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SUMMARY 

We assessed the performance of ten incidence-based estimators of tree species 
richness in simulated simple random sampling with fixed-area plots. Stem diameter-
limited tree species and location data came from two species-rich wet tropical forest 
compartments in Panama and India. Lower limits of stem diameter were 1 cm and 30 cm, 
respectively. Estimators varied widely in their estimates of richness and their rankings 
changed frequently across sites and sample designs. A gamma-Poisson estimator was 
overall best according to a performance score of three accuracy statistics and sample size. 
However, until corroborated by further studies Chao’s 1981 non-parametric estimator is 
recommended for forest inventories with fixed-area plots. 

Keywords: probability of occurrence, variance estimator, sample coverage, sample size, 
plot size, mixed-models. 
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INTRODUCTION 

An important indicator of sustainable forest development is the conservation of 
biological diversity (McDonald and Lane 2004). The number of tree species (richness) in 
our forests is a key component of this diversity. Obtaining an unbiased and precise 
estimate of the number of forest tree species currently growing in a region, state or 
country poses a challenge. Species lists compiled from historic data, anecdotal evidence 
or tree distribution maps may not reflect current reality (Guralnick and Van Cleve 2005). 
It is, of course, the rare tree species that pose the challenge. A direct monitoring or survey 
of the status of all rare species in each area of interest would provide the needed data but 
this option is rarely realistic (Acharya, Bhattarai, de Gier et al. 2000, Gimaret-Carpentier, 
Pelissier, Pascal et al. 1998, Green 1993, Venette, Moon, and Hutchison 2002, Yatracos 
1995). 

Existing forest surveys would ideally provide an estimate of the number of tree 
species in a population of interest. A long history of research on estimation of the number 
of species in an area (Arrhenius 1921, Evans, Clark, and Brand 1955, Fisher, Corbet, and 
Williams 1943) has provided us with a plethora of estimators and estimation procedures 
(for examples, Chao and Bunge 2002, Chazdon, Colwell, Denslow et al. 1998, Dorazio 
and Royle 2003, Skov and Lawesson 2000, Tackaberry, Brokaw, Kellman et al. 1997, 
and Walther and Morand 1998).  Each estimator rests on a set of assumptions about the 
population and the sampling protocol (Bunge and Fitzpatrick  1993). It is a common 
observation that estimates obtained from these estimators are sensitive to both the 
structure of the sampled population and the sample design (Brose, Martinez, and 
Williams 2003, Colwell, Mao, and Chang 2004, Keating, Quinn, Ivie et al.  1998). Rare 
species, easily missed in a survey, exert a disproportionate influence on the results (Link 
2003, Mao and Colwell 2005). Samples with a poor representation of rare species cannot 
be expected to yield reliable estimates of richness. It is generally recognized that the 
estimation problem is intransigent and that estimators are biased (Bunge and Fitzpatrick  
1993). 

