Not for publication

TREE AND SITE CHARACTERISTICS RELATIVE TO PROGRESSIVE BALSAM WOOLLY APHID DAMAGE TO ABIES SPP., BRITISH COLUMBIA 1959-1970

by J. W. E. HARRIS

PACIFIC FOREST RESEARCH CENTRE CANADIAN FORESTRY SERVICE VICTORIA, BRITISH COLUMBIA

INTERNAL REPORT BC-46

DEPARTMENT OF THE ENVIRONMENT OCTOBER, 1973 TREE AND SITE CHARACTERISTICS RELATIVE TO PROGRESSIVE BALSAM WOOLLY APHID DAMAGE TO <u>ABIES</u> SPP., BRITISH COLUMBIA, 1959-1970

ΒY

J.W.E. HARRIS

DEPARTMENT OF THE ENVIRONMENT CANADIAN FORESTRY SERVICE PACIFIC FOREST RESEARCH CENTRE VICTORIA, BRITISH COLUMBIA INTERNAL REPORT BC-46

OCTOBER, 1973

THEE AND SITE CHARACTERTEDS RELATIVE TO PROCRESSIVE BALSA^N ROOLLY APRID DAMAGE TO <u>AB'ES</u>

DEPARTMENT OF THE ENVIRONMENT CANADIAN FOREFTEL LERVICE FACTLLC FOREST PRECARCH COLTER VICTORIA, ARITISH COLUMNIA INTERNAL DEPORT FC-CC

2701 , 2330700

TABLE OF CONTENTS

	Page
INTRODUCTION	1
THE INSECT	1
Distribution Hosts Description, Life History and Habits Damage	1 1 1 3
STUDY METHODS	3
Plot Establishment and Location Infestation Rating of Trees and Plots Analysis of Infestation Data Infestation Related to Tree Characteristics Infestation Changes over Time Infestation Related to Site	3 4 5 7 7 7
RESULTS	7
Infestation Related to Tree Characteristics Tree Diameter, Height and Crown Width Age	7 7 9
Infestation Related to Changes over Time Foliage Loss Tree Mortality	9 14 20
Infestation Related to Stand Characteristics Tree Dominance Site	26 26 26
DISCUSSION AND CONCLUSIONS	26
SUMMARY	31
ACKNOWLEDGMENTS	32
REFERENCES	32
APPENDICES	34

BLE OF CONTENTS.

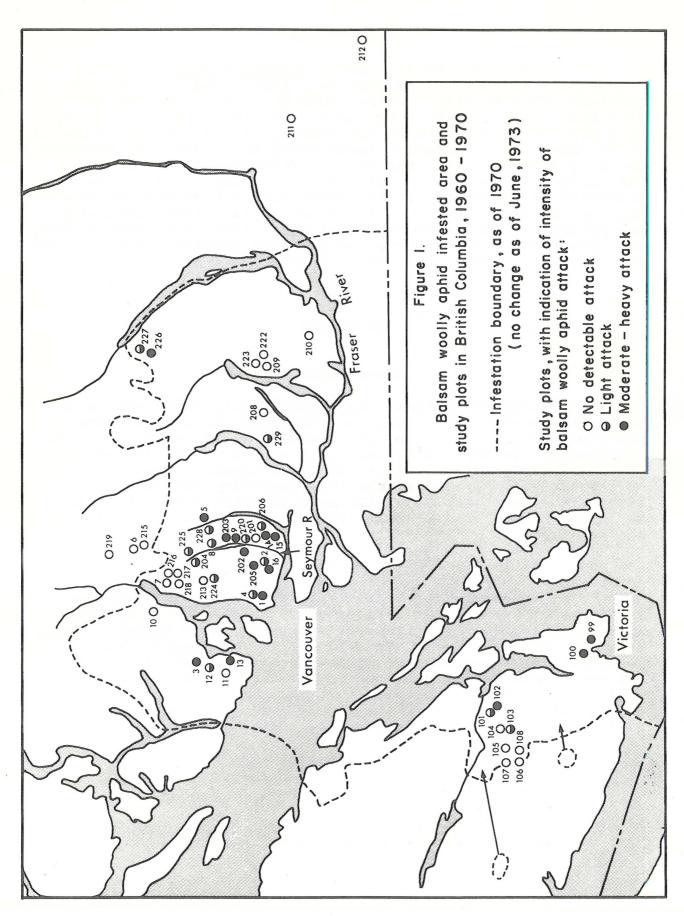
Fage

INTRODUCTION

The balsam woolly aphid, <u>Adelges piceae</u> (Ratzburg) (Homoptera: Adelgidae), an important introduced pest of North American <u>Abies</u> species (Harris, 1968ab), occurs in a wide variety of forest situations in southwestern British Columbia. As part of a program of research on the insect, it was considered useful to document the progressing infestation at a number of localities so as to determine host and site preferences. Although there was extensive work on the epidemiology of the aphid in New Brunswick by Greenbank (1970), there was no knowledge of how this information might apply to the situation in British Columbia. Accordingly, a series of permanent study plots were established throughout the infested area and examined annually or biannually over a 12-year period; the observations are summarized here.

THE INSECT

Distribution


In North America, the balsam woolly aphid occurs on the east coast from the Maritime Provinces and Quebec south to North Carolina, and on the west coast from British Columbia to California. In British Columbia, it occurs in the southwest corner of the province (Figure 1), with heaviest damage occurring near Vancouver, where the aphid was probably introduced. It was first discovered in British Columbia in 1958, although it is believed to have been present in small numbers at least 20 years previously.

Hosts

In eastern North America, <u>Abies</u> <u>balsamea</u> (Linnaeus) is the common, severely infested host. In the west, amabilis fir (<u>Abies amabilis</u> (Douglas) Forbes), grand fir (<u>Abies grandis</u> (Douglas) Lindley) and alpine fir (<u>Abies lasiocarpa</u> (Hooker) Nuttall) are attacked. In British Columbia, amabilis fir is the most commonly attacked species. Grand fir seems more resistant to damage, but alpine fir is highly susceptible and is attacked in several of the few localities where the range of this host is within the infested area.

Description, Life History and Habits

The biology of the balsam woolly aphid has been studied in some detail by several workers, notably Balch (1952) in eastern Canada, Mitchell et al. (1961) in the Pacific Northwest States, and McMullen and Skovsgaard (1972) in British Columbia.

-2-

The pest is a tiny sucking insect occurring, sometimes in tremendous numbers, on the bark of the bole and branches. Individuals secrete a protective covering of white, waxy "wool" which makes them visible on the bark, particularly when in large numbers. Dispersal of this wingless pest is by wind in the egg and first-instar crawler stage. Only females are known. When these settle by chance on stem or branches of an <u>Abies</u>, they may become established on the bark, inserting feeding stylets and remaining there for the rest of their lives. There are two generations per year in British Columbia, although a third generation may become established (McMullen and Skovsgaard, 1972). A small number of native predators attack the balsam woolly aphid, but they do not appear to be a significant control factor (Clark et al., 1971).

Damage

In an infested stand, most trees have at least a small aphid population scattered throughout the crown, but the aphid is difficult to detect unless the infestation increases to the point where damage is evident. Crown attack results in branch swellings or "gout", causing sporadic but persistent mortality in a stand, and probably results in significant growth loss to affected trees.

When conditions on the bole, or weather, are favorable, large numbers may build up, giving a whitish appearance to the stem. Heavy "stem attack" may kill grand fir over a period of 5-10 years, or the attack may disappear and the trees recover. Amabilis fir is frequently killed less than 5 years after heavy attack, but may also recover. Alpine fir usually dies in the first year of attack.

The amount of damage within the infestation zone varies markedly; some areas are apparently free of aphid, whereas others suffer appreciable mortality. Areas of heaviest damage change with time, and are generally those with significant numbers of mature and overmature <u>Abies</u>; however, trees down to seedling size are attacked.

STUDY METHODS

Plot Establishment and Location

Beginning in 1959, study plots were established throughout the area infested by balsam woolly aphid (Figure 1) (Appendices I-A and I-B). The principal criteria for selection of plot locations were that:

1) they be within the infestation boundaries, either infested or uninfested, or just beyond the edge of the infestation, with imminent chance of attack;

there be a range of age, diameter and height;
 there be a range of sites.

In addition, locations were favored that (a) contained reasonable compact groups of <u>Abies</u> suitable for convenient examination, (b) were readily accessible, and (c) had reasonable assurance that no logging would take place in the near future.

The majority of plots were established in 1961 and 1966, although some were set up in other years up to 1969. There were 52 plots, ranging in size from 0.1 to 2.8 acres. They included 26 to 610 trees each and, at the time of establishment, contained 5,791 trees (Appendix I-B). Plots established from 1959-65 comprised 50 randomly selected trees at a locality, but most of the subsequent plots included about 100 trees. Some trees subsequently were felled for detailed study, or were lost during road building, power-line construction or logging; in 1970, 3,659 trees were being observed. All three <u>Abies</u> species were represented; the most numerous was <u>A</u>. <u>amabilis</u>. Elevations ranged from 100 - 4,800 feet.

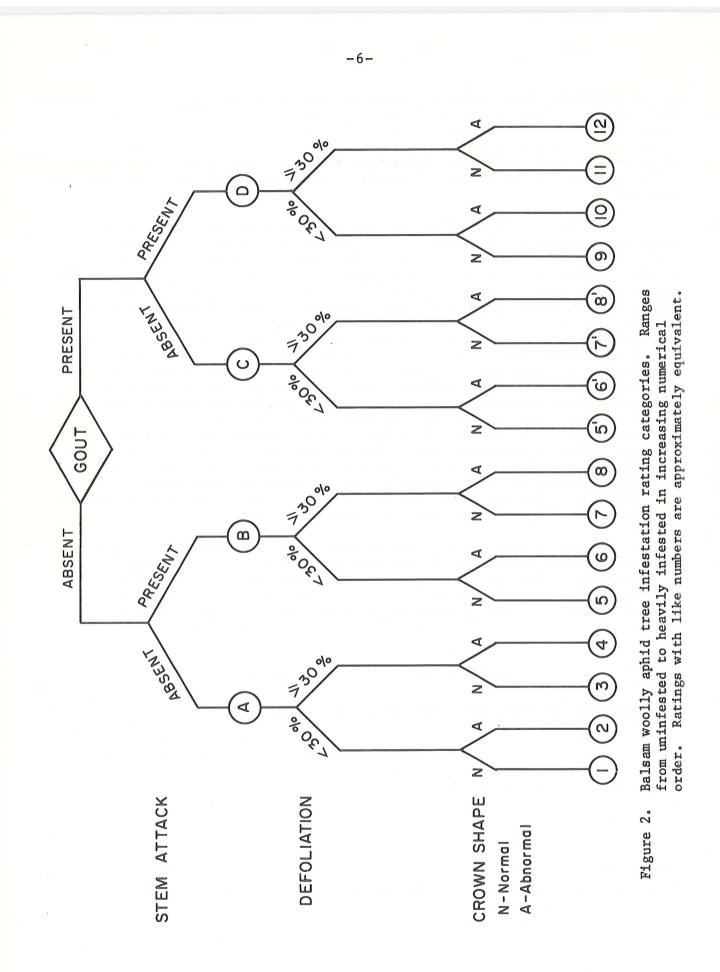
Tree-size data, including diameter at breast height (dbh), height (ht), age (of representative sample trees), widest crown width (cw) and dominance or crown class (cc), were collected once.

Infestation Rating of Trees and Plots

Balsam woolly aphid infestation data were recorded on individual trees at least once every 2 years, using four factors expressing the tree's general health or reaction to aphid attack: (1) stem attack, and (2) gout are the principal, direct symptoms of aphid population size; (3) per cent needle loss (or failure to grow new foliage normally) is one result of aphid feeding; (4) persistent attack often results in a broken, bent, bunched or otherwise malformed top; therefore, leader shape was recorded. Gout, needle loss and abnormal crown shape become evident several years after heavy attack. Stem attack is the most transient sign or symptom of infestation, although evidence (i.e. old wool) may remain several years after stem attack has declined. When only a trace of living aphid remained on the stem, the tree was considered to have recovered. Nevertheless, with periodic examinations intended, these four data provided the best indication of tree condition that could be collected.

A major source of error was in the assessment of gout injury, where swellings at branch nodes, often high in the crown, would be more or less visible, depending upon chance, experience and perseverence of the observers, and on lighting conditions, as affected by crown closure and weather. Gout could be obscured by lower branches, or could be confused with cones, lichens and other deformities by a ground observer. Tree fellings showed that gout is almost invariably widespread in an infested area; a positive record really means extensive or appreciable swellings are present, while a negative record in infested areas does not rule out light infestation. However, it is assumed that correct observations on individual trees were made often enough to offset errors that might have occurred. Records of no gout, when it in fact might be there, and particularly of disappearing gout, are most susceptible to error; gout damage can actually disappear only as the tree "over-grows" this damage. Stem attack, however, can disappear in a single season.

The trees were rated for infestation and damage by combining the four factors. Stem attack and gout were the primary criteria, and one rating system was based on these alone (A-D) (Figure 2). A secondary system, also including defoliation and crown shape ratings, provided a total of 16 categories. The primary ratings ranged from uninfested (A) to heavily infested (D), with B and C considered intermediate and equivalent to each other. The secondary system was from 1-12 in increasing order of infestation, with the same number (e.g. 5 and 5') indicating equivalent ratings (total of 16) because there is no reason to believe that either gout or stem attack is more significant than the other. Data could be collected faster for the first system, but the second included additional factors worth examining in some cases. Rating A (1-4) indicates current nonsusceptibility; abnormalities may be due to past attack or other causes. Ratings B and C (5-8 and 5'-8') could indicate less susceptibility, or an earlier point in time of infestation development. Rating D (9-12) indicates definite attack or infestation, with significant damage likely to result.


