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ABSTRACT
Forest mapping from satellite remote sensing images is a convenient approach for regions with limited or absent
forest inventories. We developed and tested a method to map above-ground biomass of black spruce (Picea mariana)
stands in northeastern boreal regions of Canada using high resolution satellite images.  Development of the method
involved: 1) calculating shadow fraction (SF) using either classification (pixel-based) or segmentation and
classification (object-based) algorithms, (ii) generating linear regression relationships between SF and biomass from
ground sample plots using several combinations of method parameters towards defining the best options,
(iii) calculating a global linear regression applicable for all sites using the best options, and (iv) mapping biomass as a
grid layer for each site using the global regression.  The linear relationships were calibrated using biomass estimates
of 108 ground sample plots and the shadow fraction of tree crowns calculated from QuickBird images representing
three test sites.  The global regression relationship produced R2, RMSE and bias in the range of 85 to 88% (except one
case at 44%), 14 to 18 t/ha and -3 to 8 t/ha, respectively.  The results suggest that the method may be an efficient
means of mapping biomass of black spruce stands in northern Canada.1
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1  INTRODUCTION
The increasing importance of modelling carbon balance and monitoring of changing climate, combined with the

economical interest to increase forest logging at the northern margin of the merchantable forests all require improved
maps of forest attributes such as total volume and above-ground tree biomass. The remoteness and lack of
infrastructure in these regions has resulted in a very limited forest inventory, which means that only a very small
number of ground sample plots (GSP) and stand maps are available. Yet, the boreal and subarctic regions represent
60% of Canadian territory for a total of 4M km2.   This context requires the development and use of satellite remote
sensing and modelling methods to estimate forest biomass, defined here as the total dry weight of above-ground trees
per unit area (t/ha).   

Segmentation of high-resolution satellite images (HRSI) has been used successfully to assess timber volume [1]
and to identify land cover units [2]. Seed and King [3] found statistical relationships between tree shadow fraction
(SF) or shadow brightness and leaf area index (LAI). A significant relationship between SF and different forest
attributes such as biomass and LAI can also be calculated from a spectral mixture analysis method ([4] and [5]).
These results suggest that tree shadow area, an obvious image attribute in HRSI imagery of northern open coniferous
forests, can be identified through a combination of an object-based segmentation and a spectral classification to
calculate tree shadow fraction, which in turn may be used to estimate biomass through functional relationships.

In this paper, we report on the development of a biomass mapping method based on SF of QuickBird (QB) HRSI.
Application of the method uses a global relationship between biomass estimated at GSP and SF from QB images to
map biomass of northern boreal black spruce stands.
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2  TEST SITES AND DATA

Three test sites were selected in Northeastern Canada close to the towns of Chibougamau (CH) and Radisson (RA) in
Quebec, and Wabush (WA) in Labrador (Fig. 1). These sites were representative of forest conditions found in
northeastern boreal forest: i) various density stands dominated by black spruce, ii) flat or gently rolling topography,
and iii) understory composed of lichen, moss and shrub in various proportions.

Each test site was located within the extents of one of the three QuickBird images, which provided areal coverage
ranging from 90 to 150 km2. QB panchromatic (PAN) and multispectral (MS) images were acquired during mid-
summer, under clear-sky conditions and with similar sun/sensor-viewing geometry (Table 1). The MS image (blue,
green, red and near-infrared bands) with 2.4 m resolution was fused with the PAN image with 0.6m using the
Pansharpening algorithm implemented in PCI Geomatica V8.2 [6] to create the pan-sharpened multi-spectral (PSMS)
images.  PAN and PSMS images were geometrically corrected with a first order polynomial using at least 12 ground
control points with position accuracy within 5m, resulting in an average positional RMSE of 10m.

A total of 108 circular GSP (diameter = 22.56m; area=400m2) were established across the three test sites using a
stratified semi-random sampling design (31 in CH, 49 in RA, and 28 in WA).  GSP centre points were localized using
differential GPS with a precision better than 5m. GSP were selected with the criterion that black spruce and
deciduous trees represented respectively more than 50% and less than 20% of the plot basal area. For each GSP,
diameter at breast height (DBH) was measured for all trees (DBH > 5cm) and in a 4m sub-plot for seedlings (DBH
< 5cm) following the procedures suggested by the Canadian National Forest Inventory [7].  Oven-dry biomass (kg) of
each tree of the plots was calculated from DBH using allometric equations [8] and was summed to obtain plot-level
biomass (t/ha).  GSP biomass ranged from 4.8 t/ha to 163.0 t/ha with a mean value of 50.0 t/ha. Crown closure and
height ranged respectively from 5 to 85% and 0 to 18m.