Can we expect a forest survey - designed to provide accurate estimates of the area 
of different forest cover-type classes, wood volume, and biomass – to provide a reliable 
estimate of the number of tree species in a forest? Apparently the answer will depend 
both on the forest and the sample strategy (sampling design and estimation). Experience 
with sample-based estimation of tree species richness is limited. Schreuder, Williams, 
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and Reich (1999) assessed 10 modifications of Chao and Lee’s non-parametric  
estimators by sampling two large data sets with 4060 forest inventory plots from 
Missouri and 12260 from Minnesota, respectively. Sample sizes in the order of 500 to 
700 were deemed necessary to keep bias below 15%. Sample sizes of 80 produced a 
(negative) bias of about 40%. Palmer (1990 and 1991) investigated eight estimators in 
sampling (trees, forbs, and herbs) from 30 20 m × 20 m plots in the Duke Forest (North 
Carolina, USA) with 40 circular 2 m2 samples taken from each plot. The second-order 
jackknifed and the bootstrap (Smith and van Belle 1984) performed best in terms of 
accuracy and precision. Hellmann and Fowler (1999) simulated sampling with 5 m × 5 m 
plots within five forested 0.4 ha plots in Michigan. Bias of estimates obtained with 
jackknifed and bootstrap estimators depended strongly on sample size with a switch from 
negative to positive bias as the sampled area surpassed approximately 35% of the total 
area. The second-order jackknifed estimator was the best for low-intensity sampling (< 
10% of area sampled).  Gimaret-Carpentier, Pélissier, Pascal et al. (1998) compared the 
behavior of Chaos’ and the generalized jackknifed estimators of richness in two wet 
tropical forests under random and systematic sampling with cluster-sizes of 1, 10, 50, and 
100 trees. Chao’s estimator(s) were superior to the generalized jackknifed estimator(s) 
and systematic sampling was more efficient than random sampling. Cluster-size effects 
were restricted to designs with less than a total of 400 sampled trees.  Krishnamani, 
Kumar, and Harte (2004) reached a realistic estimate of 893 for the number of tree 
species in 60 000 km2 of the forests in the Western Ghats (India) from just 48 (0.25 ha) 
plots. An index of species similarity between a pair of plots was cast as a non-linear 
function of inter-plot distances and used in a plug-in formula for the species-area 
relationship. Excellent summaries of techniques and methods for assessing species 
richness have been given by, for examples, Chazdon, Colwell, Denslow et al. (1998), 
Condit, Hubbell, Lafrankie et al. (1996) and Tackaberry, Brokaw, Kellman et al. (1997). 
It is well known that only an intensive survey of a population can generate an accurate 
estimate of richness (for example Gimaret-Carpentier, Pélissier, Pascal et al.  1998). 

The objective of this study is to assess the performance (bias, precision, and 
accuracy) of six non-parametric and four model-based richness estimators in the context 
of a forest inventory. Based on the outcome of this assessment we discuss the pros and 
cons of attempting to estimate tree species richness from an inventory sample, and we 
make a recommendation for those who decide to produce an estimate of forest tree 
species richness from a forest inventory sample.  
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A forest inventory typically samples only a small fraction of a forest. Sample 
sizes are sufficient to estimate the mean or total of a quantitative trait with a desired 
accuracy and precision.  It is at these low sampling intensities that estimates of richness 
depends most on the chosen estimator and estimators are needed the most due to a 
considerable negative bias in the observed richness (Walther and Moore  2005). Our 
assessment of the estimators is based on simulated simple random sampling with fixed-
area plots in two tree species rich wet tropical forest compartments with a high frequency 
of rare tree species. Fixed-area plots are commonplace in forest inventories (Köhl, 
Magnussen, and Marchetti 2006). Simple random sampling with fixed-area plots affords 
unbiased estimates of stem inclusion probabilities. All information needed for an 
estimation of tree species richness are contained in the species incidence statistic (the 
number of sample plots containing a given species). Consequently only incidence-based 
estimators are considered (Fattorini in press, Hurlbert 1971). Estimators tailored towards 
a comparison of independent estimates of species richness (rarefaction) or temporal 
trends are beyond the scope of this study.  We also screened out estimators that are 
suitable only for large sample sizes, notably estimators based on species-area and 
species-accumulation curves (for example, Ugland, Gray, and Ellingsen 2003, and 
Dorazio and Royle  2005 for a further discussion of this point). 

Our final selection of incidence-based estimators of species richness has been 
based on a recent review (Walther and Moore 2005) and experience from a preliminary 
study. We anticipate that an estimator that does well on two species rich sites will also do 
well on sites with fewer tree species, although species richness can influence estimator 
performance (Walther and Morand 1998). 