The plots were grouped into three categories $\frac{1}{}$, according to a broad estimate of the degree of balsam woolly aphid infestation. One group consisted of plots with trees showing no signs of infestation up to the present (2,415 trees); the second group was designated as lightly infested (912 trees), and the third contained moderate to heavily infested plots, (1,812 trees).

Analysis of Infestation Data

Infestation Related to Tree Characteristics

Data were first examined to see if aphid incidence was related to any of the easily measurable tree characteristics. Maximum, minimum and average dbh, height, crown width and cw/dbh were calculated for each infestation rating for trees in each of the three categories of plots. Also, the trees in each tree rating were tallied by dbh, ht, cw and crown class. Crown width and the cw/dbh ratio mentioned above could vary with stand density

 $\frac{1}{}$ Categories are based on personal judgment, and are overall estimates based on numbers of trees infested and on intensity of infestation on individual trees.

•

•

(Smith et al., 1961), although this has not been demonstrated with <u>Abies</u> species. Trees in a dense stand should have a smaller cw/dbh ratio than those in more open-growing stands. The aphid develops best in a moderately open stand, or along stand edges where there is some protection from intense sunlight. Stocking affects aphid incidence because of the aphid's wind dispersal within a stand and because of the effect of stocking on microclimate and, therefore, on aphid development.

Infestation Changesover Time

A second part of the study involved observing changes in infestation that occurred during the period 1959 to 1970. Changes within the four major and 12 secondary ratings were examined. Further, because feeding in tree crowns resulted in gradual needle loss and subsequent failure to refoliate, such thinning of the foliage was used as a measure of declining tree health. The ultimate damage, of course, occurred when some trees died.

Infestation Related to Site

A third factor studied was the relationship of tree infestation and damage intensification to site. This was investigated, using the plant association classification of Krajina (1969) and Eis (1962). Three other site factors were measured for each plot; namely elevation, aspect and tree species composition.

Amabilis fir occurs in the wetter parts of the Coastal Western Hemlock Zone in the following associations. The Vaccinium-Moss association (Figure 3a) (Eis, 1962) (amabilis firwestern or mountain hemlock associations (Krajina, 1969)) occurs at higher, drier elevations, while the Blechnum or deer fernwestern hemlock association (Figure 3b) occurs at lower elevations and is wet but well drained. The Ribes-Oplopanax association of Eis and devil's club-Sitka spruce site of Krajina are gravelly, very well-drained, good sites, tending to lower elevations (Figure 3c). Transitional situations occur frequently. Grand fir is found principally in the wetter parts of the Coastal Douglas-fir Zone in two associations, moss and swordfern (Krajina, 1969). Little is known about alpine fir sites (Figure 3d).

RESULTS

Infestation Related to Tree Characteristics

Tree Diameter, Height and Crown Width

Tree diameter, height, crown width and cw/dbh measurements were compared with annual infestation ratings (A, B, C

- 7 -

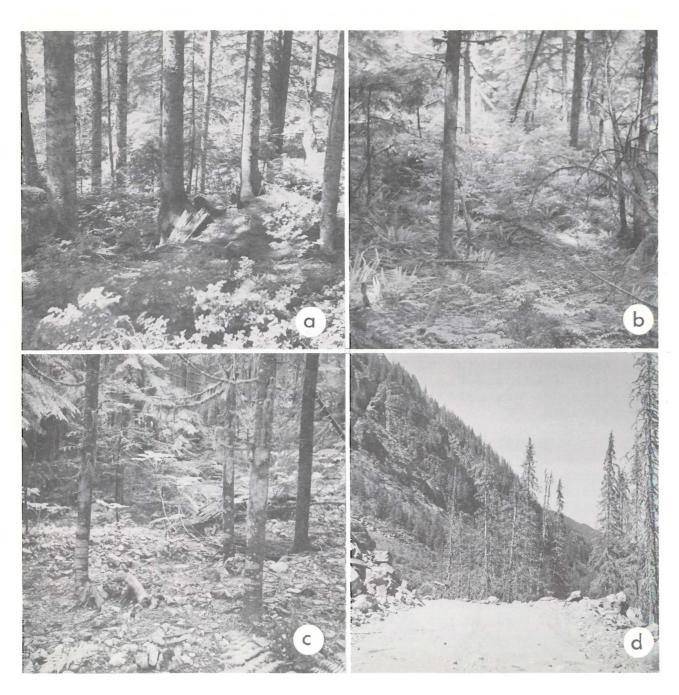


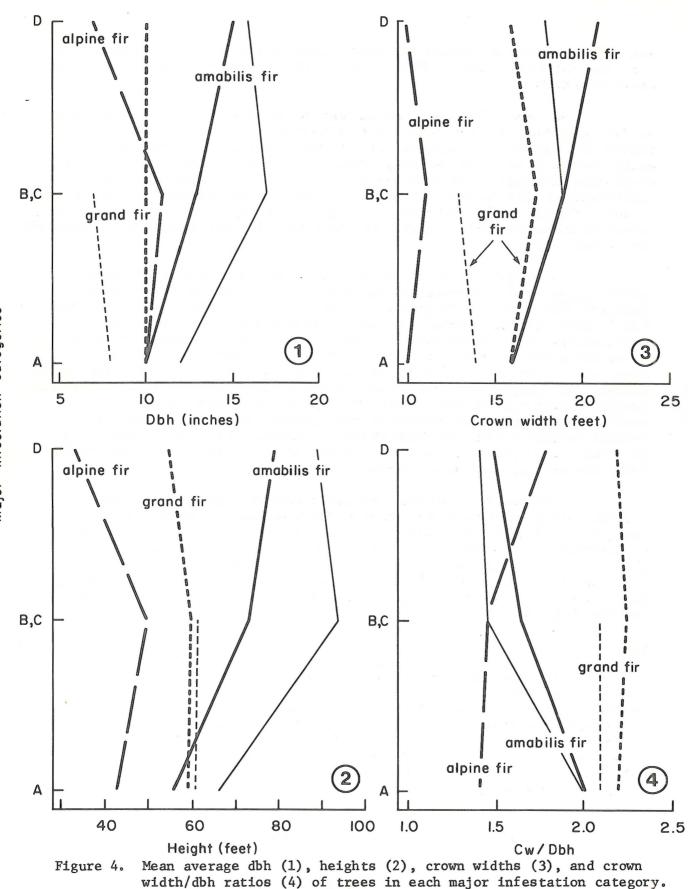
Figure 3. a-c. Representative amabilis fir sites in Seymour River Valley, near Vancouver.

a, Vaccinium-Moss association. b, Blechnum association. c, Ribes-Oplopanax association.

d. Alpine fir site where trees are growing on rock slides; Tretheway Creek (north of Harrison Lake). Heavy damage at some locations. and D) of trees on infested plots (Appendix II) and summarized for the entire period 1961 to 1970 in Figure 4; average values were plotted.

On amabilis fir, there was some tendency for severity of infestation to increase with diameter, but there was no such trend with grand or alpine fir (Figure 4-1). The situation with respect to tree height (Figure 4-2) and crown width (Figure 4-3) was similar. Cw/dbh ratios increased as amabilis fir infestation decreased, indicating less infestation in a more open stand (Figure 4-4) contrary to expectations; however, alpine fir reacted as expected. Grand fir ratios did not seem to be related to infestation.

Infestation data from representative plots of the three <u>Abies</u> species were summarized by secondary infestation ratings for 2 years (Appendix III). The results with amabilis fir (Table 1) and grand fir again emphasized the considerable variability that existed. Generally, there appeared to be no relationships between tree factors and infestation rating. Tree height on plot 9, for example, seemed contrary to the usual trend, but larger average tree diameter and height did characterize trees suffering greatest damage on plots 13 and 14. On none of the selected amabilis and grand fir plots were there trends evident with cw and cw/dbh. Alpine fir, with rapid kill of almost all plot trees, seemed entirely free of the hoped for tree factor infestation trends.


The major symptoms of infestation, gout and stem attack, were examined separately from other factors. Gout damage was found on trees of all sizes. Stem attack, the more noticeable sign and more rapid tree killer, also affected all sizes of trees (down to 1 inch diameter class) but seemed to favor some; about 70% of the stem attacked amabilis, grand and alpine fir observed were 6-18 inches, 6-18 inches and 2-10 inches dbh, respectively (Figure 5).

Age

Age was determined for only a small proportion of trees on the plots. Of the amabilis fir dated, only 13 trees were suffering from stem attack and these ranged from 30 to 150 years old (Table 2). Gout, however, occurred over almost the entire range of age (30 to 370 years). Grand fir were stem attacked from 36 to 90 years and were gouted from 41 to 140 years. Alpine fir showed stem attack from 91 to 175 years, and gout from 86 to 195 years, the total range examined.

Infestation Related to Changes over Time

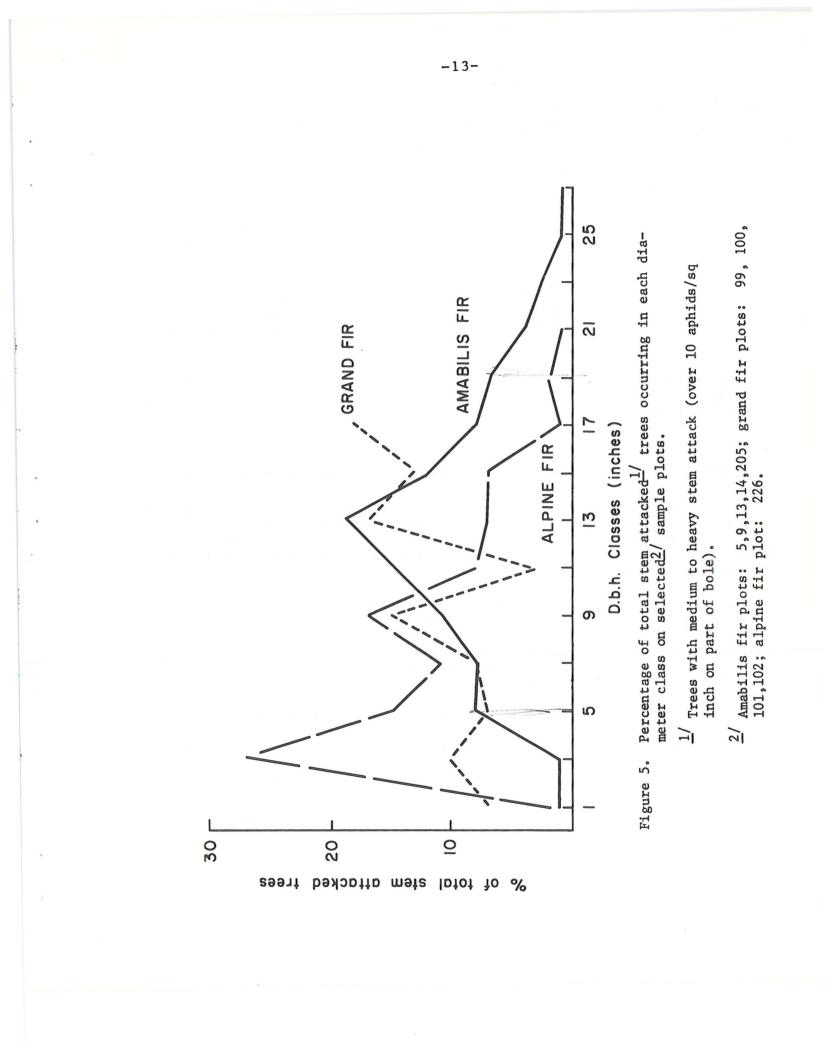
Generally, the percentage of trees changing infestation rating between examinations (usually every 2 years) was less than 10%. Considering amabilis fir, the most common changes

-10-

A-D, uninfested to heavily infested; B and C are approximately equivalent. Lightly infested plots are represented by thin graph lines, heavily infested ones by thick lines.

Major infestation categories

Table 1.	Infestation rating categories 1/ having the highest average dbh, ht,
	cw and cw/dbh in three representative amabilis fir sample plots (see Appendix III).


9 965	1970	<u> </u>		1	Ц.
	1970	1066	13		T
		1900	1970	1965	1969
22/	51	11	71	71	5,8'
2	5"	81	7"	7 *	5
2	3,5'	7'	5',7'	7 *	5
1	1	11	61	81	2
	2	2 5' 2 3,5' 1 1	$\frac{2}{2} \qquad 5' \qquad 8'$ $\frac{2}{2} \qquad 3,5' \qquad 7'$ $\frac{1}{2} \qquad 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\frac{1}{1-12}$, uninfested to heavy; ratings with like numbers are equivalent.

2/ Underlined ratings are apparently uninfested.

										kq s
		54	% of trees	12	19		i n			
Age class	Stem attack only	Gout only	Stem attack & gout	tack gout	10	100	Unat	Unattacked	ΗĞΨ	Total no. of trees
Amabilis f	fir				2			01		Sides
31-50 51-100 101-150 151-200	44	32 22 18 18	<u>н</u> 5			18.	Ĺ1	64 68 82 82		25 180 1197 112
201-250 251-300 301-350 351-485		16 27 6					12	84 73 94		22 18 18
Grand fir										
31-50 51-100 101-150	15	3 8 8 3 5 8 3 5 8	2 7				23	60 54 62		15 46 8
Alpine fir										
51-100 101-150 151-200	11 7	50 56 73	50 33 13					7		2 15

- 12 -

in major infestation category were from A (uninfested) to C (gouted, but no stem attack), but some changes from A to D (gout and stem attack) and from A to B (stem attack but not gouted) also occurred, as did notable changes in the reverse direction, from gouted to non-gouted and from stem attacked to uninfested.

