Determining fungal diversity on *Dendroctonus* ponderosae and *Ips pini* affecting lodgepole pine using cultural and molecular methods Young Woon Lim, Jae-Jin Kim, Monica Lu and Colette Breuil Mountain Pine Beetle Initiative Working Paper 2006-04 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • www.pfc.cfs.nrcan.gc.ca # Determining fungal diversity on Dendroctonus ponderosae and Ips pini affecting lodgepole pine using cultural and molecular methods Young Woon Lim, Jae-Jin Kim, Monica Lu and Colette Breuil\* Mountain Pine Beetle Initiative Working Paper 2006–04 Department of Wood Science, University of British Columbia 2424 Main Mall, Vancouver, B.C. V6T 1Z4, Canada \*Corresponding author: Colette Breuil; e-mail: colette.breuil@ubc.ca This paper was previously published in Fungal Diversity 19:79-94. #### **Mountain Pine Beetle Initiative PO # 3.06** Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 West Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2006 ©Her Majesty the Queen in Right of Canada 2006 Printed in Canada #### **Abstract** Several beetles (Coleoptera: Scolytidae) and their fungal associates cause severe damage to lodgepole pine in Western Canada and the northwestern United States. The fungus diversity from the surface of two bark beetle species, *Dendroctonus ponderosae* Hopkins (mountain pine beetle) and Ips pini Say (pine engraver), was surveyed using cultural and molecular methods. Nine fungal taxa were recognized by morphological characterizations. All nine taxa were isolated from the mountain pine beetle, whereas only seven of the nine taxa were isolated from the pine engraver. The identification was based on cultural morphology and high sequence similarities of the internal transcribed spacer (ITS) and large subunit ribosomal DNA (large subunit rDNA) region to sequences of known fungi. Fungal ITS regions were amplified from DNA directly extracted from the beetle surface. The PCR products were cloned and 250 clones were classified by their restriction pattern with *Hae*III and *Rsa*I. A total of 26 RFLP types were identified and subsequently sequenced. Among them, 15 RFLP (restriction fragment length polymorphism) types were identified as being present in mountain pine beetle and 14 were present in pine engraver. Sequence analysis of the RFLP types showed that 23 ascomycetes and 3 basidiomycetes were represented in the clone libraries, whereas the isolates from the cultural method represented 7 ascomycetes and 2 basidiomycetes. We found that yeast and non-staining filamentous euascomycetes fungi were detected efficiently using a molecular approach, while the major sap-staining fungi and decay fungi were best detected using cultural methods. **Key words:** bark beetle; fungus diversity; ITS, lodgepole pine, mountain pine beetle. #### Résumé Plusieurs coléoptères (Coleoptera: Scolytidae) et leurs associés fongiques causent de sérieux dommages au pin tordu latifolié dans l'Ouest du Canada et le Nord-Ouest des États-Unis. La diversité des champignons à la surface de deux espèces de scolytes, Dendroctonus ponderosae Hopkins (dendroctone du pin ponderosa) et Ips pini Say (scolyte du pin), a été recensée à l'aide de méthodes de culture et de méthodes moléculaires. Neuf taxons fongiques ont été reconnus grâce à leurs caractères morphologiques. Ils ont tous été retrouvés sur le dendroctone du pin ponderosa, alors que seulement sept d'entre eux ont été retrouvés sur le scolyte du pin. L'identification s'est faite sur la base de la morphologie de la culture et des fortes similarités séquentielles entre l'espaceur intergénique (ITS) et une région de grande sous-unité d'ADN ribosomique (l'ADNr USL) des séquences des champignons connus. Les régions fongiques de l'ITS ont été amplifiées à partir de l'ADN extrait directement de la surface du coléoptère. Les produits de la PCR ont été clonés, et 250 clones ont été classifiés selon leur profil de restriction avec HaeIII et RsaI. En tout, on a identifié, puis séquencé, 26 types de polymorphismes de taille des fragments de restriction (RFLP). De ce nombre, on en a retrouvé 15 chez le dendroctone du pin ponderosa et 14 chez le scolyte du pin. Le séquencage des types de RFLP a montré que 23 ascomycètes et 3 basidiomycètes étaient représentés dans la banque de clones, alors que les isolats provenant de la méthode de culture représentaient 7 ascomycètes et 2 basidiomycètes. On a détecté efficacement la levure et les champignons ascomycètes unituniqués filamenteux qui ne tachent pas à l'aide de l'approche moléculaire, alors que les principaux champignons responsables de la tache colorée de l'aubier étaient plus facilement détectables à l'aide des méthodes de culture. **Mots clés :** scolyte; diversité fongique; espaceur intergénique (ITS), pin tordu latifolié, dendroctone du pin ponderosa # **Table of Contents** | Abstract / Résumé | 3 | |--------------------------------------------|----| | Introduction | 7 | | Materials and methods | 8 | | Beetle material | 8 | | Fungal isolation | 8 | | DNA extraction and PCR amplification | | | Cloning and RFLP analysis | | | Sequencing and phylogenetic analysis | | | Results | | | Cultural isolates and their identification | 10 | | Molecular results and phylogeny | 11 | | Discussion | | | Acknowledgements | | | <del>_</del> | 18 | #### Introduction Lodgepole pine (*Pinus contorta* Dougl. var. *latifolia* Engelm.) is an economically and ecologically important resource of western Canada and the northwestern United States. It is used in construction, for pulpwood, and for railway ties and poles. Several beetles (*Coleoptera*: *Scolytidae*) and their fungal associates cause severe damage to lodgepole pine in western Canada (Harrington and Cobb 1988). *Dendroctonus ponderosae*, known as the mountain pine beetle, is a serious threat for mature lodgepole and several other pine species (Safranyik et al. 1974). The mountain pine beetle possesses mycangia formed by invaginations of the exoskeleton that play a role in the dissemination of symbiotic fungi, *Ophiostoma clavigerum* (Rob.