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ABSTRACT 
Rather than attempt to remotely identify specific benthic habitats with similar 

optical properties, a more appropriate use of available satellite technology may be to 
examine benthic homogeneity of a coral reef ecosystem with the hypothesis that a 
healthy reef will display great heterogeneity, but a dead algae-covered reef will be 
relatively homogeneous.  Such an approach to ecosystem analysis could prove to be 
efficient with respect to time, human resources, and data storage, and would produce 
results that could be directly applied to a realistic management scheme with “minimal 
regrets”.  A measure of spatial autocorrelation, the Getis Statistic, used in a case study 
of SPOT imagery shows potential in evaluating the well-being of a coral reef 
ecosystem.   
 
INTRODUCTION 

Over the past decade, there have been increased efforts to establish better 
management and conservation measures to protect the diversity of the biologically 
rich areas of coral reefs and related benthic habitats.  Remote sensing can be used as a 
management tool to map and monitor the geographic extent of coral reefs to a limited 
degree with available satellite imagery, given the spatial, spectral, radiometric and 
temporal resolution limitations.  While currently available satellite sensors have 
global mapping and monitoring capabilities, the accuracy and precision attainable 
when applied to reef ecosystems is relatively low due mainly to the large pixel size 
and broad spectral bandwidths.  Because of the deteriorating global state of coral reef 
and related benthic ecosystems, however, waiting for the ideal technology for 
accurate and precise imaging of submerged benthic habitats is not realistic.   

Instead, there is a need to utilize the available imaging technology, assess the 
accuracy and acknowledge the limitations.  SPOT HRV, Landsat TM and possibly 
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SeaWiFS data are viable options since they provide moderate spatial and spectral 
resolution in the visible wavelengths while covering large geographic areas at regular 
time intervals.  The spectral resolution of these sensors is limiting if optically similar 
substrates, such as healthy coral and algae-covered surfaces, need to be discriminated 
due to the small number of broad wavebands, however little conclusive research has 
been conducted to examine the optimal spectral resolution requirements for bottom 
type detection (See Hardy et al., 1992; Myers et al., 1999; Holden and LeDrew, 1998 
and 1999; Clark et al., 2000; Holden and LeDrew, 2000).  Additionally, the spatial 
characteristics are limiting if small features, such as discrete coral heads, need to be 
definitively located since the pixel sizes are relatively large compared to the size of 
common coral reef features (techniques such as sub pixel feature identification could 
minimize this limitation).  Similarly, satellite technology may not be appropriate if a 
high temporal resolution data set is required to examine rapid changes because of 
infrequent revisit times and cloud-cover issues.  The alternative is to conduct (often 
prohibitively) expensive and logistically complex hyperspectral airborne surveys at a 
higher spatial, spectral and temporal resolution, which may not be operationally 
feasible in the developing regions in which coral reefs are found.   

Analysis of in situ hyperspectral data has produced encouraging results in the 
discrimination of common and optically similar coral reef features such as healthy 
corals, bleached corals, sea grass, and algae-covered surfaces (Holden and LeDrew, 
1998, 1999, 2000; Hardy et al., 1992; Myers et al., 1999; Clark et al., 2000), but at the 
present time, such high spectral resolution data is unavailable from a satellite 
platform.  Furthermore, analysis of simulated coarse spectral resolution data reveals 
that the discrimination possible with hyperspectral reflectance is not possible with 
multispectral data (Holden and LeDrew, 2000).   

An appropriate approach to using available satellite imagery to monitor coral 
reef ecosystems is the use of benthic homogeneity as indicated by spatial 
autocorrelation to evaluate the ecosystem (LeDrew et al, 2000).  Spatial 
autocorrelation is defined as the situation where one variable (reflectance value of a 
pixel in this case) is related to another variable located nearby (surrounding pixels).  
Spatial autocorrelation is useful since it not only considers the value of the pixel 
(magnitude of reflectance), but also the relationship between that pixel and its 
surrounding pixels.  Our hypothesis is that a healthy coral reef ecosystem will be 
heterogeneous, but a dead, algae-dominated coral reef will be relatively spatially 
homogeneous.  This approach does not necessarily facilitate direct identification of 
substrate type, but it does allow for fast assessment of changes in ecosystem 
composition over a large geographic area if a time series of imagery is available.  The 
results of such an approach utilizing currently available satellite technology may 
contribute to more effective management of coral reef resources.   