	Stem	attack	is the	most easi	ly detectable	e sign of
attack.	Some	e of th	e more	pronounced	changes were	as follows:

Years	Per cent tre involved	es Stem attack appearing (+) or disappearing (-)
1965-1966	5	_
1966-1967	5	+
1966-1968	5	-
1967-1969	14	=
1968-1969	18	+
1968-1970	7	8
1969-1970	17	=

The most significant changes are summarized in Table 3. Changes in amabilis fir were most numerous in 1964-1965 when 27% of the trees became gouted, and in 1965-1966 and 1967-1969 when, in each case, 22% of the trees examined no longer showed gout previously recorded.

In grand fir, the most common change was from stem attack to unattacked (Table 4). The largest single change was in 1965-66, when stem attack disappeared from 15% of the total trees on the plots. Grand fir recovered more readily from damage than amabilis fir; changes in the reverse direction, however, were still significant.

Alpine fir showed rapid changes, indicating that the aphid had a very marked effect on the stand (Table 5). In the first year of examination, only traces of aphid were found on the one infested plot (133 trees) sampled. By the second year, most of the trees were undergoing heavy attack. In 1969 and 1970, the number of living trees had dropped sharply and the damage continued. Recovery of alpine fir was the exception; in the second year of examination, four trees previously rated as gouted were not so rated again, but in subsequent years, all trees showed significant progressive damage.

Foliage Loss

Thinning of crowns due to balsam woolly aphid feeding generally increased as time passed. Average percentage needle loss was negligible for trees on uninfested plots, but increased to nearly 50% on some lightly infested amabilis fir plots (Figure 6)

		Major ra	ting syste		Se	condary	rating sys	$tem^{2/2}$
Year change	Total no. of trees	Rating change	No. of trees changing rating	% trees changing	Total no. of trees		No. of	% trees changing rating
61–62	328	C-A <u>A-C</u> 3/	26 17	8 5		A		07-69
62–63	367	A-C	18	5				
63–64	340	<u>A-C</u>	20	6				
64–65	308	$\frac{A-D}{A-C}$ $\frac{A-B}{A-B}$	21 82 18	7 27 6				
65–66	860	C-A B-A <u>A-C</u>	189 45 55	22 5 6	781	6'-1 5'-1 2 -1	62 58 77	8 7 10
66–67	684	C-B C-A A-C	35 86 174	5 13 17	678	5'-1 <u>1 -5'</u> 1 -2	56 65 67	8 10 10
66–68	609	A_C A_B	30 53	5 9	607	1 -2	90	15
67–68	86				86	1 -2	14	16
67–69	671	D_A C_A B_A	44 150 91	7 22 14	669	9 -1 5'-1 5 -1 2 -1	34 88 61 46	5 13 9 7
68-69	98	<u>A-B</u>	17	17	98	2 -6 1 -5 1 -2	8 9 5	8 9 5
66–70	43	C-A A-C	4 6	9 14	43	2 -1 1 -2	5 5	12 12
68–70	632	C-A B-A <u>A-C</u>	36 42 62	6 7 10	627	2 -1	91	15

Table 3. Major changes in yearly infestation ratings on amabilis fir study plots.

Table 3. (Concluded)

		Major ra	ting syste	m ¹ /	Se	condary	rating sys	tem_2/
Year change	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating
69–70	83	B-A	15	17	83	2 -4	7	8

- $\frac{1}{A-D}$ = uninfested to heavy; B and C are equivalent.
- $\frac{2}{1-12}$ = uninfested to heavy; ratings with like numbers are equivalent.
- 3/ Changes from apparently uninfested to definitely infested condition are underlined for emphasis.

		Major ra	ting syste	.m1/	Seco	ondary ra	ting syste	2/
Year change	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating
65-66	254	B-A A-B ³ /	37 20	15 8	151	$\frac{2-6}{2-4}$	10 11	7 7
66–68	291	D-B C-A B-A <u>A-B</u>	13 30 24 20	5 10 8 7	284	3 -2 5'-1 4 -2 2 -1 1 -2	12 16 10 17 14	4 6 4 6 5
68–69	70				70	2 -1	5	7
68–70	193	B-A A-C A-B	22 19 10	11 10 5	193	6 <u>-</u> 2 2 <u>-</u> 1	11 19	6 10

Table 4. Major changes in yearly infestation ratings on grand fir study plots.

 $\underline{l}/A-D$ = uninfested to heavy; B and C are equivalent.

 $\frac{2}{1-12}$ = uninfested to heavy; ratings with like numbers are equivalent.

<u>3</u> Changes from apparently uninfested to definitely infested condition are underlined for emphasis.

5 traes changin	Rating cuang	& trees changing rating	No. No. Press		

A-D is uninteried to beside B and C are equivalent.

9 1-12 - ministen be heavy: rotings with ine numbers are equivalent.

Changes from apparently uninfected to tof nicely infected condition are uniority of for empiresis.

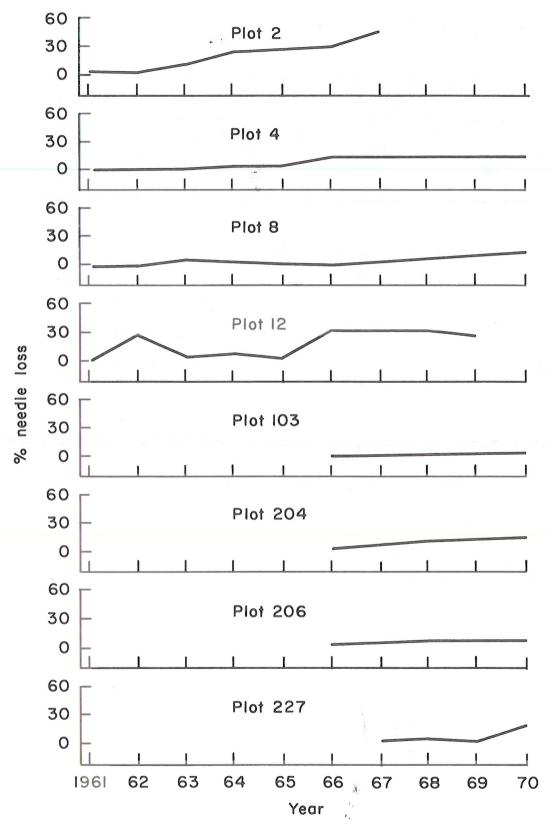

		Major ra	ting syste	em ¹ /	Secon	idary ra	ting syste	2/
Year change	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating	Total no. of trees	Rating change	No. of trees changing rating	% trees changing rating
67–68	133	$\begin{array}{c} C-D\\ B-D\\ \underline{A-D} \\ \underline{A-C} \end{array}$	11 28 39 25	8 21 29 19	133	5 -9 <u>1 -9</u> <u>1 -5</u>	15 24 14	11 18 10
68–69	82	C-D	20	24	82	9 -12 11 -9 5'-11	8 16 9	10 20 11
69–70	82				82	11 -12 9 -12 9 -11	7 5 6	9 6 7

Table 5.	Major changes	in yearly	infestation	ratings	on	alpine	fir	study
	plots.							

 $\underline{l}/A-D$ = uninfested to heavy; B and C are equivalent.

 $\frac{2}{1-12}$ = uninfested to heavy; ratings with like numbers are equivalent.

3/ Changes from apparently uninfested to definitely infested condition are underlined for emphasis.

Average per cent needle loss in balsam woolly aphid long-term study plots in B.C., 1961-1970 (lightly infested amabilis fir).

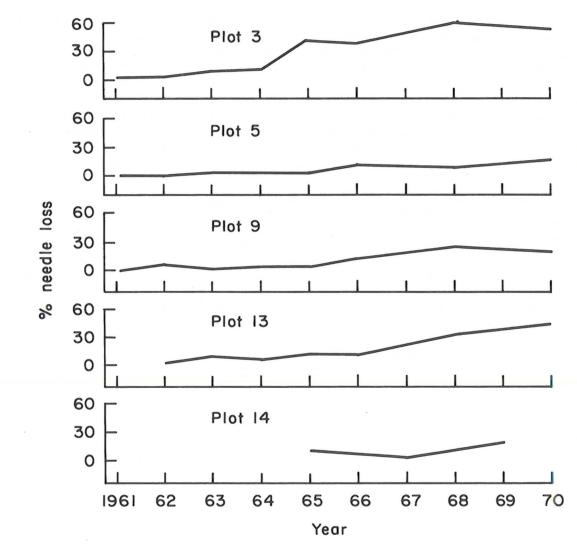


Figure 7. Average per cent needle loss in balsam woolly aphid long-term study plots in B.C., 1961-1970 (moderate-heavily infested amabilis fir).

1

-19-

and to 60% on one moderate-heavily infested plot (Figure 7). However, infested grand fir demonstrated less tendency for needle loss (Figure 8). Trees in the heavily infested alpine fir plot averaged almost 70% defoliation in the final year of examination (Figure 9), while an uninfested plot (plot 212) showed no defoliation.

Tree Mortality

Mortality over 10 years is summarized in Tables 6, 7 and 8, and detailed by plot in Appendix IV and by year in Appendix V. The natural mortality (tree killed/total trees on all plots combined) of amabilis fir on the uninfested plots during 10 years was 3.9% (Table 6, Appendix IV). Mortality credited to the balsam woolly aphid on lightly attacked amabilis fir plots averaged 4.2% while that credited to other natural causes, mostly unknown, was 6.3%. Similarly, moderate-heavily infested amabilis fir plots averaged 12.2% mortality caused by aphid and 11.9% by other causes. Moderate-heavily attacked grand fir suffered 14.4% mortality caused by aphid and 4.1% by other causes (there were no uninfested plots), and alpine fir 63.2% due to aphid. On the infested plot of the latter species there was no mortality clearly attributable to other causes; the uninfested plot exhibited 0.7% mortality.

A second measure of mortality was on an annual basis (Table 7). On uninfested amabilis fir, the natural average annual mortality was 1.2% (Appendix V-A). On lightly attacked plots (Appendix V-B), the average yearly mortality was 1.7% due to aphid (2.1% from other causes), and on heavily attacked plots (Appendix V-C), 4.1% (3.4% from other causes). For heavily attacked plots with grand fir, the average annual mortality was 2.7% from aphid and 1.0% from other causes; for alpine fir, the annual mortality on the infested plot was entirely due to aphid, and averaged 19.4%.

Volume losses were estimated for some of the plots in which the damage seemed heaviest. Significant wood volume losses occurred, with about one-third of the amabilis fir being destroyed by aphid over a 10-year period (Table 8).

Shortly after the aphid was discovered in British Columbia, two plots were established near what is believed to be the first infestation centre; because they were not examined in as much detail as was the main series established later, they were not discussed with the other. They suffered particularly heavy mortality (Table 9): over 12 years, a 57-tree plot on Seymour Mountain lost 84% of the trees to balsam woolly aphid attack, and a plot on Mt. Fromme suffered 66.7% mortality over the same period.

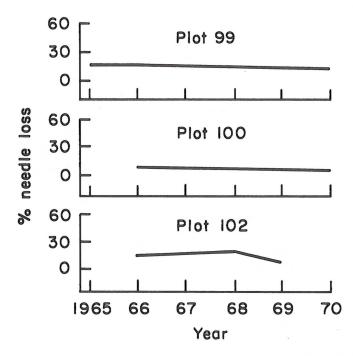


Figure 8. Average per cent needle loss in balsam woolly aphid long-term study plots in B. C., 1965-1970 (moderate to heavily infested grand fir).

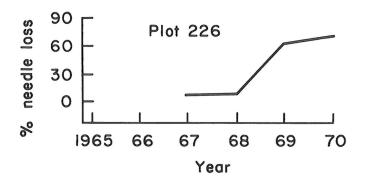


Figure 9. Average per cent needle loss in balsam woolly aphid long-term study plots in B.C., 1965-1970 (moderate to heavily infested alpine fir).

-21-

		-				
Tree species	Intensity of	No. of		Mortalit	y (%)	
	infestation	trees	Cause	d by	Oth	er
*			aph	id	cause	es
			Average	$/ Range^{2/}$	Average	Range
Amabilis fir	uninfested	2,628	0.0	0.0	3.9	0.0-17.4
	light	987	4.2	0.0-38.5	6.3	0.0-18.8
	moderate-heavy	1,319	12.2	0.0-45.0	11.9	0.0-21.1
Grand fir	light	41	0.0	0.0	0.0	0.0
	moderate-heavy	411	14.4	2.3-37.5	4.1	0.0-6.9
Alpine fir	uninfested	147	0.0	Х	0.7	х
	moderate-heavy	144	63.2	х	0.0	х

Table 6. Per cent tree mortality on study plots from 1960-1970.

X = 1 plot only ... no range

- $\frac{1}{1}$ Dead trees in all plots X 100. Total trees in all plots
- $\frac{2}{2}$ Lowest and highest % mortality (2 plots).

Tree specie	es			Intens	sity o	form		M	lortality	(%)
-1				infest			Ca	used b aphid	y	Other causes
Amabilis fi	Lr	90	46	Uninfes Light Moderate		ry S	1820	- 1.7 4.1	Dead fo. of To.of	1.2 2.1 3.4
Grand fir				Uninfes Light Moderate		7 y		- 0.0 2.7		0.0 1.0
Alpine fir				Uninfes Moderate		уy		_ 19.4		0.2
	1020	12	561	100	EX.	11	222	2	CLOGE Mo. 0	- 19 20 -
								sli al lidenA		

Table 7. Average annual per cent tree mortality on study plots from 1960-1970.

