerial surveys. 
In the remainder of this paper, reference to field data indicates only data for infestations that were 
recorded as occurring one year prior to the aerial survey.  

An error matrix was used to assess the correspondence of the number of infested trees collected 
via field and aerial surveys. For low numbers of infested trees (1 to 15), each value is considered 
a unique category in the error matrix. Higher numbers of infested trees, with fewer occurrences, 
are grouped into the following classes: 16 to 20; 21 to 25; 26 to 50, and; 51 to 400. 

Extending Kernel Density Estimation to Include Uncertainty 
By extending the kernel density estimator to incorporate uncertainty, data error can be considered 
when spatially representing point data on mountain pine beetle infestations. Generally, the 
approach to incorporating uncertainty in kernel surfaces is to generate a number of possible 
realizations of the aerial survey point data, produce a kernel density surface for each, and 
compute the average infestation intensity for all surfaces (Figure 3).  
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Figure 3.  
Summary of method 
for incorporating the 
spatial and attribute 
uncertainty of points 
when generating 
kernel density-
estimated surfaces. 

 
 

The distribution of GPS error in either the x- or y-axis is typically near normal (Leva et al. 1996). 
Therefore, spatial error was simulated by randomly selecting values from a normal distribution 
with a mean of zero and standard deviation of 1. Drawn values were scaled between ±25 and 
added to both the x and y locations of each point. For each point, this procedure was carried out 
100 times, allowing 100 realizations of aerial survey point locations. 

In this analysis, field values are considered to represent true infestation levels. The frequency 
distribution of field values can therefore be used as the basis for simulating realizations of the 
number of infested trees identified during aerial surveys. Since there are many low values in the 
field data and the associated frequency distribution is skewed right, the values can be modelled 
by a gamma distribution. However, the gamma is a positively valued, continuous distribution, 
whereas the number of infested trees is discrete and includes zeros (reflecting aerial survey 
errors). Thus, two corrections have to be made in order to use the model gamma distribution in 
simulating the number of infested trees. First, zero values are randomly assigned to the same 
proportion of aerial survey points as field data sites. Then, discrete values are generated for the 
remaining aerial survey points by binned values drawn from the gamma distribution (Yang 1994).  

Although these solutions may lack elegance, the alternative is to generate a distribution based on 
the observed data, which would be “chunky” and requires the assumption that the observed data 
represent the entire error population, rather than a sample of possible errors. Furthermore, this 
paper focuses on developing an approach to incorporating data uncertainty when data are 
represented continuously using kernel density estimation. Although this method requires a model 
of data error, the error model is not the focus.  

A kernel density surface was estimated for each of 100 realizations of the point data incorporating 
both spatial and attribute value uncertainty. These 100 surfaces were then averaged to produce a 
single continuous representation of infestation intensity that incorporated uncertainty. 

To verify the effectiveness of the correction method, field data were compared to estimates 
generated using the basic kernel density estimator and the kernel density estimator modified to 
incorporate uncertainty. Field data from 2002 were gridded using a cell size of 200m x 200m to 
allow spatially explicit comparisons with kernel density-estimated values. Frequency histograms 
of the differences between field and kernel-estimated values were used to verify the effectiveness 
of the correction. 
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Results and discussion 
Data Representation Via Kernel Density Estimation 
In Figure 4, a basic point representation of the aerial survey data (4a) is compared with 
proportional symbol mapping (4b), proportional grey-tone mapping (4c), and kernel density 
estimation (4d). Visual comparisons indicate that kernel density estimators lead to a more 
effective representation of point data. By generating a continuous representation of the data, 
kernel density estimators remove point overlap and spread attribute values over areas. 
Improvements in data representation are both conceptual and applied, with kernel density 
estimators improving visualization and communication of infestation conditions. 
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Figure 4. Comparison 
of data visualization 
techniques. A) Aerial 
survey points with no 
enhancements; B) 
Aerial survey point 
attributes represented 
as proportional 
symbols; C) Aerial 
survey point attributes 
represented as 
proportional grey 
tones; D) Aerial 
survey point attributes 
represented using a 
kernel density 
estimator with a 2-km 
disk radius, normal 
kernel shape, and 200-
m cell size.  
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Aerial Survey Accuracy Assessment 
Overall, only 17.4% of points had the same number of infested trees identified in both the field 
and aerial surveys, and commission and omission errors are high. However, it should be recalled 
that the aerial surveys are intended as estimates and are not meant to be exact counts of infested 
trees. For the purpose of management, estimates provide sufficient detail and accuracy for 
planning and mitigation. Thus, it is worth noting that 34.6% of aerial survey points have an error 
ranging between ±1 tree; 50.5% have errors between ±2 trees; 80.5% have errors ranging 
between ±5 trees, and; 92.6% have errors of ±10 trees (Table 1). 

  
Table 1. Percentage of aerial survey 
points with the correct number of 
infested trees. Accuracy is determined 
through comparison with field data and 
calculated for several error ranges. 17.4% 
of aerial survey points have the same 
number of infested trees in both field and 
aerial surveys. However, 92.6% of aerial 
survey points have numbers of infested 
trees that deviate only ± 10 trees relative 
to field attributes. 