Table 1. QB image acquisition parameters for each test site

CH RA WA

Date, local time 07/10/2003, 10:43 08/12/2003, 10:57 08/10/2002, 10:35

Sun elevation / azimuth (°) 58.6 / 143.2 49.0 /152.9 51.1 / 157.7
Sensor elevation / azimuth (°) 78.5 / 96.4 76.7 / 172.3 80.4 / 225.6

3  METHOD

The development of a biomass mapping method based on SF was divided into four separate sets of procedures that:
(1) calculated SF using either classification (pixel-based) or segmentation and classification (object-based)
algorithms, (ii) generated, for each study site, a linear regression between SF and GSP biomass using several
combinations of method parameters towards defining the best options, (iii) calculated a global linear regression
applicable for all sites using the best options, and (iv) mapped biomass as a grid layer for each site using the global
regression.

Figure 1: Location of the three test
sites within two ecozones of
Northeastern Canada
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First, eCognition software [9] was applied to create spatial objects including tree shadows (TS).  Five
segmentation scale factors were tested: 0, 5, 10, 20, and 40, where a scale of 0 implies no segmentation (pixel-based)
and an increasing scale factor produced objects of larger dimension.  Binary objects (TS/ non-TS) were generated
from the segmented HSRI by applying a threshold on the mean intensity value.  The suitable threshold to generate TS
was established visually by an analyst.  Reference squares were then aligned with the center of all 108 GSPs and
provided a reference area from which SF (shadow area / reference square area) was calculated using the TS bitmap
layer (Fig. 2).  Several reference square sizes were tested (10, 30, 60, and 90m).  SF values were normalized to a
common sun-terrain-sensor viewing geometry to account for differences in topography, as well as sun illumination
and sensor viewing angles.

Second, linear regressions between normalized SF and GSP biomass were calculated for each of the three test
sites.  Several options were tested for a total of 20 possible combinations: 5 segmentation scales and 4 reference
square sizes.  The regressions were calculated using a 70% random selection of GSP, (GSPcal).  The remaining 30% of
GSP (GSPval) was used for validation. The most suited combination of option was identified as the one for which the
regression maximised R_ value and minimized RMSE and bias values. A comparison of the R_ values obtained using
respectively QB PAN and PSMS images was also done for the three test sites.

Third, a global linear regression was calculated from GSPcal of the three sites.  Several statistical tests were
applied to evaluate if significant differences existed between the three local regressions and the global linear
regression.  The analysis of covariance was performed to assess if the local linear regressions were significantly
different.  The normality of residuals was tested with the Shapiro-Wilk test and the homogeneity of variance was
tested visually using a graph of residuals.  In addition, the Fisher test was used to evaluate the coincidence and
parallelism hypothesis of the regression equations with a threshold of ∀=0.05 [10] using GSPcal data set. Finally,
overall RMSE and bias values were calculated using the pooled set of GSPval.

Fourth, the global regression using the most suited options was used to map biomass over the extent of the three
test sites.  Post-classification was used to remove false TS such as water bodies, which can have similar intensity
values.  Then, for each cell of a grid layer (size given by the most suited reference area), we calculated SF,
normalized it and estimated biomass using the global regression equation.  We finally assessed the overall precision
of the three maps using the pooled GSPval set. The resulting map was a grid layer where each cell, except water
bodies, had a biomass value.

4  RESULTS AND DISCUSSION

Similar R_ results were obtained using either QB PAN or QB PSMS images and QB PAN images were used and are
presented in the following steps. In terms of method parameters, the best results were found with the smaller scale
factors (0 to 10) and reference square sizes (10 to 30m) (Table 2a, b and c).  Such reference square size corresponds
with the approximate size of the GSP. Considering practical issues, a scale factor of 0 (pixel-based approach) and a
reference square size of 30m (Landsat resolution) were selected as the most suited options for input parameters.  The
three site-specific linear regressions (Bio = a + b*SF) using these input parameters are shown in Fig. 3a (dotted lines)
with the related statistics reported in Table 3.  High R2 values were obtained (85-88%) except for the WA site (44%).
The poorer result for the WA site was partly explained by the predominance of GSP with low biomass values, the
uneven-aged forest stand structure, and the more rugged relief resulting in higher GSP-HRSI co-registration errors
and additional variance of the SF values.  Error statistics were similar between the three sites: RMSE from 14 to 18
t/ha and all absolute bias values were below 7.5 t/ha.