	Table	ő	Et) of livi	Ing and	dead trees	Volume (cu ft) of living and dead trees on selected		
			plots, 1961	1961-1970.	1.0 0.2 0.0	1.2 2.1 3.4 -	S) Other causes	1-0891
Tree species	Plot No.	Observation period (years)	Living Volume (cu ft)	Living trees Jume No. of u ft) trees	Caue Volt	by aph No.) tree	Dead trees id 0ther c of Volume is (cu ft)	causes No. of trees
Amabilis fir	3 5 13 202 205	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	835 815 707 2486 4746 2950 3635	17 29 37 30 439 67 114	2119 244 902 2148 835 835 1472 1472	27 5 12 23 41 17 26	195 0 103 92 2 0	$\begin{array}{c}11\\0\\6\\4\\1\end{array}$
Totals			16174	733	8943	151	393	114
<mark>Gran</mark> d fir Totals	9 <mark>9</mark> 100 102	vo ov	2923 1965 3754 8372	106 93 92 291	129 183 829 1141	35 44 35 46	040 4	N 0 N 0
Alpine fir All species	226	4	741 25287	52 1076	1298 11397	90 287	394	0 116
						2		

- 24 -

.

Plot	Year	Total no. of trees	Mortalit caused b aphid		Other mortalit	у
			No. of trees	%	No. of trees	%
15 Ma	1050	57	11 SFLIG		Sife data	f ale t e
15 Mt.	1959 1964	57	26	45.6	shad 5 bid	8.8
Seymour	1964	26	15	27.7		0.0
	1971	11	7	63.6	s abrve th	tola bag
	Total all	Lower.	10 11 00	e st 2,0	18V (208)	81 b.m
	years	57	48	84.2	5	8.8
16 Mt.	1959	57	S had 75	out of 1	plotes, 15	5 e d
Fromme	1964	57	17	29.8	5	8.8
	1967	35	14	14.0	won 'Surra	_
	1971	21	7	33.3	Plots wer	-
	Total all			19 10000	one (Table	61ati
	years	57	38	66.7	5	8.8
Total both	listrale i	114	86	75.4	10	8.8

Table 9. Tree mortality on special amabilis fir study plots on Mt. Seymour and Mt. Fromme.

DISCUSSION AND CONCLUSIONS

The work significant result of this study was the discovery that a large versaty of infestation situations occur. This indicates that a reduction of the balaze woolly splite problem through manipulation of stand or site will not be simple, even if possible.

Comparison of the most sessily measured trae parameters with occurrence of dimage revealed, as was already suspected from empirical observations, that the halsam woolly aphid freely attacks trees of all sizes. Although there was some tendency for larger smablifs fir to be note heavily attacked, this was not pronounced, and trees could be stan attacked and or poused from seeding to overaster size. That the could be rate to be rate to be analler for more heavily intested activity fit augested to be

Tree Dominance

Trees in all crown classes were attacked. In amabilis fir and grand fir, the frequency of attack was highest on dominant trees, slightly lower on codominant trees, and still lower on intermediate trees (Appendix VI). A trend with alpine fir was not apparent, mostly because all crown classes were readily attacked.

Site

Site data for amabilis fir are given in Appendix VII. The factors are, to some extent, related to each other. In this study, aphid attack on amabilis fir occurred only up to 3,000 feet elevation, although there were five apparently otherwise susceptible plots above this (Table 10). Out of 22 light to heavily damaged plots, three (14%) were at elevations higher than 2,000 ft and 19 (86%) were at 2,000 ft or lower.

Significant damage occurred on plots of all aspects (Table 11). Considering host tree species composition of the infested plots, 15 out of 18 had 75% or less amabilis fir (by number of stems). Of a total of 13 plots with more than 75% Abies stocking, however, only three were infested (Table 12).

Plots were on all five amabilis fir sites. Sixty-five per cent of the infested plots were in the Vaccinium-Moss/Blechnum associations (Table 13).

Grand fir plots were mostly in the moderate to heavily attacked category. All were at less than 300 ft elevation and were spread over the two major grand fir sites (moss and swordfern). Only one alpine fir plot was infested; there, trees were growing on rock slides at about 1,400 ft elevation.

DISCUSSION AND CONCLUSIONS

The most significant result of this study was the discovery that a large variety of infestation situations occur. This indicates that a reduction of the balsam woolly aphid problem through manipulation of stand or site will not be simple, even if possible.

Comparison of the most easily measured tree parameters with occurrence of damage revealed, as was already suspected from empirical observations, that the balsam woolly aphid freely attacks trees of all sizes. Although there was some tendency for larger amabilis fir to be more heavily attacked, this was not pronounced, and trees could be stem attacked and/or gouted from seedling to overmature size. That the cw/dbh ratio tended to be smaller for more heavily infested amabilis fir suggested that,

infesta catego <u>1</u> /		0-5	6-10		Elevation 16-20			31-35	36-40
U			1	2	2	5	3	3	2
L		2	5	2	2	1			
H	2	2	4	4	2	4	2		
L+H	1	4	9	2	4	1	2	ε	_

Table 10. Number of amabilis fir plots at various elevations within the area where balsam woolly aphid is commonly found.

 $\frac{1}{U} = uninfested;$ no aphid.

L = General incidence of aphid and related damage are light.

H = medium to heavy.

Table 11. Number of amabilis fir plots at various aspects within the area where balsam woolly aphid is commonly found.

Infestation category					Aspec	t a-				
<u>1/</u>	Flat	N	NE	E	SE	S	SW	W	NW	M
U	5		1		4	4	1	1	4	
L	4		1	3	1		2	1	1	
H	4			1		1	1	3	1	
L+H	8		1	4	1	1	3	4	2	

 $\frac{1}{}$ See Table 10.

L/ See Table 10

ot association according to Ris (1952). = Vaccinium-Moss, VM/B = Vaccinium-Moss/Blo national association, 8 - Blannam Associa 0 = Blachnum/Ribra-Oplopaasi firmational a - Ribes-Onlonenex Association. Preceding a

Infestation			% Abi	es			
category <u>1</u> /	0-25	26-5	0	51-75		76-	-100
J	εεε	2	-	6	2	10	U I
		4		4		2	
ł	3	1		3 8		1	
		5		7	1.593397	3	a. U. 3
L+H <u>1</u> / See Table Table 13. N plant associ commonly fou	umber of ation wit	amabilis f	ea where	balsam wo			
1/ See Table Table 13. N plant associ commonly fou Infestation	10. Tumber of ation with and.	amabilis f thin the ar	ea where	balsam wo	oolly a	phid	
1/ See Table Fable 13. N plant associ commonly fou Infestation category	10. umber of ation wit	amabilis f	ea where	balsam wo		phid	
1/ See Table Table 13. N plant associ commonly fou Infestation category <u>1</u> /	10. Tumber of ation with and.	amabilis f thin the ar	ea where	balsam wo	oolly a	phid	
<u>1</u> / See Table Table 13. N plant associ	10. Tumber of ation with and. VM <u>2</u> /	amabilis f thin the ar VM-B	ea where B	B-RO	oolly a	phid O	
1/ See Table Table 13. N plant associ commonly fou Infestation category 1/	10. Jumber of ation with and. VM <u>2</u> / 10	amabilis f thin the ar VM-B	ea where B 1	B-RO	R	phid O	

Table 12. Number of amabilis fir plots with % Abies composition within the area where balsam woolly aphid is commonly found.

2/ Plant association according to Eis (1962). VM = Vaccinium-Moss, VM/B = Vaccinium-Moss/Blechnum transitional association, B = Blechnum Association, B/RO = Blechnum/Ribes-Oplopanax transitional association, RO = Ribes-Oplopanax Association. Preceding are amabilis fir sites. if <u>Abies</u> are similar in this respect to some other conifers and a small ratio indicates a dense stand, trees in denser stands are more heavily attacked. However, since this conclusion is contrary to the belief of many workers that moderate stand density (i.e., at stand edges, small openings, etc.) is most favorable to aphid, the relationship of cw/dbh to stand density would have to be confirmed with <u>Abies</u> before drawing more definite conclusions. That trees in the more dominant crown classes tended to be attacked more frequently probably was because of the probability of good wind dispersal in the upper, more exposed portions of the crowns of dominant and codominant trees.

Trends barely apparent with amabilis fir were even less clear with grand fir; here the smaller number of trees examined could have prevented the appearance of trends. With alpine fir, however, even though only a few trees were examined, it was apparent that they were highly susceptible to damage and mortality, regardless of size.

Since stem attack figures prominently in any detection survey because it is relatively easy to detect, this factor was examined closely. Amabilis and grand fir under 20 inches dbh and alpine fir under 10 inches were attacked most frequently in this study, so these trees could be featured in detection surveys. Larger trees have thicker bark, at least on the lower bole, so any attack must occur higher up, if at all.

Tree age did not seem to be an important factor in susceptibility to aphid infestation and damage; all ages were affected.

Changes in amabilis fir infestation rating occurred only to about 10% of trees in the annual or biannual examinations and there was no trend to greater or lesser infestation levels. Grand fir tended to recover, but nearly all infested alpine fir died. Foliage loss was a useful expression of tree decline.

Mortality was, of course, the most significant and easily identified damage. Mortality judged to be caused by the balsam woolly aphid added to that resulting from other causes. Recording that a tree died from aphid often involved personal judgment where there were no signs of heavy stem attack. When aphid had been present and no other reasons were apparent, the usual conclusion was that the aphid was at least a serious factor contributing to mortality and it was so recorded. However, that mortality attributed to causes other than aphid increased with infestation intensity on the plots leads one to suspect that undetected aphid played a part...the estimates of aphidcaused mortality were conservative ones.

On an annual basis, tree mortality was very small. Mortality attributed to the aphid about equalled that from other causes, and was in the neighborhood of 1-4% (total mortality 2-8%). An exception was mortality of alpine fir in the single plot observed: mortality there averaged 19% per year. However, in some years, the situation was more serious: up to 19% of the amabilis fir died in 1968, and 38% of the alpine fir in 1969.

Over the 10-year period, mortality from both aphid and other causes totalled about 24% for amabilis fir but slightly less (18%) for grand fir. Impact of the aphid on alpine fir was considerable (63%) compared with nil estimated from natural causes.

The plot localities were selected in part because of the presence of Abies, ranging up to 92% of the total number of trees, so an indication of total Abies mortality is not meaningful with respect to the rest of the stand. Abies commonly make up only 10-20% of forest stands. In some areas, however, the trees killed In one case, of the regular plot series, were a significant loss. almost 40% of the amabilis fir died over 10 years; in the single infested alpine fir plot, where over 60% of the fir died, it was the only tree species present. The special Mt. Fromme and Mt. Seymour plots suffered 67% and 84% mortality, respectively, over 12 years, but these plots had only 23% and 13% Abies. These two areas are immediately north of Vancouver, and are believed to be at the center of the infestation; the stands appear to have suffered the most intensive damage.

From the point of view of a particular area, mortality can be very significant. The threat must be assessed by land managers in view of the losses and fire hazard created by standing dead timber, and such factors as per cent <u>Abies</u> in an area, accessibility for salvage logging, and watershed and recreational values. Current management recommendations have been to give priority to the logging of areas that are infested or are near infested areas, and which have appreciable amounts of <u>Abies</u>. Killed stands should, of course, be salvaged.

A measure of recent mortality, and average per cent tree defoliation, might be a useful way of recording damage for infestation intensity estimates.

An adequate comparison of aphid infestation with major site factors was not possible because there were insufficient plots on enough different sites for trends to be seen. The limited data, supported by some studies in the Pacific Northwest (Johnson and Wright, 1957; Mitchell, 1966), suggest that the greatest hazard to amabilis fir is on the better, well-drained sites at lower elevations. Even less of an indication of susceptibility is available for grand fir, but the plots with heavy infestation were again on good, low elevation sites with ample moisture and good drainage. Alpine fir sites, of course, cannot be compared because the only known infestation in the province is in a single area, where trees growing on rock slides at 1,400 ft elevation were very heavily attacked, but damage was not observed high on the ridges in the same valley.

This study has examined gross tree and site factors and demonstrated the progression of damage that results from infestation by this pest. As a follow-up to the existing study, more extensive site observations could now be carried out. This could be done by examining a large number of localities within the general area of infestation, both infested and uninfested, to study the relationship between site and damage. Since, from a single examination of an area, we are presently unable to determine whether it is resistant or simply has not been infested, and because it has been impossible to examine more than a limited number of plots annually, it might be advantageous to examine at least once a larger number of locations within each site. This might show trends not evident from smaller numbers of plots examined over a period of time. However, apparently more must be considered than just gross factors, such as tree size, and more information on the susceptibility of individual trees is needed to explain differences within sites. The object of a further study would be to determine if there are sites on which fir could grow and tolerate an acceptable level of damage from the balsam woolly aphid. It would also be useful to determine if some disease factors, such as root rots, may be influencing tree health directly or indirectly through their effect on tree vigor, and increasing susceptibility to the balsam woolly aphid.

In conclusion, it is evident that most trees are susceptible to attack by the balsam woolly aphid, and that there are no clear trends suggesting that gross tree, stand or site factors could be used to identify areas of different susceptibility to damage. It is probable that bark characteristics and lighting, where aphids develop most readily at locations on trees exposed to intermediate lighting, as well as several other factors (site quality, moisture, elevation, etc.), may be significant factors affecting the success of populations. These factors vary according to between-tree and within-tree density (horizontally and vertically within a stand), and if more were known about them, and about the effects of site, it might be possible to manipulate stand conditions in situations of intensive management so as to reduce populations and consequent damage.

SUMMARY

The balsam woolly aphid is an important pest of <u>Abies</u> in British Columbia. Tree, site and infestation data were taken at 52 localities, including almost 6,000 trees, during the period 1959 to 1970, in an attempt to detect relationships between these factors and to observe infestation progress. An infestation rating combining stem attack, gout, crown conditions and crown form was devised.

Infestation was related to tree and site characteristics, and studied over time. Results were extremely variable. Limited infestation-site data suggested that the greatest hazard to amabilis fir, the most important of the tree species studied, was on the better, well-drained sites at lower elevations. Infestation was not found above 3,000 ft and there seemed to be no relationship to aspect.

