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Reliability on Predicted Values in Regression Analys~s

for Forestry Research

Y. (Jim) I.e.)!

IntrOlluotion

The major objective ot regression analysis in forestry research
is to establish relationships vh1ch make it possible to predict one or more
variables in ten:18 of others. The most obvious and .frequently used regression
equation 1e that of volume on dbh and height (Spurr, 1952). Knowing the
rellabllitT of predicted values for the regression equation is of primary 1m
portance. The correlation coefficient, coefficient of determination and the
standard error of 8st1Jnate are commonly used as criteria in the selection
of regressions. At times, analysis of variance is also used or confidence
limits expressed (Freese, 1964; Walters, 1(67). The critical issue hers is
that while, by using one or all of thess criteria in the selection ot a
regression, \18 might know that the selected regression is better than others,
but we do not know how much better it is in terms of prediction.

In this paper, which is intended tor the forester who is not
statistically orientated, the techniqu8 ot uemining residuals between observed
and predicted Tuu8e is described. The technique ie lllustratad tiret with
hypothetical data and then with actual examplee.

Keth09.s or Examining Residuals

Residuals are calculated &s the n differences:

'"e1 = Ii - Ii

i =1, 2, J, •••• , n

Where n = the number of observations

si = The residual value

Ii = an observed value

11 Research Scientist, Forest Research Laboratory, 506 West Burnside Road,
Victoria, B.C.
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the corresponding predicted values obtained by use of U,e
fitted regression.

A The residuals are subsequently plotted against the corresponding
Yi ·

Accordiflb to Draper and 8m!th (1966), shouJ d the "pl otting" prove
to be similar to that shown 1n FifUre la, 1.e., a uhorizontal band ll with e.
constant variance, no abnonnaUty is indicated. by tbe use of the regression.
The predicted values vould appear not to be invalidated. The narrower the
IIhorizontal band" J tt.e greater the reliability of the predicted values.

Should tl,e plotting be similar to that sho\,'D. in Figure lb, i.e.,
Il\ledge band" , the variance 18 not constant and the predicted val'l:.es are less
reliable. Draper and Smith (1%6) state tt..at before determining a regression,
the use of weiGhted least squares or a transro~£tion of the observed values
Yi is needed.

Where the plotting is similar to that sho\ffi in Figure 1c, i.E..,
Ildescending bnnd ll , an error in analysis is apparent. Les8 re~iability can
be placed uJX>n the predicted values tlJan tl at shown in 1a. Departure from
the fitted regr~ssion 1s such that positive residuals correspond to lo~ pre
dicted values (Yi'S) and negative residuals correspond to high predicted vah,es.
n.e scatter pattern can be caused by incorrectly om tting a 13 term in tl e
regression analysis.

Should the resultant plot be similar to that shown in Fieure ld,
i.e., llarch bandit, tLe regression Itodel is inadequate and little reliab11ity
can be placed uJX>n U,e predicted values. In this case, an extra square terti,
an extra cross-product tem, or a tre.nsfo:re.ation on the observed va:!.ue Ii is
required in the regression analysis (Draper and Smith, 19(6).

Other procedures, in addition to the plotting of residuals, nay
also be useful:

(a) If error is suspected in tile sau.pling process, tben it is
desirable to increase tile s&J;!ple size or to discard the sample entirely and
get one Jr>Qre representative of tte JX>pulation.

(b) Are there systematic patterns in tl e variation of residuals?
Is there a grouping of many JX>slt1ve residuals togetter, and of m8.IlY negative
residuals togetler? If so, this would suggest ttat t~e regression function
fitted is inadequate.