-Jeffr. & R.W. Davidson) T.C. Harr., *O. montium* (Rumbold) Arx and associated yeasts (Whitney and Farris 1970). The occurrence of ascomycete yeast with bark beetles was reported many years ago. *Pichia pini* (Holst) Phaff, *P. capsulata* (Wick.) Kurtzman, and *P. holstii* (Wick.) Kurtzman are closely associated with the mountain pine beetle throughout its life cycle in lodgepole pine (Rumbold 1941; Robinson 1962). *Ips pini*, known as the pine engraver, occurs trans-continentally across North America (Lanier 1972) and colonizes most species of pine within its range (Wood 1982). The pine engraver frequently infests the trees being attacked by *Dendroctonus* species and thereby may accelerate the degradation of the tree. It does not possess glandular mycangia (Six 2003), but it does transport several fungal species (Furniss et al. 1995). Much is known about the mountain pine beetle; however, relatively little has been reported on fungi associated with the pine engraver. The isolation of fungi from bark beetles has relied extensively on the dilution plating (Juzwik and French 1983; Klepzig et al. 1991) and the direct beetle streaking methods (Six and Bentz 2003). The failure of bacteria and fungi to grow under standard cultural conditions has been reported repeatedly; only 1% of bacteria and 5% to 10% of fungi have been described formally (Hawksworth 1991; Pace 1997). To circumvent the cultivation problem, an array of molecular techniques such as amplified rDNA restriction and ribosomal DNA (rDNA) sequencing analyses have been applied to elucidate microbial population structures in the environment (Smit et al. 1999; Allen et al. 2003). As cultivation-independent methods enable the detection of slowly growing or uncultivable fungi, it is likely that DNA extraction method gives a more complete view of fungal communities compared to traditional cultivation techniques. The wealth of sequence information that has been compiled in databases means that it is now possible to identify fungi at a far higher resolution using molecular techniques than can be achieved using cultural methods. Increased knowledge of the diversity surrounding the fungal community that beetles carry will further facilitate the understanding of beetle–fungal interactions. The objective of this work was to compare the efficacy of the cultural and molecular methods to evaluate fungus diversity from the exoskeleton of two bark beetles. This is the first time that DNA extraction method has been applied to fungus diversity in mountain pine beetle and pine engraver. #### Materials and methods #### **Beetle material** In early June 2003 at Manning Park (British Columbia, Canada), the mountain pine beetle and the pine engraver were collected from galleries at the bottom regions of five lodgepole pines attacked by mountain pine beetle the previous year. Two groups of five mountain pine beetles and two groups of five pine engravers were taken from each of five trees and were placed in separate microtubes. Half of these groups were used for culture and the other half were used for direct DNA extraction. Samples were kept in plastic bags on ice, transported to the University of British Columbia, and held at 4°C until the next day. #### **Fungal isolation** Tween-20 wash solution (0.01%) was added to each 1.5 ml microtube that included one bark beetle. The tubes were vortexed for 3 minutes at maximum speed, and the insect wash was diluted 50 times. Subsequently, 20 µL of the 50-fold diluted insect wash solution was spread on (i) plates of 1% Oxoid malt extract agar (MEA) with ampicillin for the general fungal flora, and (ii) plates of 1% Oxoid MEA with benomyl/ampicilin (BMEA) to select for decay basidiomycetes. All plates were checked daily to prevent overgrowth of a dominant isolate. As different forms of fungi were observed, they were transferred onto fresh plates to obtain pure cultures. The fungal isolates were grouped based on growth morphology on media and microscopic features. Species identification via classical methodology was achieved by macroand micro-morphological analyses using taxonomic guides and standard procedures (Nobels 1965; Stalpers 1974; Kurtzman and Fell 1998; Jacobs and Wingfield 2001). This was complemented by identification of cultures using molecular methods. #### DNA extraction and PCR amplification Genomic DNA of each representative isolate was extracted from mycelia grown on media as described by Lecellier and Silar (1994). For direct DNA extraction from beetles surface, each tube consisting of five mountain pine beetles or five pine engravers was resuspended in 700 $\mu L$ of extraction buffer [100 mM Tris-HCl (pH 8.0), 1mM EDTA (pH 8.0), 100 mM NaCl and 2% SDS]. The beetles were removed from tubes after vortexing for 10 minutes. After 1 hour incubation at 75°C, glass beads (1/3 volume) were added to the tubes and vortexed again for 10 minutes. DNA was purified via a two-step phenol-chloroform extraction and precipitated with one volume of iso-propanol, then centrifuged immediately at 