Annual mortality due to aphid was generally small, but ranged from 3% on grand fir and 4% on amabilis fir to 19% per year on alpine fir. At individual localities, however, mortality of <u>Abies</u> over the period of examination ranged up to 84%. While overall damage was small, it was high enough in limited areas to cause concern, with logging of threatened and damaged areas being the principal course of action taken by the land manager.

Future work recommended is a follow-up to site observations already done, examining a larger number of localities to determine infestation-site relationships. Also, more information on the susceptibility of individual trees is needed to explain differences observed within sites. To date, no clear trends have been found that would suggest that tree, stand or site factors could be used to identify areas susceptible to or safe from the balsam woolly aphid.

ACKNOWLEDGMENTS

The author thanks various technicians and students connected with the Forest Insect and Disease Survey who, during the course of the study, made observations and kept careful, consistent records. Particularly involved during earlier phases of the work were E. Wegwitz and D. Taylor. In later years, the field work and much of the seemingly endless calculating and preparing of tables and graphs for the report was done by A.F. Dawson and R.G. Brown. Also, considerable data processing support was received from M. Magar and staff, and final maps and graphs were drawn by J. Wiens. Establishment of the majority of the study plots was also helped by assistance from a British Columbia Forest Service student crew during a joint Federal-Provincial program of balsam woolly aphid studies.

REFERENCES

Balch, R.E. 1952. Studies of the balsam woolly aphid, <u>Adelges</u> <u>piceae</u> (Ratz.) and its effects on balsam fir, <u>Abies</u> balsamea (L.) Mill. Canada Dept. of Agriculture, Ottawa. 76p.

- Clark, R.C., D.O. Greenbank, D.G. Bryant and J.W.E. Harris. 1971. Part III. Biological control of forest pests in Canada, 1959-1968. 36. <u>Adelges piceae</u> (Ratz.), balsam woolly aphid (Homoptera: Adelgidae). <u>In</u> Biological control programmes against insects and weeds in Canada. Commonwealth Institue of Biological Control, Trinidad, Technical Communication No. 4: 113-127.
- Eis, S. 1962. Statistical analysis of several methods for estimation of forest habitats and tree growth near Vancouver, B.C. Univ. B.C. Faculty Forest. Bull. No. 4, 72p.
- Greenbank, D.O. 1970. Climate and the ecology of the balsam woolly aphid. Can. Ent. 102: 546-578.
- Harris, J.W.E. 1968a revised. Balsam woolly aphid in British Columbia. Forest Research Lab., Victoria. Forest Pest Leaflet No. 1, 5p.
- Harris, J.W.E. 1968b. Detection surveys for balsam woolly aphid, <u>Adelges piceae</u> (Ratz.), in British Columbia. Forest Research Lab., Victoria. Inform. Rept. BC-X-20, 8p.
- Johnson, Norman E. and Kenneth H. Wright. 1957. The balsam woolly aphid problem in Oregon and Washington. U.S. Forest Service, Pacific Northwest Forest and Range Exp. Station Research Paper 18. 34 p.
- Krajina, V.J. 1969. Ecology of forest trees in British Columbia. Ecology of Western North America 2(1): 1-146.
- McMullen, L.H. and J.P. Skovsgaard. 1972. Seasonal history of the balsam woolly aphid in Coastal British Columbia. J. Entomol. Soc. Brit. Columbia 69: 33-40.
- Mitchell, R.G. 1966. Infestation characteristics of the balsam woolly aphid in the Pacific Northwest. U.S. Forest Serv. Res. Pap. PNW - 35. 18p.
- Mitchell, R.G., N.E. Johnson and J.A. Rudinsky. 1961. Seasonal history of the balsam woolly aphid in the Pacific Northwest. Can. Ent. 93: 794-798.
- Smith, J.H.G., J.W. Ker, and J. Csizmazia. 1961. Economics of reforestation of Douglas-fir, western hemlock and western red cedar in the Vancouver Forest District. Univ. of B.C. Fac. of Forest. Bull. No. 3, 144p.

Clark, M.C., D.G. Grandbank, D.G. Brycot and L.W.E. Harris. 1971: Far: 11. Biological control of forest casts in Canada, 1959-1968. 36. Adelges picess (Perat), balasm vooliv sphid (Homoprerat Adelgidae). In Biological control programmes against insects and weeds to Canada. Commonwealth institue of Biological Control, irigidad, rechaicel Communication Biological Control, irigidad, rechaicel Communication

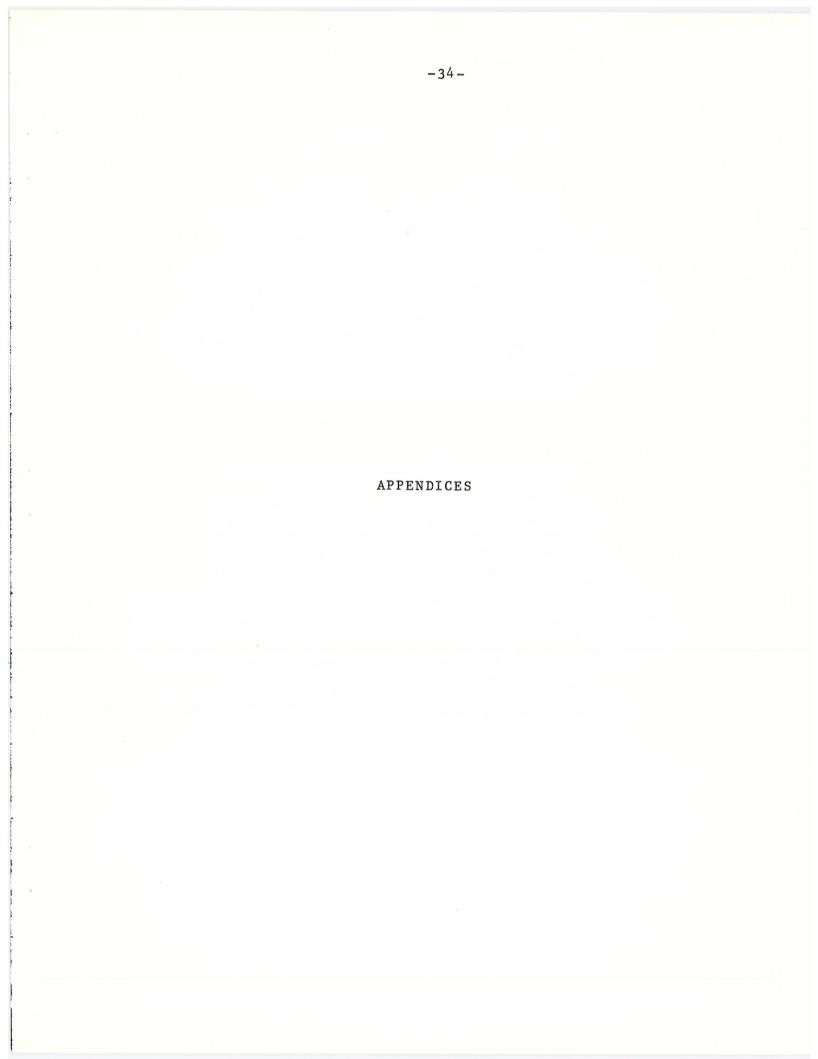
Mic. S. 1952. Statistical and yais of several methods for eatimation of forest habitats and tree growth near Yancouver, B.C. Univ. B.C. Faculty Forest. Bull. No. 4. 710.

Greanbank, D.O. 1970. Olivate and the ecology of the balaam woolly spirid. Can. Lut. 102: 546-578.

Harris, J.W.S. 196 mayroad. Halsen woolly aphid in British Columbia. Forest Research Lab., Victoria. Forest Past Leaflet No. 1. 5p.

Harris, J.V.E. 1952b. Betaution auroave for balaam woolly aphid, <u>Adelses piceas</u> (Ratz.), in British Columbia. Forest Research Lab., Victoria. Inform. dept. BC-X-20. 5p.

Johnson, Morman E. and Amnath H. Fright. 1951. The balaam woolly sphid problem in Gragon and Mashington. U.S. Poreat Strvice, Flatife Northwest Forest and Bangy Exp. Trailon Research Paper 18. 34 p.


isology of Mastern North America 2(1): 1-146:

McMullan, 4.H. and J.P. Showagiard. 1972. Seawonal distory of the balan woolly aprid in Goachi Brittsh Lolumbia. Incomol. Set. 1915 Commola 59: 31-40.

muschall, S.G. 1966. Galesintion christianistics of the balcan would applid in the factfle forthwest. U.S. hereit Shift for. fap. 200 - 13. 18p.

Nichail, N.G. M.G. Sehneyn and J.A. Meddasky. 1961. Scanoari history of the balays woolly which is the Feeling Monthmest. Sen. Ens. Art Mul-196.

Saine, J.M.C., J.W. Say, and J. Colzmania. 1951. Scannelco of rateriation to a color in the volume for bening to the scare of the say volume formering. Daty, of the form of Surgering of the volume formering.

1							
Plot no.	ot Location	Size (acres)	Elev (ft)	Aspect	% species 1/ composition	Site classification ² /	Plot status <u>3</u> /
1	Cypress Cr.	0°40	1,800	M BOR	unknown	unknown	H. Logged in 1963.
2	Mt. Fromme	1.20	006	R	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	B	L. 15 trees logged in 1965.
e	Rainy R.	1.20	700	SW	1, 300H 3NC	B	H. 5 trees logged in 1964.
4	Cypress Cr.	0.60	1,900	SE	58wH, 36aF, 5wC, 1yC	VM-B	L Setted 10 Sette
Ś	Indian R.	0.30	100	Flat	79aF, 21wH	В	H. 16 trees felled in 1967.
9	Raffuse Cr.	0.60	3,500	ß	66aF, 34wH	B	U. Logged in 1965.
-	Britannia Cr.	0.20	2 ,500	S	50aF, 47wH, 3wC	unknown	U. Logged in 1969.
00	Seymour R. (upper)	0.30	006	Flat	57aF, 43wH	RO	L. 3 trees felled in 1970.
9	Seymour L.	0.40	800	MN 28 M	51wH。48aF。 1wC	B-RO	H
10	Woodfibre	0.40	1,200	ß	58aF, 40wH ₂ 2wC	B-RO	U S C C C C C C C C C C C C C C C C C C
11	Dakota Cr.	0.60	3,000	SE	63aF, 17wH, 20yC	Μ	Л
12	McNair Cr.	1.20	600	NE	66wH, 28aF, 5wC, 1D	unknown	L. T. T. T. T.
13	Port Mellon Rd.	2.40	500	Flat	75wH, 20aF, 5wC	а	Н

- 35 -

Plot no.	Location	Size (acres)	Elev (ft)	Aspect	% species <u>1</u> / composition <u>-</u> /	Site classification ^{2/}	Plot status <u>3</u> /
14	Seymour Mt.	1.60	2,700	M	unknown	VM-B	H
66	Forest Res. Centre	2.80	100	NE	unknown	M-S	H. 48 trees felled in 1968-1970.
100	Thetis L. Park	1.45	200	Flat	52gF, 42D, 6wC	S	Н
101	Glenora	0.25	300	Flat	47gF, 26D, 18wC, 8wH, 11P	M-S	L. Felled in 1966.
102	Glenora	1.25	300	Flat	46gF, 22wC, 21wH, 11D	M-S	H. Logged in 1969.
103	Deerholme (Lois L.)	0.50	2,400	Flat	56aF, 27wH, 11wC, 6D	Μ	L process of the second
104	Deerholme (Lois L.)	1.00	2,400	Flat	77aF, 16wH, 4wC, 3D	ΜΛ	U
105	Deerholme	0.25	2,500	MM	92aF, 6wH, 2wC	M	U. Felled in 1968.
106	Deerholme	1.20	2,000	SE	71aF, 26wH, 3wC	ΜΛ	<pre>U. 102 trees logged in 1966, 71 felled in 1967.</pre>
107	Deerholme	0.50	2,300	MM	83aF, 17wH	MM	U TT IL STREET CONTRACT
108	Deerholme	0.25	2,000	Flat	82aF, 18wH	ΔW	U L Locker H De L
201	Seymour R.	0.25	700	Flat	46aF, 45wH, 9Y	VM-B	U. Felled in 1966.
202	Seymour R.	0.75	800	Flat	64aF, 36wH	æ	H. 31 trees felled in 1966.
203	Seymour L.	1.25	800	M	5laF, 49wH	VM-B	H. 111 trees logged in 1966, 25 felled in

Appendix I-A. (Continued)

	Location	Size (acres)	Elev (ft)	Aspect	% species 1/ composition	Site2/ classification	Plot status -/
-	Orchard Cr.	1.00	1,500	SW	52aF, 41wH, 6wC, 1Y	VM-B	L
	Mt. Fromme	1.20	2 ,700	S	73aF, 27wH	λW	<pre>H. 26 trees felled in 1967, 49 logged in 1969.</pre>
	Seymour Mt.	1.05	3,400	W	44aF, 32mH, 13yC, 6wH, 5wC	λW	Г
	Gold Cr.	1.00	600	MM	67aF, 33wH	M	U
	Lost Cr.	1.00	1,500	NW	89aF, 11wH	В	U. Logged in 1968.
	Norrish Cr.	1.00	2,400	M	87aF, 13wH	M	U
	Sumallo R.	0.50	2 _° 100	SW	41wC, 35aF, 21S, 2wH	unknown	D
	Manning Park	1.00	3,800	Flat	51alF, 29S, 161P _p 2mH, 2D	unknown	U
	Capilano R. (upper)	1.00	1,100	Flat	66aF, 31wH, 3wC	B-RO	n
	Raffuse Cr.	1.00	4 ,000	S	94aF, 4wH, 2mH	M	U
	Britannia Townsite	0.20	3,300	NE	90aF, 10wH	ΜΛ	П
	Furry Cr.	0.30	2,700	SE	89aF, 11wH	VM	U
	Furry Cr.	0.10	2,700	SE	74aF。26wH	M	U
	Garibaldi Park	0.50	4 800	L L	R7aF 12mH 1wC	minadan	11