Aerial survey points having the 
number of infested trees within 

the error range 
Error range (number of 

trees) 
0 17.4% 

± 1 34.6% 
± 2 50.5% 
± 5 80.5% 
± 10 92.6% 

 

The investigation into the nature of uncertainty in the number of infested trees is summarized in 
the error matrix shown in Table 2 (next page). This error matrix is not the standard square form, 
as there are no values of zero when the number of infested trees is determined during aerial 
surveys. Associations between the number of infested trees and errors of omission or 
commission are weak. The dominant trend noted in the error matrix is the prevalence for aerial 
surveys to overestimate the number of infested trees. While the reason for overestimation cannot 
be determined from the existing data, a possible explanation is the variable rate for foliage 
discolouration. It is likely that aerial surveyors are identifying additional trees that were infested 
less than one year previously and have a fast foliage response, as well as trees attacked more 
than one year previously that have a slow foliage response. Other causes of overestimation could 
include misidentification of the cause of tree mortality and operational issues such as surveyor 
inexperience. 

These results do not provide a true appraisal of omission error. As the location of field surveys 
are based on the presence of infested trees detected during aerial surveys, field data provide no 
information on any infested trees missed entirely during aerial surveying. Factors that impact 
omission errors and generate underestimates include: variable rates of crown foliage 
discolouration; survey sample design, and; operational issues such as aircraft speed, flying 
height, and weather conditions. 
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Table 2. Error matrix comparing the number of infested trees detected during all years of aerial and field surveys. Columns represent the 
number of attacked trees detected in the field; rows represent the number of attacked trees detected during aerial surveys. 

Aerial/Field 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-20 21-25 26-50 51-400 n Commission 

1 69 123 6 3 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 204 39.7 

2 110 76 157 34 15 8 4 1 3 0 1 0 0 0 0 0 1 0 0 0 410 61.7 

3 388 236 233 223 69 35 26 15 8 5 1 4 2 2 1 1 3 2 4 2 1260 82.3 

4 198 69 107 106 109 41 25 6 9 8 3 4 1 2 1 2 1 2 1 0 695 84.3 

5 227 67 67 99 97 118 46 37 21 13 11 6 2 8 2 4 9 3 1 1 839 85.9 

6 107 25 34 60 33 39 52 24 19 11 13 10 5 2 3 3 3 2 1 0 446 88.3 

7 36 10 12 20 25 25 31 23 15 11 6 5 3 1 2 2 1 0 1 1 230 90.0 

8 52 17 18 17 23 23 21 23 35 16 17 9 4 5 5 3 12 3 2 0 305 88.5 

9 12 3 2 2 3 6 4 6 3 10 2 1 0 2 0 0 1 0 1 0 58 82.8 

10 89 13 21 24 11 17 17 20 17 10 39 17 13 17 20 9 16 8 6 6 390 90.0 

11 2 1 4 1 0 1 0 2 1 2 2 4 0 0 0 1 1 0 0 0 22 81.8 

12 26 5 7 3 4 7 4 10 6 0 10 3 11 6 4 5 9 4 4 0 128 91.4 

13 6 2 0 1 0 0 0 0 0 2 0 1 0 3 0 1 1 0 0 0 17 82.4 

14 6 3 0 0 1 1 0 0 1 0 0 0 0 1 2 0 0 0 1 0 16 87.5 

15 44 2 5 2 4 6 8 4 6 6 8 3 8 2 6 9 30 20 14 2 189 95.2 

16-20 36 3 3 4 3 1 2 0 2 4 6 4 1 6 4 7 17 5 1 3 112 84.8 

21-25 20 3 3 2 0 0 1 0 0 3 1 0 1 0 0 3 13 5 7 3 65 92.3 

26-50 34 5 0 4 1 2 2 1 2 2 3 0 0 0 0 2 14 6 16 5 99 83.8 

51-400 11 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 3 5 2 27 92.6 

n 1473 664 679 605 400 330 243 172 149 103 123 72 51 57 50 52 136 63 65 25 5512   

Omission 0.00 81.5 76.8. 63.1 72.8 64.2 78.6 86.6 76.5 90.3 68.3 94.4 78.4 94.7 96.0 82.7 87.5 92.1 75.4 92.0     

  
 



Several approaches to large-area aerial surveying of mountain pine beetle infestations use 
infestation classes, rather than the number of infested trees (Wulder et al. 2004). Common 
infestation classes are: 1 to 5; 6 to 10, and; greater than 10. Therefore, to extend the 
understanding of the information provided by aerial surveying, it is helpful to consider the nature 
of data uncertainty when infestation-intensity classes are employed. An error matrix associated 
with the above infestation classes is presented in Table 3 and indicates that errors of commission 
and omission increase for larger infestation classes. These results indicate that, to maximize 
accuracy in the estimated number of infested trees, there may be benefit to aerial survey designs 
that favour many survey locations (points) with small infestation classes. Also, regardless of the 
infestation class size, commission errors are more frequent then omission errors. These results 
are consistent with error analysis for the non-classed numbers of infested trees.  