The specific objective of this paper is to perform a case study using a local 
indicator of spatial autocorrelation (the Getis Statistic) based on SPOT imagery of 
Bunaken National Marine Park, North Sulawesi, Indonesia.  This case study is 
performed to examine the feasibility of using measures of spatial homogeneity to 
evaluate benthic habitat.  The accuracy of the Getis Statistic approach is estimated 
based on familiarity with the study site and field data collection during time of 
satellite image acquisition (1997 and 2000).   
 
METHODS 

Measures of spatial autocorrelation indicate the strength of the relationship 
between values of the same variables, and may be either global or local in nature 



  

(Goodchild, 1986).  Global measures provide a single value that indicates the level of 
spatial autocorrelation within the variable distribution, while local measures provide a 
value for each location within the variable distribution.  Local indicators of spatial 
autocorrelation, such as the Getis statistic used here, are therefore able to identify 
discrete spatial patterns that may not otherwise be apparent by quantifying the spatial 
dependence between each pixel and a surrounding kernel of defined pixel dimensions 
(Wulder and Boots, 1998).   

The Getis Statistic was first developed for application to point data, and has 
proven appropriate for identifying spatial “hotspots” (Getis and Ord, 1992).  One form 
of the Getis statistic, G i

 *, has been modified and successfully applied to analysis of 
remotely sensed data at a range of spatial scales (Wulder and Boots, 1998; Derksen et 
al., 1998).  The calculation of G i

 * using predefined window sizes surrounding a 
central pixel make it suitable for investigating the distance at which maximum spatial 
autocorrelation occurs.  For its first application to remotely sensed imagery, Wulder 
and Boots (1998) provide a thorough description of G i

 *, and conclude that its ability 
to assess the strength of inter-pixel relationships, as well as the magnitude of spatial 
autocorrelation is valuable for digital image analysis.  The equation for G i

 * is: 
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where jijj xdw )(∑  is the sum of the variates within distance d of observation i 
(including i), *iW  is the count of the pixels within distance d of pixel i, x is the mean 
of the entire scene, s is the global standard deviation (entire scene), and n is the total 
number of pixels in the image.   

The output values from the above equation can be interpreted similar to 
standardized Z scores.  The largest G i

 * value for all distances (d) considered 
represents the maximum spatial autocorrelation.  If the maximum Gi

* occurs when the 
window size is small (i.e. 3x3 pixels), then maximum autocorrelation covers a small 
area, but if maximum Gi

* corresponds to a large window size (i.e. 9x9 pixels), then 
maximum autocorrelation extends to a larger area.  A cluster of high pixel values is 
represented by a large positive Gi

* value, while a cluster of low pixel values is 
indicated by a negative Gi

* value.   
SPOT HRV imagery (August 1997 and July 2000) of Bunaken National 

Marine Park, North Sulawesi, Indonesia is used for the case study based on spatial 
autocorrelation.  A common subset of a coral reef within the park was selected from 
the atmospherically corrected (ACORN Atmospheric Correction extension to ENVI) 
and georeferenced image for the case study corresponding to a region in which 
extensive fieldwork was performed.  For each SPOT band, four distances were 
considered in the calculation of Gi*: d=1, d=2, d=3, and d=4, representing 
increasingly larger kernels or windows.  These distances refer to window sizes of 3x3, 
5x5, 7x7, and 9x9 respectively.  The resultant Gi* values for each pixel are compared 
and the largest value retained to compile a Max Gi* image: the larges Gi* value for all 
distances represents the maximum spatial autocorrelation.  A general overview of the 
spatial dependence characteristics of the data is provided by this Max Gi* image, 
which illustrates clusters of high and low digital numbers.  Next, for each pixel, the 
distance at which the Max Gi* occurs is identified; for pixels where Max Gi* occurs at 
d=1, spatial dependence is local and the region can be considered heterogeneous, and 



  

for pixels where Max Gi* occurs at d>1, spatial dependence is not local therefore the 
region can be considered homogeneous.   
 