Appendix 1-A. (Continued)

MIDEON A-I XIBNS

- 37 -

Plot no.	Location	0.30	Size (acres)	Elev (ft)	Aspect	% species ₁ / composition <u>-</u> /	Site classification	/ Plot status ^{3/}
220	Seymour R.	0, 30	0.22	500	ы	73aF, 27wH	В	L. Felled in 1967.
222	Lost Cr.	0.20	0.20	1,800	MS	82aF, 18wH	р	U
223	Lost Cr.		0.25	1,700	Flat	89aF, 11wH	£	D
224	Capilano R. (Upper)	r)	0.10	006	SW	78aF, 22wH	VM-B	L. Logged in 1967.
225	Balfour Cr.		1.00	800	Flat	77aF, 23wH	RO	L. Logged in 1969.
226	Tretheway Cr.		0.75	1,400	SE	unknown	unknown	Н
227	Tretheway Cr.		1.25	1,100	MN	52wH, 48aF	M	Г
228	Indian R.		0.30	100	Flat	unknown	VM-B	Г
229	Katherine L.		0.40	1,700	ы	unknown	VM-B	L
	Total		38.42					
Specié	Special plots:							
15	Seymour Mt.		1.00	1,800	Flat	73wH, 23aF, 4wC	B	Н
16	Mt. Fronne		1.00	006	ы	74wH, 13aF, 13wC	ß	H
	Total		2.00					
$\frac{1}{\mathrm{Tre}}$	Tree abbreviations:	aF-Abi	aF-Abies amabilis,	is, gF-Abies	ies grandis,	alF-Abies	lasiocarpa, D-Pseudo	D-Pseudotsuga menziesii.
		mH-Tsu	wh- <u>Isuga neterophylla</u> mH-Tsuga mertensiana, Y-Taxus	pnyıla siana, Y-	Taxus bre	brevifolia, 1P-Pinus c	contorta, wC-Thuja	ja plicata.
		yC-Ché	yC-Chamaecyparis nootkatensis,	nootkate	nsis, S-P			
	Site abbreviations:	B-Blec	thnum, WM-1	Vaccinium	Moss, RO	B-Blechnum, VM-Vaccinium Moss, RO-Ribes-Oplopanax, M-Moss,	f-Moss, S-Swordfern.	ern.
$\frac{3}{\ln f}$ Inf	Infestation and other information.	r infor		Infestati	on light-	Infestation light-L, moderate-heavy-H, uninfested-U.	I, uninfested-U.	Year logged-e.g. logged-1969.

Appendix I-A. (Concluded)

- 38 -

Appendix I-B. Host tree data for balsam woolly aphid long-term study plots in B.C., 1959-1970.

					- 39	- 04							
0	1	0	0	5	0	1	0	00	0	0	0	0	0
in S S	1	4	24	45	9	1	28	30	34	54	22	23	11
trees own cl CD I	1	00	17	19	41	1	34	30	52	28	35	31	24
% tre crown CD	1	75	41	15	24	1	28	14	00	10	37	11	45
IA	1	13	18	19	29	1	10	10	9	00	9	35	20
ined													
s) No. trees examined	8	I	11	7	10	I	ı	1	10	Т	ië č	1	10
S S			63	0	72				52				0
(1)	8	1	9	150	7	1	I	8	Ś	1	I		50
Age Avg	0	B	93	247	54	1	8	I	131	I	0	12	00
Мах	1	1	137	335	26	103		1	205	1	1	1	154
t) Min	7	50	2	9	18	I	14	14	20	12	11	30	60
Height (ft) Lax Avg Mi	46	104	80	68	71	1	60	61	59	28	72	102	£0
Heig	145	135	138	145	120	- 103	105	160	125	140	115	175	130
hes) Min	5	9	H	2	4	4	e	ñ	4	4	4	Ś	٢
Avg	10	19	14	12	12	15	10	12	10	10	14	22	17
D.b.h.(inches) Max Avg Min	38	36	28	28	25	45	19	50	31	26	28	45	34
r t													
trees Remaining last year	62	17	23	41	29	47	50	30	37	46	47	12	30
ed													
No. o Examined first year	62	48	60	50	50	50	50	50	50	50	50	26	60
3.1	5	7	6 ° 970	6 ,	6, 970	3,	e	6,970	6 , 970	6, 1970	6, 1970	6° 1969	6, 1970
Years examined	1961-62	1961-67	1961-66 , 1968,1970	1961–66 1970	1961–66, 1968, 1970	1961–63 1965	1961-63	1961–66, 1968–1970	1961–66, 1968,1970	1961-66, 1968, 1970	1961-66, 1968, 1970	1961–66 。 1968,1969	1962-66, 1968, 1970
s_1/													
Tree species	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ar	ar	а Г	aF	ц Ц	aF	Чв	9 F	3F	аF	цю	а Н
Plot no.		2	ŝ	4	S	9	7	8	6	10	11	12	13

(Continued)
I-B.
Appendix

1	0	0	14	0	- 4	0	0	0	0	0 1	0	0	0	0
	% trees in crown class D CD I S	7 36 55	34 27 15	30 14 50	1	36 24 25	7 9 84	31 24 43	11 22 56	21 22 49	15 31 42	8 21 67	19 19 31	15 46 28
	DC %	2	6	9	I	15	0	2	11	2	12	4	31	11
4	No. trees examined	23	1	20	13	22	6	22	22	47	20	6	12	25
	(years) Min	30	I.	42	60	37	98	125	111	98	96	164	38	70
	Age (1 Avg	16	1	77	83	75	125	168	202	184	186	256	84	142
•	Max	194	205-	138	122	102	149	208	287	321	306	329	175	230
	(ft) 3 Min	2	2 9	2	28	Ŝ	<u>ې</u>	Ŝ	9	9	9	9	10	9
3	ght Avg	t 20	5 22 47	3 46	62	2 63	3 23	4 51	5 35	5 50	2 36	5 27	5 66	3 57
]≱i	154	105	113	102	122	93	124	115	. 186	132	155	105	. 198
-	(inches) g Mín	7 1	2	8 1	3		4 1	9 1	6 2	8	7 1	6 1	9 4	10 1
	D.b.h. (i Max Avg	37 10	27 12	24	15	30 11	12	27	23	40	30	32	18	41 1
	trees Remaining last year	439	109	93	41	85	128	284	111	256	173	107	25	92
2	No. of Examined first year	610	173	102	41	20136	128	296	120	260	174	107	26	124
	Years examined	1965-67, 1969	1965,1966, 1968,1970	1965, 1966, 1968, 1970	1966	1966,1968, 1969	1966,1968, 1970	1966,1968, 1970	1966,1968	1966,1967, 1969	1966,1968, 1970	1967,1969	1966	1966,1968, 1970
	Tree 1/ species-	aF	90 12	SF К	ßF	8 В	аF	аF	аF	аF	аF	аF	aF	aF
	Plot no.	14	66	100	101	102	103	104	105	106	107	108	201	202

Appendix I-B. (continued)

۰.	0	0	1.0	2,0	41 -	42 - C	0	0	s. c	a		0	
26 30 5	% trees in crown class CD I S 0	28 27 32 0	42 16 25 1	43 23 13 1	11 32 56 0	28 30 39 1	12 21 60 0	83 14 0 0	85 6 6 0	30 45 25 0	14 41 41 0	31 8 27 0	55 25 15 0
12	D CI	13	16	20	H	5	7	ŝ	ŝ	0	4	34	Ś
) No trees examined	40	28	52	12	20	32	21	10	20	20	16	21
	<u>Age (Years)</u> Avg Min	36	58	53	212	37	16	121	64	59	56	225	46
	Age (Avg	114	82	124	338	64	157	138	82	91	114	345	60
	Мах	168	135	345	414	116	234	159	166	212	177	392	85
	ft) Min	2	4	7	٦	6	9	58	30	9	9	7	24
	<u>Height (ft)</u> lax Avg Mi	57	81	54	27	50	37	112	135	38	30	118	59
	Hei Max	198	165	141	111	82	192	156	173	73	172	189	16
100	ches) Min	2	Ч	г	F	H	1	6	3	H	H	2	4
12	<mark>D.b.h. (inches)</mark> Max Avg Min	6	11	118	9	7	9	19	28	9	9	23	00
50	D.b.h Max	37	30	33	27	18	38	33	55	13	47	43	15
	trees Remaining last year	128	115	139	106	138	374	121	34	146	173	88	06
	No. of trees Examined Remai first las year yea	136	131	167	108	139	382 💧	126	34	147	188	16	109
	Years examined	1966	1966,1968, 1970	1966,1967, 1969	1966,1968, 1970	1966,1968, 1970	1966,1968	1966,1968	1966,1968, 1970	1966,1968, 1970	1966-70	1966,1968, 1970	1966,1968, 1970
10	Tree species <u>1</u> /	ан	ar	ца Н	ся Н	aF	aF	aF	ar?	alF	аH	аF	ц
	Plot no.	203	204	205	206	208	209	210	211	212	213	215	216

LOLT	Tree	Years , ,	No. o	No. of trees	D.b.h. (inches)	. (inc)	hes)	Hei	Height (ft)	ft)		Age	(years)	rs)	%	trees in	ln
.ou	species	examined ¹ /	Examined	Remaining	Мах	Avg	Min	Мах	Avg	Min	Max	Avg	Min	No. trees		D CD	class I S
	5		16	8	8	12	30	199	81	-1	392	345	225	examined	P	11 8	2.1 0
217	цт Ср	1966, 1968, 1970	67	06	27	10	-	146	99	9	199	121	100	20	9	32 2	28 34
218	аF	1966,1968, 1970	26	22	20	10	ŝ	117	66	13	146	102	83	10	0	35 2	27 38
219	ar	1966,1968, 1970	106	103	43	12	8	151	56	9	477	271	153	18	ŝ	20 3	33 42
220	аF	1967	48	45	35	20	2	167	62	6	266	218	157	5	9	27 1	17 50
222	аF	1967,1969	65	64	32	6	2	146	48	7	257	188	109	10	ŝ	16 1	14 61
223	aF	1967,1969	82	81	33	9	H	161	33	9	235	160	123	00	9	32 2	28 34
224	аF	1967	29	27	41	6	2	170	50	7	242	179	127	ŝ	4	15 1	11 59 11
225	аF	1967, 1969	113	104	44	15	1	169	81	Ø	208	150	107	19	14	31 2	20 35
226	alF	1967-70	144	53	28	80	I	112	36	2	161	146	89	22	10	18 2	28 40
227	аF	1967-70	96	78	31	16	2	143	66	9	150	106	73	20	27	37 2	28 8
228	аF	1968,1970	44	39	24	11	Ч	85	45	7	131	97	59	80	18	20 3	36 18
229	aF	1969	116	116	17	8	2	91	41	10	1	1	1	'	18	27 3	38 17
	Total		5,677	4,896													
Special	al plots:																
15	ан	1959,1964, 1967	57	11	25	12	2	1	1 2		L	I	1	ı	47	47	9 0
16	аF	1959,1964, 1967	57	21	29	13	Ś	1	1	1	I.	ı	I	I	32	56 1	10 2
	Total		114	32													

Appendix I-B. (Concluded)

Year	 Ligh	tly in:	feste	l plot	S	_	Moderat	ely-ł	neavy	infested	plots
à	No. of trees	<u>A</u> 1/	В	C	D	a	No. of trees	A	В	С	D
1961	173	12		24		115	160	11	17	18	62
1962	169	13	17	24	23		219	12	15	19	26
1963	160	12	17	24			207	13	12	18	17
1964	144	12	17	23			197	12	13	16	19
1965	134	13	6	16			749	8	10	8	12
1966	502	8	17	16	20		1160	8	10	10	13
1967	268	14	17	20	14		698	7	11	8	11
1968	534	9	6	24			207	10	12	12	11
1969	208	16	15	26	10		565	8	12	19	
1970	565	9	6	16	13		203	9	10	16	13

Appendix II-A. Average d.b.h. of amabilis fir by infestation rating and year.

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-B. Average d.b.h. of grand fir by infestation rating and year.

Year	Light	tly info	ested plo	ts	Moderat	ely-h	eavy :	infeste	d plots
	No. of trees	A1/	B C	D	No. of trees	A	В	С	D
1965	1 52	57	375		257	9	13	9	10
1966	41	8	7		398	10	12	8	11
1968					328	10	12	8	9
1969					98	11	14	6	4
1970					211	10	11	10	16

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-C. Average d.b.h. of alpine fir by infestation rating and year.

Year	No. of trees	A1/	В	С	D
1967	143	8	6	11	7
1968	133	11	20	9	6
1969	82			10	8
1970	95			7	8

1/A-D = uninfested to heavy.

Year	Li	ght1y	infe	sted plo	ots	-	Moderat	ely-he	eavy	infested	plots
	No. of trees	A <u>1</u> /	В	С	D		No. of trees	A	В	С	D
1961	171	66		117			159	65	92	98	
1962	167	70	103	118	115		218	72	89	99	118
1963	160	69	103	118			207	74	70	94	95
1964	144	66	110	116			197	72	78	83	102
1965	134	73	34	82			749	42	55	44	64
1966	493	50	93	94	109		1154	47	60	51	61
1967	267	84	95	101	82		698	37	55	40	50
1968	527	55	33	123			203	60	76	70	62
1969	208	92	96	125	76		565	42	58	92	
1970	558	54	35	81	56		201	54	64	88	75

Appendix II-D. Average height of amabilis fir by infestation rating and year.

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-E. Average height of grand fir by infestation rating and year.