All statistical tests confirmed that the three linear regressions were similar to the global regression with a p-
value=0.41< F=0.89 for the slope and p-value=0.12 < F=2.14 for the intercept.  The global linear regression using a
pooled dataset of all GSPcal (Fig. 3a) resulted in a RMSE value of 15.29 t/ha with a relative error around 30%
considering a mean biomass of 50 t/ha, and a low bias of 4.18 t/ha. Biomass estimated from the global regression
corresponded well with biomass measured at GSPval for the full range of conditions sampled (Fig. 3b).

Error assessment of the mapped biomass for the three test sites gave an overall RMSE of 9.97 t/ha and a low bias
of 4.66 t/ha. Despite the low number of GSP used for validation, the mapped biomass was spatially consistent: high
biomass in valleys where the soil is richer, low biomass in wetlands or on dry hill tops exposed to strong winds
(Fig. 4).

Several factors affecting the accuracy of the biomass map were explored.  First, the sensitivity to the
image threshold was tested to assess if significant changes depended on the visual interpretation of an
operator.  We found that a large range of threshold values could be applied without changing significantly
the regression statistics, thus leaving comfortable margins for the manual thresholding step.  We also tested
if separating the calculations for the two main understory types would improve the regressions.  Results did
not show an improvement so no separation of data by understory type was necessary.  However, the
normalization for sun-terrain-sensor viewing geometry improved the results which helped to generalize the
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Table 3.  Local and global linear regressions with intersect A and slope B, and RMSE/bias statistics from GSPcal  and GSPval

GSP set Nb GSPcal A B Adj. R_ Nb GSPval RMSE BIAS

CH 22 1.94 211.89 88 % 9 17.30 -2.50
RA 35 6.57 238.92 85 % 14 14.46 6.47
WA 19 16.19 177.40 44 % 9 14.39 7.31

Pooled 76 7.36 215.13 82 % 32 15.29 4.18

Table 2 A, B and C. Statistics from the linear regression (R2) and the comparison with GCPval (RMSE and bias) for the potential
values of scale factor and reference square sizes tested for the CH, RA and WA test sites.
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Figure 4. Zoom of the biomass map derived from shadow fraction for RA test-site.
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Figure 3.  A) Linear regressions calibrated using 76 GSPcal (dotted lines: site-specific
regressions; thick line: global regression); B) estimated vs GSP biomass using remaining 32
GSPval.
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method across the three test sites, especially for the sun elevation angle affecting the length of tree
shadows. Another factor, the co-localization errors between the GSP and QB image, could affect
significantly the results.  Several random shifts of the GSP center position around the real position were
applied and the results from the shifted GSP showed similar variance to the original analysis.  Finally, an
Ikonos image (PAN band with 1m resolution) was tested over an overlapping portion of the WA test site.
All the procedures of the method were applied and led to results comparable to those obtained with QB but
with weaker fits for the regression and higher RMSE and bias.

5   CONCLUSIONS AND PERSPECTIVES
We developed and tested a biomass mapping method based on SF for black spruce stands which are dominant in the
northeastern subarctic forests of Canada.  The optimal results were obtained when a simple visual threshold was
applied to the plain HRSI PAN with no segmentation (scale factor = 0) and with a reference square area of 30m to
calculate the SF.  A global regression used SF as an independent variable to calculate biomass with a R2 = 82%,
RMSE = 15.3 t/ha, and bias = 4.2 t/ha.  The method provided consistent results for black spruce stands with various
understory types, for a GSP biomass range from 0 to 170 t/ha, and for stand density and height up to 85% and 18m
respectively.  Future work will assess the validity domain of the method: (i) over a larger range of stand conditions
(species composition, biomass range, understory type) and relief situations; (ii) using different HRSI types (such as
Ikonos with 1m resolution) and related acquisition parameters; and (iii) for estimating other forest attributes of
interest (e.g. stem volume, basal area, height and crown closure).  Finally, the method is convenient to map above-
ground tree biomass and to supply satellite sample plots (SSP) that can be used as surrogates to GSP.  These two
outcomes provide a base from which biomass values can be scaled up at the regional scale [11].
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