(c) ~hether tte variation of the residuals varies as the independent
variable or variables vary, and if so, bow? If t1e variation of t.~ residuals
is not homogeneous, ti'len onc may need to decide whetter to &ll.ke 8 trana
fonr.ation of tbe variable or variables in order to achieve such homogeni ty of
residual variation, or wr.ether to use a weighted regression.



a

b

FIGURE 1. Scatter pattern, of re,;duol, (Draper and S",;th. 1966 )
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(d) Should tte outliers 8JllOng the residuals be rejected? As
a general rule, outliers should be rejected if they can be traced to causes
such as error in making or recording the observations, otheNise careful
investigation 1s needed (Draper and Smith, 1%6).

It shouJd be noted tl:at tl:ere may be complications in the tect"ln1que
of exar.1n1og residuals when muJ tiple regression, polynomial regression or
multi-population cases are involved. In many cases, the plotting of basic
data superimposed on the regression line 1s also useful.

Examples

In the following, tte technique of examining residuals 1s il
lustrated and dwonstre.ted first with hypothetical examples and then with
actual examples.

Part I Hypothetical examples

For each of the 4 sets of hypothetical data, regressions were fitted.
Four regressions were obtained and called "original regressions II (Regressions
1, 2, :3 and 4 in Table l). Residuals for these 4 "original regressions" were
calculated and tben plotted against the predicted values. Figure 2a, 2b, 2c
and 2d shO\l the residual Bcstter patterns. These 4 patterns were strikingly
sitd1ar to the scatter patterns provided by Draper and Smith (l966) and st.O\ffi
in Figure 1. According to the nethods described previously, improved re
eresslons over the orieinal oncs were made, and discussed BS followsl

Findings:

(1) Horizontal baM

The plotting of residuals against the predicted V81~es from
regression 1 sho....s a 11 horizontal bandll (Figure 2a). Variances of tte residua) s
are hOrlogeneous with errers wi thin!. 3 units. Altl.ough no abnonral1 ty 1s
indicated by the use of the regression, the reliability of the predicted
values depends upon the narrO\l1le88 of the "hori zontal band ll

•

(2) \ledge band

In Figure 2b, an increasing scatter of residuals with increasing
predicted Y was observed. This scatter pattern is exactly the sau,e as that
of Figure lb. According to Draper and Smith (1966), an improved regression
can be obtained Qy the use of weighted least squares or a transformation of
observed values Y before determining tt.e regression. The following regression
models 'Jere tested by using standard sill'ple and stepv.1.se fONard mu1 tiple
regression programs and subsequent residuals vere plotted.

log Y =8 + hI - - - 
log Y:: s + bX + cX2
log Y :: a + bX + cX2 + dX3

- - (8)
- (9)

- - -(10)



Table 1. Hypothetical Examples for Four Scatter Patterns

Original liDproved

Y = 2.m • 1.61J I - - - - - - (1)

N =JO, r =0.80J**, ~ =0.645, SEE =5.J5

Y =2.800 • 1.648 1 - - - - - - (2)

N=JO, r =0.8J2**, ~ =0.692, SEE =4.92

Y = J.042 1 - - - - - - - - - - (J)

N =30, r =0.988**, i =0.976, S~ =1.Jl

y = 5.421 • 1.568 1 - - - - - - (4)

N=30, r =0.877**, r2 =0.769, SE" =J.84-
•• = Significent at l~ level

log Y=0.702 • 0.05J5 1 - - - - (5)

N=JO, r =0.857**, ~= 0.7J4, SEE =0.14

Y= 14.269 • 1.6J9 1 - - - - - - (6)

N=JO, r =0.988**, ~ =0.976, SEE =1.15

y = 4.96JI - 0.2512 • 0.002JIJ - J.21 - (7) '"

N=JO, r =0.976**, r 2 =0.952, SEE =1.82



fiGURE 2 R~sod\.lOls ploUed ogcllnsl pred,(Cled va.lue for hyporhetlcal e.omples
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Y = a + b (logX) - - - - - - - (11)
Y = a + b (logX)3 - - - - - - - - - (12)
Y = a + b (logX) + c (logX}2 - (13)
Y = a + b (logX) + c (logX)3 - - - - (14)

log Y = a + b (logX) - - - - - - - - - - - - - - - - (15)
log Y =a + b (logX) + c (logX)2 - - - - - J - - - - (16)
log Y = a + b (logX) + c (logX)2 + d (logX) - - - - (17)

Since the variance of residuals appeared to be proportional to
the value of X, the velght of "Wi = 1 II was also introduced in tt.e regression

~
analysis. The regression \las calculated (Regression 18) and Bubssquent
residuale plotted.