Year	Li	ghtly	infes	ted plo	ts	Modera	tely-h	eavy in	nfested	plots
	No. of trees	$A^{\underline{1}}$	В	С	D	No. of trees	A	В	С	D
1965				62663		248	52	70	45	59
1966	25	62	63			375	57	71	52	63
1968						317	58	68	47	51
1969						95	66	81	38	23
1970						203	53	62	53	78

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-F. Average height of alpine fir by infestation rating and year.

Year	No. of trees	<u>A1</u> /	В	C	D
1967	141	35	29	47	33
1968	132	52	87	44	29
1969	82			44	35
1970	95			32	35

Year	L	ightly	infes	ted plot	ts	Moderat	ely-h	eavy :	infested	plots
	No. of trees	$A^{\underline{1}}$	В	С	D	No. of trees	A	В	С	D
1961	124	16		23		116	17	23	23	261
1962	124	17	12	23		165	19	21	24	27
1963	122	16	12	23		162	19	19	24	24
1964	120	16	15	24		158	19	20	22	24
1965	118	17	15	18		687	13	16	13	18
1966	449	14	21	20	23	1084	14	18	14	17
1967	256	19	21	22	19	683	12	16	12	16
1968	502	15	13	22		205	17	20	18	19
1969	208	20	19	27	12	562	13	17	20	
1970	528	15	12	19	17	203	16	18	21	22

Appendix II-G.	Average crown	width of	amabilis	fir by	infestation	rating
	and year.					

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-H. Average crown width of grand fir by infestation rating and year.

Year	Li	ght ly	infeste	d plot	S	Moderat	ely-h	eavy i	Infeste	d plots
	No. of trees	<u>A1</u> /	В	С	D	No. of trees	A	в	С	D
1965			2.20			255	15	20	16	17
1966	40	14	13			375	16	19	14	17
1968						325	16	20	16	14
1969						96	16	20	10	11
1970						210	16	20	18	21

 $\frac{1}{A-D}$ = uninfested to heavy.

0 = uninfested to heavy

Appendix II-I. Average crown width of alpine fir by infestation rating and year.

Year	No. of	3 /			
	trees	A^{\perp}	B	C	D
1967	139	9	11	12	11
1968	133	10	13	10	10
1969	82			10	10
1970	95			9	10

 $\frac{1}{A-D}$ = uninfested to heavy.

Year	Lig	htly in	nfeste	l plots		Moderat	ely-h	eavy in	nfested	plot
	No. of trees	A <u>1</u> /	В	С	D	No. of trees	A	в	С	D
1961	124	2.0		1.1		116	2.0	1.4	1.4	
1962	124	2.1	0.7	1.1		165	1.8	1.6	1.2	1.0
1963	122	2.0	0.7	1.1		162	1.8	1.9	1.3	1.0
1964	120	2.0	0.9	1.2		158	1.8	1.8	1.5	1.1
1965	118	1.8	2.8	1.9		687	2.0	1.7	2.3	1.8
1966	449	2.5	1.5	1.5	1.2	1084	2.0	1.9	1.8	1.6
1967	256	1.8	1.5	1.7	1.9	683	2.0	1.6	2.0	1.5
1968	502	2.3	2.5	1.1		205	2.2	1.8	2.0	2.1
1969	208	1.6	1.4	1.0	1.2	562	1.9	1.6	1.2	
1970	528	2.3	2.7	1.5	1.4	203	2.4	2.0	1.5	1.8

Appendix II-J. Average crown width/d.b.h. of amabilis fir by infestation rating and year.

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-K. Average crown width/d.b.h. of grand fir by infestation rating and year.

Year	Ligh	ntly in:	fested	plots		Moderat	ely-he	eavy in	nfested	plots
σ	No. of trees	<u>A1/</u>	В	С	D	No. of trees	A	В	С	D
1965	10 - 16		155			255	2.4	1.6	2.6	2.5
1966	40	2.1	2.1			375	2.2	1.6	2.7	2.0
1968						325	2.1	1.8	2.8	2.2
1969	0.1 0.5					96	1.9	1.8	3.1	2.8
1970						210	2.3	2.1	2.4	1.4

 $\frac{1}{A-D}$ = uninfested to heavy.

Appendix II-L. Average crown width/d.b.h. of alpine fir by infestation rating and year.

					the stand of the stand	
Year	No. of trees	<u>A1</u> /	В	С	D	
1967	139	1.7	1.9	1.4	1.8	
1968	133	1.2	0.6	1.5	1.9	
1969	82			1.5	1.7	
1970	95			1.8	1.7	

1/A-D = uninfested to heavy.

Appendix III-A. Average tree measurements for heavily infested amabilis fir plots 9, 13, and 14 by infestation rating category.

	i L	rating system-'	rating	Secondary	sec								- H	int	ng sys	r rating sys	Major rating system-	
8' 9 10		7 *	7	61	9	51	5	4	3	2			es of	++	No. of trees	D trees	C D trees	B C D trees
12 8		21	11	12	0.8	10	9			16		5	46 5	-	46	10 46	10 10 46	6 10 10 46
70 54	2	2	2	70	2	56	35		*	103		38		38	46 38	61 46 38	58 61 46 38	35 58 61 46 38
18 17		2	2	17	2	16	12			20		14	4.5 14		45	17 45	16 17 45	12 16 17 45
1.8 2.3			~	1.5		2.3	2.0		de -	1.3		2.8	45 2.8	2	45 2	2.1 45 2	2.5 2.0 2.2 2.1 45 2	2.0 2.2 2.1 45 2
12	12			7.1	80	23	00	5	15	80		7	39 7	-	-	39	14 39	8 14 39
63	69		2	R	53	115	55	34	85	61		97	39 46			39	71 39	53 71 39
16	16		2	3	17	24	19	13	24	14		16	39 16			39	18 39	17 18 39
1.8 10 11	-		11	2	2.4	1.0	2.4	2.5	1.9	2.0	-	2.5	39 2.5	2	2	39 2	2.4 2.4 1.7 39 2	2.4 1.7 39 2
24 18	24	22	12			24	14			6		17	50 17	-	50	22 50	23 22 50	14 23 22 50
120 97	120	17	70 1			104	06			65		93	50 93		99 50	50	111 99 50	89 111 99 50
25 23	25	28	19			26	20		1	19		24		24	49 24	24 49 24	26 24 49 24	20 26 24 49 24
1.0 1.3	-	1.3	1.6			1.1	1.5	1		2.0		1.6	49 1.6		67	1.1 49	1.5 1.2 1.1 49	1.2 1.1 49
18 14	18	20		11		19	16		12	18		11		11	41 11	14 41 11	19 14 41 11	16 19 14 41 11
96 95	96	96	s)	82	×.	107	100	~	75	100	H	72 1(72	41 72	97 95 41 72	95 41 72	100 97 95 41 72
23 22	23	24	St. Y	23		23	20		23	23		17		17	41 17	22 41 17	24 22 41 17	20 24 22 41 17
1.4 1.6	-	1.3		2.0		1.3	I.3		1.9	1.4		1.6	41 1.6		41	1.6 41	1.6 1.3 1.4 1.6 41	1.3 1.4 1.6 41
6 9 9	5	13	11	4	00	80	11	3	9	2		80	560 8	-	560	9 560	6 9 560	10 6 9 560
28 46 43	30 28	64	57	21	40	43	54	16	32	27		44	560 44	-	560	45 560	29 45 560	50 29 45 560
12 15 15	7 12	20	17	6	14	13	16	7		10		14	522 14		522	15 522	11 15 522	16 11 15 522
3.0 1.9 1.9	1.5 3	1.7	1.7	2.8	1.8	1.9	1.6	2.4		2.1		1.9	522 1.9		522 1.	1.9 522 1.	2.0 1.7 2.5 1.9 522 1.	1.7 2.5 1.9 522 1.
12	12			80			12	6	80	4	1	6	437 9	-	-	437	10 437	12 10 437
56	56			46			62	36	40	22		45		45	45	437 45	51 437 45	62 51 437 45
14	14			12			17	15	14	6		14	436 14			436	13 436 1	17 13 436 1
1.1	_			1.5			1.5	1.7	2.1	2.7		1.8	436 1.8			1.3 436	2.0 1.5 1.3 436	1.5 1.3 436

- 47 -

egory.
cat
rating
Infestation
by
1021-3
and
66
lots
ir p
grand fir
Ifested
y in
heavil
for
se measurements
tre
Average
Appendix III-B.

Plot	Year	Tree	Ma	ujor ra	Major rating system <mark>-</mark>	ystem-/								Second	Secondary rating system ^{2/}	vine sv	rstem-						
.ou		data	A	B	U	D	No. of trees	1	2	3	4	5	51	6	61	7	7*	8	81	6	10	11	No. of 12 trees
66	1965	qph	10	14	17	13	161	10	11	10	6	12	18	14	12	31-		6		18	10		
		ht	60	71	73	67	152	51	63	72	54	67	73	74				35		62	70		-
		CW	17	20	18	18	160	16	17	14	18	20	19	20	15			19		29	12		_
-		cw/dbh	1.9	1.5	1.3	1.4	160	2.2	1.8	1.4	2.2	1.6	1.3	1.5	1.3			2.2		1.6	1.2		160
66	1970	dbh	12	11	11	11	115	11	12	24	16	∞	80	12	13			8.1	10	11			115
		ht	63	60	65	61	107	48	99	105	77	77	44	69	71			2	71	61			107
		CW	18	19	17	12	115	21	18	24	18	18	16	20	18				14	12			115
		cw/dbh	1.7	2.0	1.7	1.1	115	2.1	1.7	1.0	1.4	2.7	2.7	1.7	1.5			2	1.4	1.1			115
1021-3	1966	dbh	12	12	6	10	133	13	8		3.41	14	œ	5	2	14	6	80	11	11	5	13	12 126
		ht	68	74	57	59	128	74	51		12	80	45	56	33	72	57		73	58	34	87	77 122
		CW	17	17	12	15	123	19	13		2	17	12	13	10	18	8	22	13	16	10	21	17 121
		cw/dbh	1.9	1.8	2.5	2.2	123	1.8	2.0		-	1.5	3.0	2.8	3.1	1.3	2.0	2.7	1.4	2.4	2.6	1.6	1.2 121

<u>1</u>/ A-D = uninfested to heavy. <u>2</u>/ 1-12 = uninfested to heavy; like numbers are equivalent.

Tree Major rating system Secondary rating system data A B C D No. of trees 1 2 3 4 5 5' 6 6' 7 7' 8 8' dbh 8 7 11 7 143 8 5 11 7 10 6' 7 7' 8 8' ht 35 29 47 33 141 38 20 87 43 32 50 22 55 24 14 30 cw/dbh 1.7 1.9 1.4 1.9 1.7 1.9 1.4 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.4 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0																								
a A B C D Vec. of trees 1 2 3 4 5 5' 6 6' 7 7' 8 8' 8 7 11 7 143 8 5 12 11 7 11 6 13 7 5 10 9 11 12 11 139 10 6 9 14 30 22 55 24 14 30 9 11 12 11 139 10 6 9 17 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Plot Ye			jor ra	ting s	ystem-1/	19	8	0	2	8	1	Ø.	Seco	ndary	ratin	g syst	em ⁻ /	0	S	193	K.		
	.00	data		8	U	D		1	2	3	4	5	51	9	.9	7	٦.	80	8	6	10	11	12	No. of trees
	2261-2 19		80	7	11	7	143	ø	2	12	11	7	11		13		7	5	10	6	9	16		143
cw 9 11 12 11 139 10 6 9 4 11 12 11 14 9 17 10 cw/dbh 1.7 1.9 1.4 1.8 139 1.7 1.9 0.9 1.2 1.8 1.4 2.0 1.9 1.3 3.3 1.0 dbh 1 7 8 95 1.7 1.9 0.9 1.2 1.8 1.4 2.0 1.9 1.3 3.3 1.0 ht 1 7 8 95 1.7 1.9 0.9 1.2 1.8 1.4 2.0 1.9 1.3 3.3 1.0 ht 1 32 35 95 1 1 46 7 12 50 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 <		ht	35	29	47	33		38	20						55					30	28	67		141
cw/dth 1.7 1.9 1.4 1.8 139 1.7 1.9 0.9 1.2 1.8 1.4 2.0 1.9 1.3 3.3 1.0 dbh 7 8 95 1.7 1.9 0.9 1.2 1.8 1.4 2.0 1.3 3.3 1.0 ht 7 8 95 7 8 95 7 8 50 21 50 21 50 21 50 21 $6w$ 20 21 8 50 21 8 50 21 8 50 21 8 $6w$ 10 12 8 10 12 8 10 10 12 8 10 10 12 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <		CW	6	11	12	11	139	10	9	6					14					11	6	21		139
	9	cw/db		1.5	1.4	Γ.	139	1.7	1.9	0.9	1.2	1.8	1.4	2.0	1.9			3.3	1.0	1.9	1.8	1.4		139
32 35 95 46 50 21 9 11 95 12 8 12 8 dbh 1.8 1.7 95 1.7 1.5 1.9	261-2 19			-	2	80	95	1.8	88	26	28	2 Q A	10	44	08	0	12	88	5	6	9	80	7	95
9 11 95 12 8 dbh 1.8 1.7 95 1.7 1.5 1.9	-	ht			32	35	95			1	ε		46	1	12		50			52	14	38	33	95.
1.8 1.7 95 1.7 1.5	_	CW	_		6	11	95						12				12			11	80	11	11	95
		cw/dbł	q		1.8		95						1.7				1.5		1.9	1.3	2.3	1.7	1.8	95

Appendix III-C. Average tree measurements for heavily infested alpine fir plots 2261-2 by infestation rating category.

 $\frac{1}{A-D}$ = uninfested to heavy.

 $\frac{2}{1-12}$ = uninfested to heavy; like numbers are equivalent.

Appendix IV-4.