RESULTS 

Because identification of specific substrate type may not be the most 
appropriate and reliable use of available coarse spatial and spectral resolution satellite 
images, an alternative approach is needed to address the immediate problem of 
rapidly changing coral reef ecosystems worldwide to aid management of resources.  
The approach that is tested here is one based on spatial autocorrelation.  The 
hypothesis is that a healthy reef will display relatively great spatial heterogeneity due 
to the diverse bottom types and benthic habitats, but an unhealthy coral reef will 
display spatial homogeneity if it is bleached or colonized by macroalgae.  This 
indirect approach to evaluating the overall well being of coral reef ecosystems has the 
strength of allowing quick and straight forward change detection based on increasing 
or decreasing diversity/heterogeneity of bottom cover and is not reliant upon substrate 
identification.   

For each band of the SPOT imagery, a series of calculations must be 
performed to use the Getis statistic to investigate the spatial autocorrelation within the 
region of interest.  The first examination will be of the derived Max Gi* value, which 
is determined by finding the largest Gi* value among those calculated for the four 
distances (d=1, d=2, d=3, and d=4) for each pixel.  This derived image is found by 
comparing Gi* for all kernels and assigning the largest value of Gi* to the central 
pixel of the kernel.  A high Max Gi* magnitude indicates a cluster of high digital 
number values, while a low Max Gi* magnitude indicates a cluster of low digital 
number values.  Max Gi* results for SPOT bands 1 and 2 of the 1997 and 2000 
imagery of Bunaken Marine Park are shown in Figure 1 (SPOT band 3 is excluded 
due to its comparative inability to penetrate the water).  The land is masked out of the 
subscene (shown in black in Figure 1) and not included in the calculations.   

The largest Gi* value (i.e. Max Gi*) for all distances represents the maximum 
spatial autocorrelation such that a cluster of large positive Gi* values reveals high 
pixel values while a cluster of lower Gi* values reveals low pixel values.  For both 
years, there is great homogeneity observed over the deep-water areas indicated by the 
extensive Gi* values of zero.  There are observable clusters of relatively high Gi* 
values (Gi* > 37) indicating a conglomeration of high digital number pixel values; 
this area corresponds to a shallow water zone, which is often exposed at low tide and 
consists of highly reflective sand and dead coral debris.  Surrounding the land mass is 
a zone of moderate Gi* values (20 < Gi* < 37) revealing areas of maximum spatial 
autocorrelation between midrange digital numbers; this zone contains healthy coral 
and a great diversity of benthic habitats.   

The next step is to identify exactly which distance (d) produces the Maximum 
Gi*.  If the Max Gi* is found at a small distance (d=1 kernel), then spatial dependence 
is local and similar values are found within close proximity.  If Max Gi* occurs at a 
greater distance (d>1 kernel), then similar pixel values can still be found when larger 
distances are considered: the spatial dependence is not local.  A single binary image 
for each SPOT band can be used to visualize the spatial autocorrelation (Figure 2).  
Interpretation of the images in Figure 2 reveals areas that have shifted from a 
relatively heterogeneous to a homogeneous surface as well as areas that have shifted 
from a relatively homogeneous to a heterogeneous surface.  Examination of the 
“distance” images for SPOT band 1 reveals that the shallow coral reef area in the 
south west quadrant has experienced only a very slight shift from a relatively 



  

heterogeneous healthy reef to a more homogeneous algae-dominated reef, which is 
confirmed by our observations during field data collection in 1997 and 2000.   
 