Y=3.201 + 1.596X - - - - - - - - - - - - - - - - - (18)

The best fitting among the above tested regressions vas found to
be regression 5:

log Y =0.702 + 0.0532X - - - - - - - - - - - - - - (5)

F'1i:ure 28 stoW's the plotting of the residuals. Improven:ent by
the transfon-.ation process 1s obviously negligible. Perhaps, errors vere
involved in tIle 88Itpling process in this case. It is best to discard the
sample completely and get one ~ore representative of tte population or increase
the sample size.

(3) Desccndiw; band

By forcing a regression through the origin, the plottiDb of
residuals against predicted values often exhiclts a descending or ascending
bend (Figure 2c). By introducing a constant term in regression analysis,
the plotting of residuals er,ows a perfect 11horizontal band" \dtr. variation
of residuals ~ounting only to ~ 2 unite. Hence the predicted vaJues become
more reliable.

<4l Arch baM

The !larch band ll scatter pattern is demonstrated by the plotting
of residuals for regression 4. Several regression models were fitted. The
best improved model was regression 7:

Y = 4.963X - 0.250X< + 0.0023X3 - 3.21 - - - - - - - (7)

The axtn square and ct:.bic tems included in the regression analysis greatly
improved the f1 tting of basic data to a regression. This is den>onstrated
by tlJe plotting of residuals as sho\ltl in Figure 2g. An approximate h}'>.orizonte.l
be.nd" is obtained with variances an:ounting only to .:!:. 3 units.
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Part II Actual examples

It is diffic:ult to find actual forestry date vhich shov patterns
similar to the 4 scatter patterns centioned above. Three regressions (19,
20 and 21 in Table 2) selected from a simulated grovtb ll>Odel (Lee, 1967)
are used to illustrate lIhorizontaP' J "ascending or descend1ng ll and "'Wedge"
bands. No example is available from the source quoted for illustration of
the "arch band tl scatter pattern shown in Figure Id.

From regression 19, the residuals of crovr:. width \lere calculated
and plotted against the predicted crovn vidth (Figure ). It ie noted that
the residuals fo!)o\J the scatter pattern of a very narrow IIvedge band",
\lhich is almost "horizontal n, with variation in residuals amounting to
approximately 1:. 5 feet. No great abnomality 1s indicated.

From regression 20, the residuals of tree heieht were determined
and plotted in FiCUre 4. An increasing scatter of residuals wi tb tree height
is demonstrated (Figure 4). The scatter pattern appears to follov that of
Fieure lb and lc, i.e., "'oIedge ll and -ascending or descending" bands. The
reliability of the predicted tree height is questionable, although the cor
relation coefficient is Hghly significant.

In order to improve regression 20, the use of veighted least square,
extra square term, extra cross-product term, and/or the transforeation on
the observed value of Ii vere introduced. New regressions \lere then
calculated and sUbseqnent residuals plotted. The best 8Jl:ong these new
regressions vas found to be regression 22.

Ht (ft.) =0.12) + 8.459 (dbh. in.) - 0.00826 (dbt. in.») - - - «2)

N = 20), R = 0.872, a2 = 0.761, SES = 1).7 feet

Figure 5 sbo\ls the plotting of residuals for this regression. From Figures
4 and 5, it 1s apparent that no improvement has been obtained.