12,000 rpm at room temperature for 10 minutes. After removing the supernatant, the pellet was washed with 70% ethanol, allowed to air dry and resuspended in 40 $\mu$ l of distilled water. The extracted DNA was stored at $-20^{\circ}$ C until further use. Polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) from cultures was carried out using the ITS5 and ITS4 (White et al. 1990) primer sets. The large subunit (LSU) rDNA region was also amplified for four species of yeast, using the primer sets LR0R and LR3 (http://www.biology.duke.edu/fungi/ mycolab/primers.htm). The LSU rDNA regions from only four yeast species were amplified for their identification. PCR amplification was performed as described by Lee et al. (2003). Amplified PCR products were directly sequenced after purification using Qiaquick PCR Purification Kit (Qiagen, Ontario). For cloning, the ITS region was amplified from DNA extracted directly from the surface of the beetle bodies. All PCR reactions were performed in a PTC-100 thermal cycler (MJ research, USA) with the following cycling parameters: initial denaturation at 94°C for 4 minutes, then 30 cycles of denaturation at $94^{\circ}$ C for 50 seconds, annealing at $52^{\circ}$ C for 40 seconds, extension at $72^{\circ}$ C for 50 seconds, with a final extension at $72^{\circ}$ C for 10 minutes. From each PCR product, 3 $\mu$ L was electrophoresed on 0.5% agarose gel containing EtBr in Trisacetate EDTA (TAE) buffer. The PCR product sizes were determined by comparison to 1 kb DNA marker (GIBCO BRL, USA). To minimize PCR drift for cloning (Polz and Cavanaugh 1998), six replicate amplicons were pooled, then concentrated and purified with Qiaquick PCR Purification Kit. ### Cloning and RFLP analysis Purified PCR products were cloned using TOPO TA cloning kit (Invitrogen Inc. Burlington, ON, Canada) according to the manufacturers' instructions. Twenty-five white colonies from each library were selected and stored on agar plates. Selected clones were re-amplified using ITS 4 and ITS 5 primers. Amplified PCR products were digested with HaeIII and RsaI. Digestions were performed using 8 $\mu$ L of PCR products, 1 $\mu$ L of 10X reaction buffer, and 1 $\mu$ L of each enzyme. Restriction fragment patterns were visualised on a 2.5% agarose gel (w/v). #### Sequencing and phylogenetic analysis PCR products of isolates and each representative RFLP type were further purified and then sequenced. Sequencing was performed on an ABI 3700 automated sequencer (Perkin-Elmer Inc. USA) at the DNA synthesis and sequencing facility, MACROGEN (Seoul, Korea). ITS and LSU region sequences of isolates were used for identification. For the phylogenetic analysis, ITS region sequences from isolates and different restriction fragment length polymorphism (RFLP) types were aligned with sequences obtained from BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST). Sequences were first aligned using Clustal X algorithm (Thompson et al. 1997). Manual adjustment of alignments was done with the PHYDIT program version 3.2 (http://plasza.snu.ac.kr/~jchun/phydit/). Ambiguous regions of ITS regions in the alignments were excluded from further analyses. Parsimony analyses used the heuristic search option with simple addition sequences with MULPARS and TBR branch swapping. Gaps were treated as missing data. Branch stability was assessed by 1000 replicate parsimony bootstrap replications implemented with PAUP\*4.0b10 (Swofford 2002). ## **Results** #### Cultural isolates and their identification A total of 730 isolates were obtained from bark beetles, of which 418 isolates were from the mountain pine beetle and 312 from the pine engraver. We recognized nine different fungal taxa by morphological characterizations. All nine were isolated from the mountain pine beetle, but only seven were isolated from the pine engraver (Table 1). Two fungi isolated on BMEA had characteristics of basidiomycetous decay fungi with clamp-connections. Of all isolates, 1.7% and 1% consisted of decay fungi associated with the mountain pine beetle and the pine engraver, respectively. One of the decay fungi isolated from the mountain pine beetle was easily identified as *Heterobasidion annosum* (Fr.) Bref. due to its distinct morphology. It was characterized by the formation of diagnostic anamorph *Spiniger meineckellus* (Olson) Stalpers on media (Stalpers 1974). The identification of *H. annosum* was confirmed by ITS region sequence analysis. The other decay fungus isolated from both bark beetles exhibited fewer morphological features in culture; therefore, it was impossible to identify it to the species level. However, through the sequence BLAST search, the ITS sequence had 100% similarity with *Fomitopsis pinicola* (Swartz: Fries) P.Karsten. **Table 1.