Tree	Plot no.	Total no.	Morta	lity
species		of trees	No. of trees	%
Amabilis	6	50	2	4.0
fir	7	50	0	0.0
	10	50	4	8.0
	11	50	3	6.0
	104	296	12	4.1
	105	120	9	7.5
	106	260	4	1.5
	107	174	1	0.6
	108	107	0	0.0
	201	26	1	3.8
	208	139	1	0.7
	209	382	8	2.1
	210	126	5	4.0
	211	34	0	0.0
	213	188	15	8.0
	215	91	3	3.3
	216	109	19	17.4
	217	97	7	7.2
	218	26	4	15.4
	219	106	3	2.8
	222	65	1	1.5
	223	82	1	1.2
	All plots	2628	103	3.9
Alpine fir	212	147	1	0.7
Grand fir		0.0	0.0	0.0
Total, all	species	2775	104	3.7

Appendix IV-A. Tree mortality on study plots experiencing no aphid attack, 1960-1970.

Tree species	Plot no.	Total n of tree			ality sed by nid	Other Mortalit	=y
2	No. of trees	8	30 .0	No. of trees	%	No. of trees	%
Amabilis	2	48		11	22.9	5	10.4
fir	4	50		2	4.0	7	14.0
	8	50		5	10.0	4	8.0
	12	26		10	38.5	4	15.4
	103	128		0	0.0	0 21	0.0
	204	131		3	2.3	13	9.9
	206	108		0	0.0	2 2	1.9
	220	48		3	6.2	2030	0.0
	224	29		2	6.9	2050	0.0
	225	113		0	0.0	9	8.0
	227	96		0	0.0	18	18.8
	228	44		5	11.4	0	0.0
	229	116	Å	0	0.0	0	0.0
0.0	All plots	987	51	41	4.2	62	6.3
Grand fir	101	41	59	0	0.0	0	0.0
Alpine fir	0 -	0 63.0	91	0	0.0	0	0.0
Total, al	ll species	1,028	11	41	4.0	62	6.0

Appendix IV-B.	Tree mortality on	study plots	experiencing	light aphid	
	attack, 1960-1970	0			

Tree species		Plot no.	Total no. of trees		cau	tality used by whid	Othe morta	
		io, of trees		0.0 997	No. of trees	%	No. of trees	%
Amabili	s fir	1	62		0	0.0	0	0.0
		3	60		27	45.0	5	8.3
		5	50		2	4.0	3	6.0
		9	50		11	22.0	2	4.0
		13	60		23	38.3	7	11.7
		14	610		41	6.7	129	21.1
		202	124		28	22.6	4	3.2
		203	136		3	2.2	5	3.7
		205	167		26	15.6	2	1.2
	9.0 15,8	A11 plots	1,319	6	161	12.2	157	11.9
Grand	0.0	99	173	6	4	2.3	12	6.9
fir		100	102		4	3.9	5	4.9
		102	136		51	37.5	0	0.0
	a.a	A11 plots	411	0	59	14.4	17	4.1
Alpine fir	9,,9	226	144	0	91	63.2	0	0.0
Total,	all sp	ecies	1,874		311	16.6	174	9.3

Appendix IV-C. Tree mortality on study plots experiencing heavy aphid attack, 1960-1970.

Tree species	Year	Total no. of trees examined	Mortali caused l aphid	by	Othe: mortal:	ity
100 No. 20		0 0 0 0 0 0	No. of trees	%	No. of trees	%
Amabilis fir	1961	200	-	-	1 1 1	0.5
	1962	199	-	-	3	1.0
	1963	195	- 621	-	3	1.6
	1964	94	- 021	-	0	0.0
	1965	142		-	1	0.7
	1966	2,110	- 194	-	11	0.5
	1967	462	- 147 - 147	-	2	0.4
	1968	1,841	- 635 -	-	54	2.9
	1969	390	- 2.4	-	10	2.6
	1970	1,304	-		18	1.3
Average for 1	0 years	3			Average	1.2
Alpine fir	1966	147	-	-	0	0.0
	1968	0.0 147	_ 64	62	1	0.7
	1970	146	-	-	0	0.0
Average for 5	years					0.2

Appendix V-A. Annual tree mortality on study plots experiencing no aphid attack.

Tree species	Year	Fotal no. of trees examined	car	rtalit used b aphid		mort	ther ality
1 1	No. o	No . of brees	No. o trees		%	No. of trees	E %
Amabilis	1961	174	4		2.3	2	1.1
fir	1962	168	4		2.4	6	3.6
	1963	158	6		3.7	2	1.3
	1964	150	1		0.7	4	2.7
	1965	145	5		3.4	2	1.4
	1966	481	1		0.2	5	1.0
	1967	347	6		1.7	4	1.2
	1968	432	8		1.8	19	4.4
	1969	325	0		0.0	7	2.2
	1970	566	6		1.1	11	1.9
	Averag for 10				1.7	10 years	2.1
<u> </u>	years	 		167		3.55	713 0010
Grand fir	1966	41	0		0.0	0	0.0

Appendix V-B.	Annual tree mortality on study plots experiencing light	
	aphid attack.	

Tree species	Year	Total no. of trees examined	Mortality caused by aphid		Other mortalit	у	
			No. of trees	%	No. of trees	%	
28	21	50- 29	29	62	38	1	61
Amabilis fir	1961	222	0	0.0	001	0.5	
tir	1962	282	3	1.1	4	1.4	
	1963	212	1.1	0.5	4	1.9	
	1964	207	1	0.5	6	2.9	
	1965	805	8	1.0	51	6.3	
	1966	1151	8	0.7	4	0.4	
	1967	932	22	2.4	20	2.1	
	1968	257	50	19.4	2	7.8	
	1969	668	53	7.9	63	9.4	
	1970	205	15	7.3	2	1.0	
	Average for 10 years	74 10	4 159	4.1	100 5 74	3.4	-
37	30 10	41 14	23	52	48	1	64
Grand	1965	275	1	0.4	17	6.2	
fir	1966	396	8	2.0	0	0.0	
	1968	385	21	5.4	0	0.0	
i s	1970	342	29	8.5	0	0.0	
	Average for 6 years	38 17 42 23 50 5	33 36 39	2.7	43 75 36	1.0	
Alpine	1967	144	5	3.5	0	-[0.0	
fir	1968	139	6	4.3	0	0.0	
	1969	133	51	38.3	0	0.0	
	1970	92	29	31.5	0	0.0	
	Average for 4 years	56	5 498	19.4	80 5 9 2	0.0	

Appendix V-C. Annual tree mortality on study plots experiencing moderateheavy aphid attack.

Year	Domin-	01	itly	inte	ested	l plots	Model	ately	-near	vy ini	ested pla
	ance <u>1</u> / classes <u></u>	A2/	В	C	D	No. of trees	A	В	С	D	No. of trees
	0.68	IJ				89511					
1961	1	38		62		29	50	29	21		28
	2	51		49		53	78	10	12		40
	3.03	90		10		39	93	4	4		56
	4	93		7		44	94		6		34
	5	100				5					
	1-5	70		30		170	82	9	9		158
1962	1	46	4	50		26	55	11	29	5	38
1902	2	71	4	23	2	52	86	6	8	1965	66
	3	82	4	18	4	39	90	6	4		70
	4	82 98		2		44	90	0	4		41
				2			93		'		41
	5	100	0	20		5	0.0	6	10	-	015
	1-5	78	2	20	1	166	83	6	10	1	215
1963	*. [®] 1	42	4	54		26	51	10	28	10	39
	2	61	4	35		51	78	9	9	3	65
	3	82		18		39	78	15	3	3	65
	4	100				39	83	3	14		36
	5	100				4					
	1-5	74	2	25		159	74	10	12	4	205
1964	1	48		52		23	41	14	30	16	37
	2	55	2	43		40	69	10	16	5	61
	2 3	81		19		37	78	10	10	3	63
	4	100				39	77	3	20		35
	5	100				5					
	1-5	74	1	25		144	68	9	17	6	196
	0.0	0	-	2 10		0.0		0.3.0		10.00	
1965	1	50		50		22	15	10	39	37	41
2000	2	45		55		33	38	17	34	12	101
	3	75	3	22		36	42	23	20	14	277
	4	36	8	56		39	50	5	41	5	313
	5	100	0	50		4	50	5	41	5	210
	1-5	53	3	44		134	43	14	32	11	732
10//		0.0		•		10	0.0			10	101
1966	1	90	2	8		40	38	6	41	16	101
	0.02	81	3	12	4	113	46	8	36	11	224
	3	93		7		104	52	12	23	13	405
•	4	98	1	2		236	70	2	26	2	409
	5	80		20		5					
	1-5	92	1	6	1	498	56	7	28	9	1139

Appendix VI-A. Per cent amabilis fir in each dominance class by treeinfestation rating and year. Appendix VI-A - Concluded

by tree-infestation ratiog and infestation ratiog and

Year	Domin-	Lig	htly	inf	ested	plots		Mode	eratel	y-he	avy inf	ested	p101
do, o trees	ance <u>1</u> / classes	A2/	B	С	D	No. of trees	0	A	B	С	D	No. o trees	
1967	1	70	6	21	2	47		25	25	35	15	40	
	2	83	6	10	1	89		38	29	19	14	110	
	3	95	2	2	2	57		40	19	27	14	251	
	4 5	85	5	9		74		65	1	31	3	280	
	5 1-5	84	5	10	1	267		49	14	28	9	681	
1968	1	88		12		60		32	29	29	11	28	
	2	88	7	5		118		49	24	22	6	51	
	3	89	9	2		125		45	24	21	10	82	
	4	88	12			220		61	7	25	7	44	
	5	100				9							
	1-5	89	8	3		532		48	21	23	8	205	
1969	ac 1 cc	86	7	7		44		75	6	19		36	
	2	87	12	1		67		89	3	8		91	
	3	83	13	2	2	48		97	2	1		223	
	4	98	2			49		100		1		201	
	5												
	1-5	88	9	2	1	208		95	2	3		551	
1970	1	70	1	24	4	67		39	11	43	7	28	
	2	82	3	12	2	120		19	2	68	11	53	
	3	85	3	9	3	128		66	6	23	5	83	
	4	89	8	2	1	239		90	3	8		39	
	5	71		29		7							
	1-5	84	5	9	2	561		55	5	34	6	203	

<u>1</u>/ Dominance classes = 1, dominant; 2, codominant; 3, intermediate; 4, suppressed; 5, open.

 $\frac{2}{A-D}$ = uninfested to heavy tree infestation ratings.

vbado te

/ A-D = uninferred to heavy tree inferration coulags.

Year		Domin-			rabal	Gran	d fir	bedag	vi the	44	Alpine	fir	Year
30	o. ree	ance <u>1</u> / classes	0	A ² /	B.	С	D	No. o trees	A	В	С	D	No. o trees
1965		1 21		32	55	· 5	9	22					1967
		2		46	44	2	7	84					
		3		64	24	10	2	58					
		4		72	10	11	7	71					
		5		55	36	5	5	22					
		1-5		57	30	7	6	257					
1966		1		44	28	13	15	39					
		2		53	18	15	14	131					
		3		56	19	12	12	89					
		4		60	8	25	8	105					
		5		82	18			22					
		1-5		56	17	16	11	386					
1967		1									22	78	9
		2									35	65	17
		3									12	88	24
		4									26	74	38
		5									43	57	7
		1-5									25	75	95
1 9 68		1		62	32	3	3	34	54	8	38		13
		2		62	29	6	3	111	52	12	28	8	25
		3		65	24	5	6	79	39	37	15	10	41
		4		75	10	11	3	-87	68	16	11	5	57
		5		88	12			17	14	43	29	14	7
		1-5		67	22	7	4	328	53	22	18	7	143
1969		1		61	39			18		8	69	23	13
		2		64	30	6	S. cedi	33	24		29	48	21
		5		64	16	8	12	25	3		19	78	37
		4 5		64	14	23		22	5		22	73	55
				()	01	9	langes1	00	o bez	-	43	57	7
		1-5		63	24	9	3	98	7	1	28	65	133
1970		1		87	7		7	15			12	88	8
		2 3 4		50	20	20	11	66			27	73	15
		3		69	12	18		49			5	95	22
		4		73	10	16	2	63			19	81	31
		5		88	12			17			17	83	6
		1-5		67	13	15	4	210			16	84	82

Appendix VI-B. Per cent grand and alpine fir trees in each dominance class by tree-infestation rating and year for moderately-heavy infested plots.

1/ Dominance classes = 1, dominant; 2, codominant; 3, intermediate; 4, suppressed; 5, open.

2

2/A-D = uninfested to heavy tree infestation ratings.

Appendix VII. Comparison of Site Criteria with Balsam Woolly Aphid Infestation for Amabilis Fir Plots Within Infestation Boundary.

Site	VM VM/B B B/RO RO	
% Amabilis fir	0- 26- 51- 76- 25 50 75 100	- 0 0 0 - 0 - 0 - 0 0 0 0
Aspect	E SE S SW W NW N NE Flat	о о о о о о о о о о о о о о
Elevation (ft)	0 - 501- 1001- 1501- 2001- 2501- 3001- 500 1000 1500 2000 2500 3000 3500	н о о о о о о о о о о о о о о о о о о о
	Plot	2110 2110 2110 2110 2110 2110 2110 2110

01- E SE S SW W NW 00	I I		
501- 1001- 1501- 2001- 2501- 3001- 1000 1500 2000 2500 3000 3500	217 218 220 222 223 223 224 225 224 1		
	E SE S SW W	001 3001- E SE S SW N N F1at 0- 000 35000 - - - - - 25 0 - - - - - - - 0 - <	001 3001- E SE S SW N N F1at 0- 000 3500 - - - - - 25 0 - - - - - - - 0 - <t< td=""></t<>

Appendix VII. (Concluded)

ł

3

- 60 -