From regression 21, the residuals of cc.blc volUD,e per tree plotted
against the predicted volume (Figure 6) shov a very narro\l "..edge band II

'Which is almost "horizontal". This indicates that the predicted tree volume
should be quite reliable. Ho'Wever, Figure 6 indicates a slight under
estimate of vol~e for larger trees.

Discussion

The foregoing indicates 1'.0'01 tecr.n1ques for examining residuals can
be used to assess the reliab1li~ of the predicted parameter. The following
is a discussion of hO'ol the techniques cen be used to improve the process of
selecting best fitted regression for a set of data, in addition to the empJoy
II cnt of such criteria as tr.e correlation coefficient, coefficient Gf deteru.ln
aUon, standard error of estin.ate, analysis of variance, and confidence limits.



Table 2~ Actual exanples
---------------------_._--------
CW (ft.) = 2.860 • 1.629 (dbh,

N = 169 r :: O~483'"

in.) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

r
2 =0.233 SEE =2.8 ft.

(19)

Rt (ft.) = 10.491 (dbh, in.)

N = 203 R =0.877"

- 0.244 (dbh, in.)2 • 0.0384 (SA, sq.ft.) + 10,0 - - - - - - - - - (20)

R2 =0.769 SEE =13.5 ft.

V (inside bark, cu.ft.)/BA

N = 456 r :: 0.939**

(outside bark, sq~ft~)

2R = 0.882

= 0.441 (Rt.ft.) - - - - - - - - - - - - - - (21)

SEE =2.9 ft.

** = Significant at 1% level
I

'"I



FIGURE 3. Residuals of crown width plotted agair'lst predicted crown width.
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FIGURE A. Residuals of heigh't plotted against predicted height.

HI.( ft.)= 10. 49l(dbh, in.) - O· 244 ldbh, in)2 +0.0384 (SA,sq. ft .1- 10.0 ..... (201
.. 2N 203, R= 0.877; R = 0.769, see= 115ft.
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FIGURE6. Residuals of volume per tree plolted ogoinst predicted volume.
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(1) ~relatlQn coefficient (r or a)

Early literature reported correlation coefficients being used
as guides 1n the selection of independent variables to be £1 tted 1n
regression analysis. In recent years, however, tl:e role of the correlation
coefficient has considerably diJDinisred (Freese, 1964.). A regression with
a highly significant correlation coefficient may not necessarily be a
desirable regression. The following pairs of regressions taken from Table
1 illustrate this point.

(a) Regressions 2 and 5 in Table 1

Both regressions are derived from the same data with different
regression models. The correlation coefficients for both regressions are
highly significant (at )~ level). However, the plotting of residuals for
both regressions (Figure 2b and 2e) indicates that the variance of residuals
is not constant. Therefore, the predicted values may be less reliab)e.

(b) Regressions 4 and 7 1n Table-l

Regression 4 haa a correlation coefficient of 0.877 which is signi
ficant at the J% level. Regression 7 has a correlation coefficient of
0.971 which is also highly signiC1cant. Without the plotting of residuals
(.Figure 2d and 2g), it 1s not known how much more accurate the resultant
prediction is by choosing regression 7 over regression 4. Obviously, Figure
2d and 2g show that regression 4 is not a desirable regression at all,
because its scatter pattern of residuals follows the pattern of 61 arch band ll •

(c) Regressions 3 and 6 in Table 1

Both of these regressions are derived from the sarre data and have
the sane highly significant correlation coefficient of 0.988. Bu!.. ..hicb
one of the two regressions should be chosen? The calculation of y'is sliehtly
easier w1 th regression .3 than with regression 6, while tt,e latter has a
slightly smaller standard error of estimate (1.15) a8 compared to that of
reBre••lon 3 (1.31).