Table 3. Error matrix comparing classes of the number of infested trees detected during all 
years of aerial and field surveys. Columns represent classes of the number of attacked trees 
detected in the field; rows represent classes of the number of attacked trees detected during 
aerial surveys. 

Aerial/Field 0 1-5 6-10 >10 n Commission 
992 1-5 2100 244 72 3408 38.38 
296 483 6-10 445 205 1429 68.86 
185 95 94 >10 294 668 55.99 
1473 2678 783 571 5505   n 

0 21.58 43.17 48.51     Omission 
 
Extending Kernel Density Estimation to Include Uncertainty 
Representations of mountain pine beetle point data using a standard kernel density estimation 
approach and a modification that considered data uncertainty are shown in Figures 5a and 5b, 
respectively. Locations on the figures with zero values are considered to have no infestation. The 
differences in corrected and uncorrected values are mapped in Figure 5c. Generally, the 
correction leads to lower estimated values, which is encouraging, given the tendency to 
overestimate the number of infested trees during aerial surveying. Locations where the correction 
produces a lower estimate of infestation intensity occur primarily at the edges of the spatial extent 
of the epidemic. 

Figure 5. Kernel density estimated surfaces for 2002: A) Kernel density estimate with no 
correction; B) Kernel density estimate with correction; C) Differences between corrected and 
uncorrected kernel density estimated surfaces.  
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The frequency distributions of differences between field values and kernel densit-estimated 
values generated with and without consideration of uncertainty are shown in Figure 6. When 
interpreting these frequency histograms, it is interesting to note that kernel density estimators 
smooth data. As a result, an underlying effect of kernel density estimation is a reduction in the 
magnitude of values. The drawback to such an approach is that actual extreme infestation 
intensities could be artificially reduced. However, given that most errors in point aerial survey 
values occur as overestimates, the basic kernel density estimator is likely to implicitly lead to a 
data representation that is more reflective of actual conditions. Results indicate that this is so, as 
kernel density estimators that incorporate uncertainty lead to better correspondence between 
estimates of infestation intensity and field data. The distribution of errors associated with the 
uncorrected scenario is skewed further to the left, showing a greater tendency for kernel density-
estimated values to be higher than field values. As well, the frequency distribution of errors 
associated with kernel density estimates that incorporate uncertainty has a smaller range and 
more values at or near zero. 

he frequency distributions of differences between field values and kernel densit-estimated 
values generated with and without consideration of uncertainty are shown in Figure 6. When 
interpreting these frequency histograms, it is interesting to note that kernel density estimators 
smooth data. As a result, an underlying effect of kernel density estimation is a reduction in the 
magnitude of values. The drawback to such an approach is that actual extreme infestation 
intensities could be artificially reduced. However, given that most errors in point aerial survey 
values occur as overestimates, the basic kernel density estimator is likely to implicitly lead to a 
data representation that is more reflective of actual conditions. Results indicate that this is so, as 
kernel density estimators that incorporate uncertainty lead to better correspondence between 
estimates of infestation intensity and field data. The distribution of errors associated with the 
uncorrected scenario is skewed further to the left, showing a greater tendency for kernel density-
estimated values to be higher than field values. As well, the frequency distribution of errors 
associated with kernel density estimates that incorporate uncertainty has a smaller range and 
more values at or near zero. 

Figure 6. Difference between gridded field and kernel-density estimated values. A) Kernel 
density values are not corrected; B) Kernel density values are corrected. 
Figure 6. Difference between gridded field and kernel-density estimated values. A) Kernel 
density values are not corrected; B) Kernel density values are corrected. 
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Conclusions 
Kernel density estimators are a simple and effective tool for representing infestation data and 
facilitate exploration and mapping of spatial variation in infestation magnitude. Conceptually, 
there are benefits to representing point data on mountain pine beetle infestations as continuous 
surfaces, implemented as a raster grid, using kernel density estimation. Improvements to 
representation enhance the use of data for large-area spatial investigations of mountain pine 
beetle dynamics. Kernel density estimators also improve data visualization, allowing more 
effective communication with decision-makers and improved public information dissemination. 
Through kernel density estimation, the study area is partitioned into grid cells, and multi-temporal 
investigations are enabled as grid cells can be compared over many time periods. 

With 92.6% of aerial survey points having errors of ±10 trees, the quality of data is appropriate for 
management and monitoring efforts. However, these rich data may also be used for science, and, 
in the case of large-area spatial or spatial-temporal analysis, small errors can have cumulative 
impacts and need to be accounted for. Point-based helicopter aerial surveys tend to generate 
overestimates of infestation levels. As a smoothing technique, the basic kernel density estimator 
helps deal with this. However, kernel density estimators modified to incorporate data uncertainty 
further improve representation of infestation intensities.  

The method demonstrated for incorporating uncertainty when undertaking kernel density 
estimation may be applied to other applications when data sets are large, and uncertainty and 
error can be modelled. In future work, kernel density-estimated surfaces, generated from point-
based GPS data on mountain pine beetle infestations, can be used to generate a new spatial 
understanding of landscape-scale beetle dynamics. 
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