** Fungal isolates recovered from mountain pine beetle and pine engraver from five lodgepole pine trees. | Fungal isolates | GenBank accession no. | MF | B | | | Pine engraver | | | | | | |-------------------------|-----------------------|-----|-----------|----|----|---------------|----|----|----|----|----| | | ITS (LSU rDNA) | T11 | <b>T2</b> | Т3 | T4 | T5 | T1 | T2 | Т3 | T4 | T5 | | Hemiascomycetes (yeast) | | | | | | | | | | | | | Pichia capsulata | AY761153 (AY761149) | 1 | 2 | 3 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | | Pichia holstii | AY761154 (AY761150) | 28 | 22 | 17 | 22 | 19 | 18 | 25 | 19 | 17 | 27 | | Pichia scolyti | AY761155 (AY761151) | 45 | 42 | 28 | 37 | 33 | 32 | 38 | 35 | 34 | 29 | | Unidentified yeast | AY761156 (AY761152) | 0 | 0 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | | Filamentous Euascomyce | | | | | | | | | | | | | Ceratocystiopsis sp. | AY761157 | 2 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 3 | 0 | | Ophiostoma clavigerum | AY761158 | 3 | 2 | 4 | 6 | 0 | 0 | 1 | 0 | 0 | 0 | | Ophiostoma montium | AY761159 | 15 | 19 | 18 | 18 | 8 | 5 | 1 | 6 | 8 | 6 | | Basidiomycota | | | | | | | | | | | | | Fomitopsis pinicola | AY761160 | 1 | 2 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | | Heterobasidion annosum | AY761161 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total isolates | | 95 | 91 | 76 | 90 | 66 | 55 | 71 | 61 | 62 | 63 | Denotes the sample trees where the beetles collected from. Three sap-staining fungi were isolated and they represented 23.9% and 10.6% of the total isolates from the mountain pine beetle and the pine engraver, respectively (Table 1). The most common species was *Ophiostoma montium*. The other sap-staining fungus matched the characteristic of *O. clavigerum*, which had long clavate spores (12.5-85 µm) and long synnematous conidiophores (500-1150 µm) with broom-shaped tips (Upadhyay 1981). Fifteen isolates of *O. clavigerum* were detected from the mountain pine beetle, but only one isolate was detected from the pine engraver. The identification of *O. montium* and *O. clavigerum* was confirmed by ITS sequences analyses. The third sap-staining fungus, isolated less frequently, had morphological features of *Ceratocystiopsis*. However, due to the scarcity of ITS region sequences of this genus in GenBank, the ITS 2 sequence matched the sequence of *Ceratocystiopsis ranaculosa* Perry & Bridges with 95% similarity. Five hundred eighty-seven yeast isolates were divided into four different groups based on morphological features such as colony colour, colony shape, spore shape, and spore size. Due to limited morphological characteristics and similarity with other yeast species, we were unable to identify them. The nucleotide D1/D2 domains of the LSU rDNA region have been sequenced for all currently recognized ascomycetous yeasts. Most, but not all, ascomycetous yeast can be identified from their partial LSU rDNA region (Kurtzman and Robnett 1998). Therefore, we chose to identify the yeasts in our work based on their LSU rDNA sequence similarity to the yeasts of the GenBank. The LSU sequences derived from four representative yeast isolates matched those of *Pichia* species with more than 99% sequence similarity. Among them, three yeasts were identified as *P. capsulata*, *P. holstii*, and *P. scolyti*. They constituted 74.4% and 88.5% of total isolates from the mountain pine beetle and the pine engraver. *Pichia holstii* and *P. scolyti* were the most commonly isolated yeasts from both bark beetles. *Pichia capsulata* was found only in mountain pine beetle. The LSU sequences of less common unidentified yeast matched that of *Candida* sp. (AY242329) with 99.13% similarity. This yeast was isolated from both beetles (Table 1). ## Molecular results and phylogeny Genomic DNA was successfully isolated from the surfaces of two bark beetle species. The amplified PCR products of the ITS region were size fractionated by agarose gel electrophoresis. Their sizes ranged from 400 to 800 bp. From clone libraries, a total of 250 ITS clones (125 from the mountain pine beetle and 125 from the pine engraver) were analyzed. RFLP analysis using *Hae*III and *Rsa*I divided these clones into 26 RFLP types. Each RFLP type was represented by 1 to 64 ITS clones (Table 2). Among them, 15 RFLP types were identified as being present in the mountain pine beetle and 14 were present in the pine engraver (Table 2). Similarly, there was no difference among fungi from the pine engraver taken from the five different trees. However, there were differences between the mountain pine beetle and the pine engraver fungi across all five trees. Of the 26 RFLP types, only three types were found in both beetles (Table 2). BLAST search results and phylogenetic analysis revealed that the 18 RFLP types (69.2%) had closest match to Saccharomycetaceous yeasts. The most predominant type, BAF 1, was found in both bark beetle clone libraries. The next most common types, BAF 9 and BAF22, were present in mountain pine beetle, while BAF6, BAF9, and BAF12 were present in pine engraver. Other RFLP types were less frequent; five types (19.2%) clustered with the sequences of filamentous Euascomycetes and three types (11.5%) with those of Basidiomycota. Only five RFLP types matched to the isolates (Fig. 1): BAF1 matched with P. scolyti, BAF3 with P. capsulata, BAF9 with P. holstii, BAF10 with unidentified yeast, and BAF17 with *Ceratocystiopsis* sp. Phylogenetic analysis was carried out using only ITS region sequences. The alignment included sequences from 9 isolates and 26 RFLP types, along with other sequences from GenBank. Alignment was accomplished by inserting gaps, which resulted in a total of 989 characters. Three hundred sixteen ambiguous alignment characters were excluded from the data set. Six hundred seventy-three characters were used in the final analysis, which included 220 parsimony-uninformative characters and 453 informative characters. Due to limited ITS sequence data within the database, the closest matching of many RFLP types could not be established. The level of sequence divergence between the closest clone sequences was below 97% sequence similarity. Parsimony analysis yielded four most parsimonious trees (MPTs: length 2131; consistency index [CI] 0.4894; retention index [RI] 