By use of the technique of examining residuals, once the residuals
are plotted against the predicted. values for both regressions (Figure 2c and
2f), the following results illllllediately become apparent. Departure from
regression .3 is such that posi tive residuals correspond to low predicted
values, and negative residuals correspond to high predicted values (Figure 2c).
On the other hand, the plotting of residuals for regression 6 shows a
lIhori~ontal band" vi th variation amounting to l8SS than .:!:. 2 un1ts. Obviously,
reeression 6 is tre desirable regression. Tne usefulness of the techn1~ue

of examining residuals 1s apparent.

(2) Coafficlent of determination (.-'1 or ill
The coefficient of determination 1s

of how well a regression fits a set of data.
another commonly used reessure
It represents, in the dependent
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variable Y, the proportion of variation that 1s associated vi tl". the regression
in the independent variable or variables. It 1s [!Ierely tt:e squared value
of the correlation coefficient discussed in (1) above.

(3) Standard error of e.timate (SEE)

The standard error of estimate is the measure of dispersion of
the original observations around the modeL. The question here 15 should ODe

regression be chosen over other regressions because of its relativel,.. sItall
standard. error of est1mate? In most eases, the anS\l8r 1s ye8. But hev tDUci:
smaller should the standard error of estimate be? Undoubtedly onc can find
out he'" much smaller the standard error of estireate should be by working out
a great n.an,y sets of standard errors of estimate for each set of data which
fits the many sets of regression models, and then compare the standard
errors of estimate. But one must ask whether the time spent in wor~~ng out
all these various sets of standard errors of estimate is necessary and
lJorth..,hlle'l

The plotting of residuals would help to n,eke Ue choice. Refer
to regressioDs 3 and 6 again. The difference of 0.16 in standard error of
estic:.ate between tt>ese 2 regressions may not be eignificant, but the plot
tings of residuals certainly indicate that regression 6 (Figure 2f) is a
more reliable predictor than regression J (Figure 2c). The variabili ty
of residuals for regression 6 is certainly much less than that of regression 3.

(4) AnalYs! s of variance

UAna1ysis of variance II in regression analysis is 8. useful tool
in testing the significant difference between a Il'.ax:1mum o.odel and a hypothetical
model (Freese, 1964). However, it does not show pictorially the differences
between the observed and predicted values.

(5) Confidence limit.

A point estimate of a parameter is not very neaningful without
some measure of the possible error in the estimate. For example, if we
compute 95-percent confidence li1'l11. ts for the ILean, tl.ese lim! ts vill include
the population mean unless a 1-in-20 chance has occurred in the sampling
process.

Confidence lind ts can be computed for regression. fut they do
not show the abnormal variability of the residuals. For example, the con
fidence limits for regression 4 (in Table 1) have been calculated and
plotted in Figure 7. It appears that no abnontBl1ty (without tt:e plotting
of basic data) is indicated in Figure 7. Hovever, the plotting of basic
data superimposed on the lines of regression and con~ldence limits indicates
that the regression is inadequate.

~ use of the techn1que of exat.1ning residuals, a clearer pi cttr.re
emerges. The plotting of residuals for the same regression 4 indicates an
IIarch band ll which rteans that the regression model is inadequate, and little
reliability can be placed upon the predicted values. In addition, tr.e



FIGURE 7. Regression 4 with 95- percent confidence limits.
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plotting of confidence lind te for a multlple regression in a graph 1s
not possible (involving multiple regression surfaces), vl:ereas the plotting
of residuals for any regression, simple or multiple, is always possible.

ConclusiQn

It is demonstrated that In addi tieD to the eri teria generally
utilized in the selection of regressions, the technique of examining residuals
between observed and predicted values can be used effectively to indicate
the degree of reliability of the predicted values. ~ providing scatter
patterns of residuals, the tecbn1que can also assist the investigator to
obtain the most significant independent variables in regression analysis
In evaluating his data. Furthertlore, the degree of reliability of a
regression can be more easily understood qy the non-statlstlcally-orientated
forester if residuals are described pictorially.
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