CONCLUSIONS 

There are several limitations to the use of satellite imagery in monitoring 
submerged coral reef ecosystems, but given the rapid rate at which coral reefs are 
reportedly degrading, it is necessary to accept the errors and acknowledge the 
restrictions.  Significant mixing of several different substrate types within the 
relatively large pixels of SPOT HRV images (20x20m) compounds the issue of 
classification inaccuracy.  Other complicating factors include the effects of 
attenuation and multiple scattering from the overlying water column (Holden and 
LeDrew, In Press), refraction of light at the air-water interface, scattering and 
absorption in the atmosphere, and effects of the variable morphology of the substrate 
with respect to slopes and self-shading.   

The interpretation of a derived spatial autocorrelation image based on the 
Getis Statistic is a simple matter of understanding the series of basic calculations.  A 
measure of spatial autocorrelation, Gi*, is calculated for the central pixel of kernels of 
increasingly larger size; following this, a single image is compiled whereby for each 
pixel, for each band, the largest value of Gi* is assigned (Max Gi*).  This image 
reveals the actual value of the Max Gi* for each pixel whereby the magnitude of Gi* 
provides the interpreter with information regarding the magnitude of reflectance of 
the particular cluster.   

The final step in the process is to answer the question: at which distance, or 
kernel size, is the Max Gi* found?  This information allows the interpreter to take the 
analysis one step further and determine if the spatial dependence is local or spatially 
extensive.  The interpreter can determine the degree of spatial dependence based on 
the distance at which the Max Gi* is found such that if it is found when the kernel 
size is small (d=1) then dependence is local in nature, but if it is found with the kernel 
is large (d>1), then dependence is not as local and can be considered spatially 
extensive.  This provides the information for the interpreter to infer if the degree of 
homogeneity or heterogeneity extends over a large or a small area.  The main benefits 
of this approach are that it results in an increased dynamic range of pixel values; it 
creates an image in which the values are normally statistically distributed; and 
produces an easily interpretable image to be used as an effective visualization tool.   

The case study utilizing readily available satellite imagery based on spatial 
autocorrelation has produced encouraging results.  The next stage will be to 
operationally use change in spatial autocorrelation to evaluate management decisions 
within Bunaken National Marine Park, North Sulawesi, Indonesia.  For example, 
zones of limited use have been defined for the park such as “No Take” and 
“Recreational Use” and it would be useful to know the extent to which these zones are 
aiding reef recovery or resulting in reef degradation.  Significant logistical 
improvements will be made to the methodology once the approach is operational: (1) 
more thorough atmospheric correction using ENVI ACORN software; (2) water 
column correction using radiative transfer model Hydrolight 4.1 combined with 
rasterized bathymetric data and vertical optical water column measurements.   

This approach to image analysis is appropriate for change detection such that 
the interpreter can determine (1) the degree of spatial autocorrelation (whether 
homogeneous or heterogeneous), and (2) the area affected (whether spatially 
extensive, or local in nature).  Furthermore, the approach is superior to change 
detection based on magnitude of reflectance alone because of the value added 



  

information of spatial autocorrelation.  A simpler approach to examining detection of 
heterogeneity versus homogeneity, such as variance based on a moving window, 
would be more useful to resources managers as it would be less time consuming and 
require less significant training.  Our results using simple image variance are inferior 
to those using Getis because with Gi* we have the ability to examine both 
autocorrelation as well as magnitude of reflectance.  This is an important additional 
source of information since a spatially cohesive patch of bright white sand could be 
discriminated from a spatially cohesive patch of dark algae-covered dead coral using 
magnitude of reflectance even if the degree of spatial autocorrelation is similar.   
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gure 1.  Maximum Gi* images for SPOT bands 1 and 2 in 1997 and 2000.  The size 
 this SPOT image subset is 256x256 pixels.   
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Figure 2.  Binary images indicating the distance at which Max Gi* was found for 
SPOT 1997 (top) and 2000 (bottom).  The size of this SPOT image subset is 256x256 
pixels.   
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Figure 1.  Maximum Gi* images for SPOT bands 1 and 2 in 1997 and 2000.  The size 
of this SPOT image subset is 256x256 pixels.   
 
Figure 2.  Binary images indicating the distance at which Max Gi* was found for 
SPOT 1997 (top) and 2000 (bottom).  The size of this SPOT image subset is 256x256 
pixels.   
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