0.7724). One of those trees is shown in Fig. 1. The phylogenetic analysis placed the fungi in three major groups representing two groups of *Ascomycota* (*Euascomycetes* and *Hemiascomycetes*) and one of *Basidiomycota*. These groups were separated by strongly supported branches (Bootstrap value, 94%) (Fig. 1). The majority of RFLP types and yeast isolates were confirmed to be Saccharomycetaceous yeasts falling in the Hemiascomycete group with a 94% parsimony bootstrap support. The yeast group consisted of a total 18 RFLP types with high similarity to ITS sequences of *Pichia* species in the database. Five RFLP types were placed in filamentous *Euascomycetes*. The filamentous fungi, including sap-staining ones, appeared to be associated with the pine engraver. The *Basidiomycota* clade included two isolates and three RFLP types. *Fomitopsis pinicola*, *H. annosum*, and BAF23 were grouped into the *Homobasidiomycetes* with high bootstrapping support (94%). BAF23 matched *Entomocorticium dendroctoni* Whitney with 99.65%. BAF26 was most closely related to a member of *Tremellales* in *Heterobasidiomycetes* and BAF25 was matched to *Rhodotorula lamellibrachiae*, which is classified among the *Urediniomycetes*. Table 2. Number of clones of each RFLP type obtained from both bark beetles and closest matches from FASTA searches. | RFLP Acc. No Clone No and source <sup>1</sup> | | | | ITS size RFLP pattern | | | Closest match in BLAST <sup>2</sup> | T.J4:4 F0/ 13 | | | |-----------------------------------------------|---------------|----|----------|-----------------------|-------------|-------|-------------------------------------|------------------|----------------------------------------|---------------------------| | | Acc. No | | | | | _ | | | Closest match in BLAS1 | Identity [%] <sup>3</sup> | | type | | | Source | PE | Source | (bp) | HaeIII | RsaI | | | | | scomycetes (y | | 4 11 | 20 | 4.11 | c = 1 | 10 50 140 411 | - <del>-</del> 1 | D. 1 | 550/566 (O50/) | | BAF1 | AY761155 | | All | 30 | All | 651 | 13,79,149,411 | 651 | Pichia scolyti AB054111 | 552/566 (97%) | | BAF2 | AY761162 | 5 | T2,T5 | | | 615 | 13,149,454 | 515 | Pichia scolyti AB054111 | 355/369 (96%) | | BAF3 | AY761153 | 2 | T2 | | | 645 | 13,149,484 | 645 | Pichia scolyti AB054111 | 369/390 (94%) | | BAF4 | AY761163 | 3 | T1 | _ | | 649 | 13,79,150,408 | 214,436 | Candida sp. AY559447 | 543/600 (90%) | | BAF5 | AY761164 | | | 2 | T2 | 653 | 13,79,150,412 | 213,441 | Candida atlantica AJ539368 | 362/382 (94%) | | BAF6 | AY761165 | | | 40 | T1,T2,T3 | 657 | 79,161,418 | 10,155,493 | Pichia mexicana AB054110 | 560/574 (97%) | | BAF7 | AY761166 | 1 | T4 | | | 580 | 79,502 | 580 | Pichia scolyti AB054111 | 357/361 (98%) | | BAF8 | AY761167 | 1 | T2 | | | 521 | 79,443 | 521 | Pichia scolyti AB054111 | 345/359 (96%) | | BAF9 | AY761154 | 24 | All | 11 | T1,T2,T4,T5 | 661 | 82,575 | 661 | Candida ernobii AY585212 | 540/545 (99%) | | | AY761156 | 2 | T3 | 1 | T3 | 681 | 84,598 | 681 | Candida ernobii AY585212 | 407/448 (90%) | | | AY761168 | 1 | T5 | | | 658 | 79,580 | 658 | Candida ernobii AY585212 | 379/395 (95%) | | BAF12 | AY761169 | | | 23 | T1,T3,T4,T5 | 658 | 178,481 | 658 | Lacazia loboi AF035675 | 179/187 (95%) | | BAF13 | AY761170 | | | 1 | T4 | 658 | 173,486 | 658 | Pichia guilliermondii AF455495 | 170/175 (97%) | | BAF14 | AY761171 | 3 | T5 | | | 791 | 791 | 791 | Kluyveromyces thermotolerans AY046207 | 172/177 (97%) | | BAF15 | AY761172 | | | 5 | T1 | 644 | 644 | 644 | Saccharomycopsis crataegensis AF411061 | 452/546 (83%) | | BAF16 | AY761173 | | | 2 | T4,T5 | 767 | 248,520 | 767 | Pichia guilliermondii AF455495 | 179/183 (97%) | | BAF22 | AY761174 | 12 | T2,T3,T4 | 1 | | 404 | 66, 66,272 | 404 | Clavispora lusitaniae AY321475 | 320/374 (86%) | | BAF24 | AY761175 | 1 | T2 | | | 456 | 456 | 456 | Candida petrohuensis AY585213 | 111/119 (93%) | | Filamentous Euascomycetes | | | | | | | | | | | | BAF17 | AY761157 | 2 | T1,T4 | | | 692 | 12,42,57,104,<br>144,333 | 692 | Ceratocystiopsis ranaculosa AY542504 | 396/416 (95%) | | BAF18 | AY761176 | | | 2 | T2,T3 | 575 | 575 | 575 | Cladosporium tenuissimum AF393724 | 542/543 (99%) | | BAF19 | AY761177 | | | 3 | T3 | 613 | 89,102,124,298 | 613 | Sepedonium boletiphagum AF054867 | 511/572 (89%) | | BAF20 | AY761178 | | | 1 | T4 | 604 | 6,65,93,93,349 | 604 | Penicillium brevicompactum AY373898 | 558/560 (99%) | | BAF21 | AY761179 | 1 | T5 | | | 582 | 31,122,431 | 210,382 | Leaf litter ascomycete AF502745 | 444/458 (96%) | | Basidio | mycota | | | | | | | | · | | | BAF23 | AY761180 | | | 2 | T4 | 660 | 41,146,473 | 80,145,436 | Entomocorticium dendroctoni AF119506 | 544/548 (99%) | | BAF25 | AY761181 | 3 | T1 | | | 611 | 611 | 611 | Rhodotorula lamellibrachiae AB025999 | 548/574 (95%) | | BAF26 | AY761182 | | | 2 | T4,T5 | 578 | 104,474 | 578 | Tsuchiyaea wingfieldii AF444327 | 525/537 (97%) | <sup>&</sup>lt;sup>1</sup> MPB, mountain pine beetle and PE, pine engrave. <sup>2</sup> The entire sequence information comprising ITS 1 region, the 5.8S rDNA, the ITS 2 region and the 5' end of the 28S rDNA was sued for BLAST searches. The names listed were taken from the respective database accessions and do not necessarily reflect current use. <sup>3</sup> Identity [%] was represented by matched nucleotide / compared nucleotide. Accessions and identity in bold type are used in tree construction. #### **Discussion** The culture and DNA methodology used in this work have complementary strengths. Yeasts and non-staining filamentous *Euascomycetes* were, most efficiently, detected by the molecular methods, while the major sap-staining fungi and decay fungi were more frequently detected using the culture methods. Similar fungal communities were found on mountain pine beetle and pine engraver using the cultural method, while different fungal species were detected with the DNA approach. Previously, fungus surveys from bark beetles have focused mainly on staining fungi because they cause important economic losses to the forest product industry (Uzunovic et al. 1999; Lee et al. 2003; Six and Bentz 2003). Other fungi that also are typically associated with mountain pine beetle and pine engraver and do not discolour sapwood have been systematically overlooked. The finding that 76.9% of cloned DNAs was yeast indicated that yeast species are commonly associated with mountain pine beetle and pine engraver, and also suggested that yeasts play an important ecological role. The sequence similarities of the ITS and LSU rDNA regions are broadly used and are considered to be an excellent basis for studying fungus diversity in ecological investigations (Smit et al. 1999; Horton and Bruns 2001; Buchan et al. 2002; Allen et al. 2003). A major impediment in such work is a lack of reference ITS sequence information in the public databases. Due to the scarcity of Saccharomycetaceous yeast ITS region sequences, many of the clones sequenced in the current work clustered with other ascomycetous sequences and matched database sequences across a very small length of the sequence or with low similarity. Our phylogenetic analysis showed that at least five different genera of yeasts were associated with bark beetles. Three genera, Pichia, Clavispora and Saccharomycopsis, are included in Saccharomycetaceous yeasts, and two genera, Rhodotorula and Cryptococcus, are classified with basidiomycetous yeasts. Pichia, Clavispora and Rhodotorula were detected on mountain pine beetle, while Pichia, Saccharomycopsis and Cryptococcus were found on pine engraver. Pichia species are commonly associated with eggs, larvae, pupae, and adult bark beetles, and are also frequently isolated from the walls of beetle galleries and pupal chambers, as well as from xylem tissues (Robinson 1962). Pichia pini, P. capsulata and P. holstii have been reported from mountain pine beetle (Grosmann 1930; Robinson 1962; Kurtzman and Fell 1998). We detected 18 RFLP types of *Pichia* even though only two restriction enzymes were used on the ITS PCR products. In contrast to previous reports, we did not find P. pini (Rumbold 1941; Robinson 1962); instead, P. scolyti was commonly detected among the 12 Pichia species from mountain pine beetle and the eight Pichia species from the pine engraver. Other common isolates, found only on the mountain pine beetle, clustered with *Clavispora* species. This group is basal to the other Saccharomycetaceous yeasts. Although species of Clavispora have been reported from flies and moths, they have not been reported on mountain pine beetle and pine engraver (Kurtzman and Fell 1998). **Fig. 1.** One of the most parsimonious trees comparing ITS sequences of the isolates and RFLP types from surfaces of mountain pine beetle (MPB) and pine engraver (PE) to reference sequences. Bootstrap support values are indicated (when greater than 70%) above corresponding branches. Isolates from cultural method are in shaded box. Taxa originating from the representative RFLP types are in bold. Square and circle indicate that fungi were found on mountain pine beetle and pine engraver, respectively. Our results, from the cultural approach, were generally consistent with previous results. Only a few species of sap-staining fungi have been found on mountain pine beetle. *Ophiostoma clavigerum* and *O. montium* have been known to be closely associated with the mountain pine beetle throughout its life cycle in lodgepole pine (Rumbold 1941; Robinson 1962) and were the most prevalent isolates in this work. These two fungi are known to be the primary invaders of fresh sapwood (Whitney and Farris 1970; Solheim 1995). A *Ceratocystiopsis* sp. with similar morphological features to the genus *Ophiostoma* was present in lower numbers. However, its DNA sequence as well as its morphology could not be matched to known *Ceratocystiopsis* species (Zhou et al. 2004), suggesting that this isolate may be a new species. Because little is known about fungi associated with pine engraver, we were unable to compare our results with previous observations. In this work, however, the same sap-staining fungi (*Ceratocystiopsis* sp. and *O. montium*) and yeasts (*Pichia holstii*, *P. scolyti*, and unidentified yeast) were isolated from both the mountain pine beetle and the pine engraver infesting the same host tree. Although most associations among bark beetles and fungi involve ascomycetes, a few associations with basidiomycetes have been characterized (Castello et al. 1976; Alexander et al. 1980; Whitney et al. 1987; Garcia and Morrell 1999). Three basidiomycetous fungi, Entomocorticium dendroctoni, Fomitopsis pinicola and Heterobasidion annosum, were detected in this work. Entomocorticium species appear to be the most common and widespread basidiomycetous associates of bark beetles (Tsuneda et al. 1993). Some evidence suggests that E. dendroctoni may contribute nutritionally to the mountain pine beetle (Whitney et al. 1987). The white pocket rot fungus, H. annosum, has been associated with bark and wood-boring beetles (Alexander et al. 1980; Garcia and Morrell 1999). The brown rot fungus, F. pinicola, has also been found in Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) that were trapped in flight or were removed from galleries in Douglas-fir (Castello et al. 1976). Our results support the hypothesis of Castello et al. (1976) that mycelium fragments of decay fungi can be trapped in the intersegmental areas of beetles' bodies. While there are also many examples of decay fungi dispersed by beetles (Nuss 1982; Thomsen and Koch 1999), the importance of mountain pine beetle and pine engraver in disseminating decay fungi needs to be determined. Except for *Ceratocystiopsis* sp., the DNA method did not detect decay and sapstaining fungi. Our inability to detect certain species may have resulted from several factors including low proportion of associated fungi, DNA extraction bias, PCR drift and the GC ratio. The low density of decay fungi in the overall microflora may have inhibited their detection. In culture, the presence of benomyl favors decay fungi and reduces competitive microflora. Although the bead beating DNA extraction method has been used to study fungal communities, differences in cell wall composition between different fungus types (sap-staining fungi contain cellulose in addition to chitin) might affect cell lysis (Jewell 1974; Yeates and Gillings 1998; Kresk and Wellington 1999; Griffiths et al. 2000). To minimize PCR drift by decreasing PCR bias, we pooled six PCR amplicons (Polz and Cavanaugh 1998). The GC ratio of the amplified DNA region might also affect PCR amplification. The GC ratios from the total ITS region of *O. clavigerum* and *O. montium* were high at 63.7% and 59.4%, respectively. *Ophiostoma clavigerum* and related *Leptographium* species are known to have high GC ratios, especially in their ITS 1 region, and so only the ITS2 region and part of the LSU region have been used in the molecular phylogeny of these fungi (Hausner et al. 2000; Jacobs et al. 2001; Lim et al. 2004). In contrast to the sapstaining fungi, the other fungi found in this work had low GC ratios. The GC ratio of Saccharomycetaceous yeasts was fairly low, ranging from 36.8 to 44.1%. This suggested that the high GC ratio of the sap-staining fungi might have a negative effect on PCR amplification, affecting their detection by the molecular method. Despite the biases and limitations of the molecular method, a more diverse fungal community was found using DNA analyses than using cultures, and our results showed that the cultural approach alone is not sufficient for determining fungus diversity. # Acknowledgements This work was supported by Natural Resources Canada, Canadian Forest Service under the Mountain Pine Beetle Initiative and by the Natural Science and Engineering Research Council of Canada.. Publication does not necessarily signify that the contents of this report reflect the views or policies of Natural Resources Canada, Canadian Forest Service. We thank Philippe Tanguay for helpful suggestions. # References - Alexander, S.A.; Skelly, J.M.; Webb, R.S.; Bardinelli, T.R.; Bradford, B. 1980. Association of *Heterobasidion annosum* and the southern pine beetle on loblolly pine. Phytopathology 70:510–513. - Allen, T.R.; Millar, T.; Berch, S.M.; Berbee, M.L. 2003. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist 160:255–272. - Buchan, A.; Newell, S.Y.; Moreta, J.I.L.; Moran, M.A. 2002. Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microbial Ecology 43:329–340. - Castello, J.D.; Shaw, C.G.; Furniss, M.M. 1976. Isolation of *Cryptoporus volvatus* and *Fomes pinicola* from *Dendroctonus pseudotsugae*. Phytopathology 66:1431–1434. - Furniss, M.M.; Harvey, A.E.; Solheim, H. 1995. Transmission of *Ophiostoma ips* (Ophiostomatales: Ophiostomataceae) by *Ips pini* (Coleoptera: Scolytidae) in ponderosa pine in Idaho. Annals of the Entomological Society of America 88:653–660. - Garcia, C.M.; Morrell, J.J. 1999. Fungal associates of *Buprestis aurulenta* in western Oregon. Canadian Journal of Forrest Research 29:517–520. - Griffiths, R.I.; Whiteley, A.S.; O'Donnell, A.G.; Bailey, M.J. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-Based microbial community composition. Applied and Environmental Microbiology 66:5488–5491. - Grosmann, H. 1930. Beiträge zur Kenntnis der Lebensgemeinschaft zwischen Borkenkäfern und Pilzen. Zeitschrift fur Parasitenkunde 36:56–102. - Harrington, T.C.; Cobb, F.W. Jr. 1988. Leptographium *root diseases on conifers*. American Phytopathological Society Press, St. Paul, MN. - Hausner, G.; Reid, J.; Klassen, G.R. 2000. On the phylogeny of members of *Ceratocystis* s.s. and *Ophiostoma* that possess different anamorphic states, with emphasis on the anamorph genus *Leptographium*, based on partial ribosomal DNA sequences. Canadian Journal of Botany 78:903–916. - Hawksworth, D.L. 1991. The fungal dimension of biodiversity: magnitude significance and conservation. Mycological Research 95:641-655. - Horton, T.R.; Bruns, T.D. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10:1855–1871. - Jacobs, K.; Wingfield, M.J. 2001. Leptographium *species: tree pathogens, insect associates and agents of blue-stain*. The American Phytopathological Society Press, St. Paul, Minnesota. - Jacobs, K.; Wingfield, M.J.; Wingfield, B.D. 2001. Phylogenetic relationships in *Leptographium* based on morphological and molecular characters. Canadian Journal of Botany 79:719–732. - Jewell, T.R. 1974. A qualitative study of cellulose distribution in *Ceratocystis* and *Europhium*. Mycologia 66:139–146. - Juzwik, J.; French, D.W. 1983. *Ceratocystis fagacearum* and *Ceratocystis piceae* on the surface of free-flying and fungus-mat-inhabiting nitidulids. Phytopathology 73:1164–1168. - Klepzig, K.D.; Raffa, K.F.; Smalley, E.B. 1991. Association of an insect-fungal complex with red pine decline in Wisconsin. Forest Science 37:1119–1139. - Kresk, M;. Wellington, E.M.H. 1999. Comparison of different methods for the isolation and purification of total community DNA from soil. Plant and Soil 109:245–249. - Kurtzman, C.P.; Fell, J.W. 1998. *The Yeasts, A Taxonomic Study*. 4th edn. Elsevier Science, Amsterdam. - Kurtzman, C.P;. Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371. - Lanier, G.N. 1972. Biosystematics of the genus *Ips* (Coleoptera: Scolytidae) in North America. Hopping's group IV and X. Canadian Entomologist 104:361–388. - Lecellier, G.; Silar, P. 1994. Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Current Genetics 25:122–123. - Lee, S.; Kim, J.-J.; Fung, S.; Breuil, C. 2003. A PCR-RFLP marker distinguishing *Ophiostoma clavigerum* from morphologically similar *Leptographium* species associated with bark beetles. Canadian Journal of Botany 81:1104–1112. - Lim, Y.W.; Alamouti, S.M.; Kim, J.-J.; Lee, S.; Breuil, C. 2004. Multigene phylogenies of *Ophiostoma clavigerum* and closely related species from bark beetle-attacked *Pinus* in North America. FEMS Microbiology Letters 237:89–96. - Nobles, M.K. 1965. Identification of cultures of wood inhabiting Hymenomycetes. Canadian Journal of Botany 43:1097–1139. - Nuss, I. 1982. The significance of proterospores: conclusions from studies of *Ganoderma*. Plant Systematics and Evolution 141:53-80. - Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–740. - Polz, M.F.; Cavanaugh, C.M. 1998. Bias in template-to-products ratios in multitemplate PCR. Applied and Environmental Microbiology 64:3724–3730. - Robinson, R.C. 1962. Blue stain fungi in lodgepole pine (*Pinus contorta* Dougl. var. *latifolia* Engelm.) infested by the mountain pone beetle (*Dendroctonus monticolae* Hopk.). Canadian Journal of Botany 40:609–614. - Rumbold, C.T. 1941. A sapstaining fungus *Ceratostomella montium* n. sp. and some yeast associated with two species of *Dendroctonus*. Journal of Agricultural Research 62:589–601. - Safranyik, L.; Shrimpton, D.M.; Whitney, H.S. 1974. *Management of Lodgepole Pine to Reduce Losses from the Mountain Pine Beetle*. Forest Technical Report No. 1 Canadian Forest Service, Pacific Forestry Centre, Victoria, BC. - Six, D.L. 2003. Bark beetle-fungus symbioses. In: *Insect symbiosis* (eds. T. Miller and K. Kourtzis). CRC Press, Boca Raton, Fla: 99–116. - Six, D.L.; Bentz, B.J. 2003. Fungi associated with the North American spruce beetle, *Dendroctonus rufipennis*. Canadian Journal of Forest Research 33:1815–1820. - Smit, E.; Leeflang, P.; Glandorf, B.; van Elsas, J.D.; Wernarsm, K. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology 65:2614–2621. - Solheim, H. 1995. Early stages of blue-stain fungus invasion of lodgepole pine sapwood following mountain pine beetle attack. Canadian Journal of Botany 70:1–5. - Stalpers, J.A. 1974. Spiniger, a new genus for imperfect states of basidiomycetes. Proceedings of the Koninklijke Nederlandse akademie van wetenschappen. Series C77:383–401. - Swofford, D.L. 2002. PAUP\*: phylogenetic analysis using parsimony (\* and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts. - Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Research 24:4876–4882. - Thomsen, I.M.; Koch, J. 1999. Somatic compatibility in *Amylosterum areolatum* and *A. chailletii* as a consequence of symbiosis with siricid wood-wasps. Mycological Research 103:817–823. - Tsuneda, A.; Murakami, S.; Sigler, L.; Hiratsuka, Y. 1993. Schizolysis of dolipore-parenthosome septa in an arthroconidial fungus associated with *Dendroctonus ponderosae* and in similar anamorphic fungi. Canadian Journal of Botany 71:1032–1038. - Upadhyay, H.P. 1981. *A monograph of* Ceratocystis *and* Ceratocystiopsis. The University of Georgia Press, Athens, Ga. - Uzunovic, A.; Yang, D.-Q.; Gagne, P.; Breuil, C.; Bernier, L.; Byrne, A.; Gignac, M.; Kim, S.H. 1999. Fungi that cause sapstain in Canadian softwoods. Canadian Journal of Microbiology 45:914–922. - White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR protocols: a guide to methods and applications* (eds. M.A. Innis, D.H. Gelfand, J.J. Sninisky and T.J. White). Academic Press, New York: 315–322. - Whitney, H.S.; Farris, S.H. 1970. Maxillary mycangium in the mountain pine beetle. Science 167:54–55. - Whitney, H.S.; Bandoni, R.J.; Oberwinkler, F. 1987. *Entomocorticium dendroctoni* gen. et sp. nov. (basidiomycota), a possible nutritional symbiote of the mountain pine beetle in lodgepole pine in British Columbia. Canadian Journal of Botany 65:95–102. - Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Natural Memoir 6. - Yeates, C.; Gillings, M.R. 1998. Rapid purification of DNA from soil for molecular biodiversity analysis. Letters in Applied Microbiology 27:49–53. - Zhou, X.D.; de Beer, Z.W.; Ahumada, R.; Wingfield, B.D.; Wingfield, M.J. 2004. *Ophiostoma* and *Ceratocystiopsis* spp. associated with two pine-infesting bark beetles in chile. Fungal Diversity 15:261–274. This publication is funded by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service (web site: mpb.cfs.nrcan.gc.ca). ## **Contact:** For more information on the Canadian Forest Service, visit our web site at: www.nrcan.gc.ca/cfs-scf or contact the Pacific Forestry Centre 506 West Burnside Road Victoria, BC V8Z 1M5 Tel: (250) 363-0600 Fax: (250) 363-0775 www.pfc.cfs.nrcan.gc.ca