A good estimator is one that across a range of sample sizes and a range of 
populations consistently produces estimates that are closest to the actual richness 
(Schreuder, Williams, and Reich 1999, Walther and Morand 2005). In our assessment we 
take the position that an estimator should have a low risk of producing and inflated 
estimate of richness. This position is based on a mix of statistical and practical 
implications of an inflated estimate. Not only does the standard error of a richness 
estimate increase in proportion to the estimate of the unseen number of species, but the 
reliability of this estimates declines at an exponential rate (Mao and Colwell 2005).  
Secondly, the credibility of a forest inventory agency can be irrevocably damaged if it 
produces an estimate that later has to be retracted as more information becomes available. 
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MATERIAL AND METHODS 

Data 

Two stem-mapped stand-level data sets will be used for the assessment of sample-
based estimators of species richness. The first is from the Kadamakal Reserve Forest 
(Kadagu District, Karnatiaka State, India) near the village of Uppangala in the Western 
Ghats mountain range (12º 30' N, 75º 39' W; 500-600 m altitude). The forest type is 
Dipterocarpus indicus-Kingiodendron pinnatum-Humboldtia brunonis (Pascal 1982). 
Within a 28 ha forest compartment five 20 m wide north-south oriented strips 100 m 
apart and 180 to 370 m long were inventoried (Pascal and Pélissier 1996). The species 
and the spatial location were determined for all trees with a diameter at breast height 
larger than 30 cm. In the inventoried area of 3.12 ha Pascal and Pélissier (1996) found 
1981 such trees (635 trees per ha) with a basal area of 39.7 m2 ha-1. Ninety-three species 
belonging to 31 families were identified in the five strips. An additional 12 species were 
seen in the 28 ha stand but not in the five strips. Figure 1 lends an impression of the 
species distribution in the five strips. Here the relative number of species is plotted 
against the relative number of 5 m × 20 m plots in which they occur. The distribution is 
typical of species rich wet tropical forests. Forty-six percent of the species were found in 
less than 1% of the plots and 90% in less than 13%.  On average a species was found in 
just 5% of the plots. One species was seen in 62% of the plots. Pascal and Pélissier 
(1996) estimated Simpson’s diversity index at 0.92 (i.e. about 92 pairs of trees selected at 
random out of a 100 are composed of different species) and that of Shannon’s at 4.56 
(compare to a maximum value of 6.54). The number of different species in a 100 m2 plot 
varied from a low of 0 in two empty plots to a high of 13 with a mean and median of 6 
(Figure 2).  We refer to this site as WGHAT in the results and the discussion. 

[FIGURES 1 AND 2 HERE] 

The second data set is from a rich old-growth stem-mapped wet tropical forest 
compartment dominated by Leguminosae and Bomabcaceae (area 1000 m × 500 m = 50 
ha) on the Barro Colorado Island in the Panama Canal (Condit, Hubbell, Lafrankie et al.  
1996, He and Hubbell 2003). Data from the 1990 census are used in this study. A total of 
220 000 trees (4400 ha-1) of all sizes representing 301 species were identified. Further 
details are in He and Hubbell (2003). In Figure 3 the relative number of species is plotted 
against the relative number of square 156-m2 plots in which they occur. The distribution 
is similar to that of WGHAT and also typical of species rich wet tropical forests. Thirty-
six percent of the species were found in less than 1% of the plots, 50% in less than 2%, 



and 90% in less than 30% of the plots. One species was found in all plots. The number of 
different species in a 156 m2 plot varied from a low of 5 to a high of 52 with a mean and 
median of 30 (Figure 4). We shall refer to this site as BCI. 

[FIGURES 3 AND 4 HERE] 

Sampling designs and sample statistics 

In WGHAT the five 20 m wide survey lines totaling 1560 m in length were 
subdivided into 312 100 m2 rectangular (5 m × 20 m) plots. Simple random sampling 
with sample sizes n = 10, 15,..., 30 plots without replacement was simulated. Accordingly 
between 3.2% and 9.6% of the area was sampled. In BCI the 50 ha area was tessellated 
into 3200, 1250, and 800 square plots with side lengths of 12.5 m, 20 m, and 25 m, 
respectively. Simple random sampling with n = 40, 60,..., 140 plots without replacement 
was simulated.  

Sampling followed by estimation of tree species richness (S) was repeated 2000 
times for each combination of sample and plot size. Estimates of variance were corrected 
for finite population size by a factor 1-fpc with pcf equal to the proportion of the area 
sampled (Cochran, 1977).  

Let SOBS be the number of species encountered in n sample plots. Encountered 
species are labeled by an index i ( )1,..., OBSi S= . The sample data consist of a size 

 binary matrix  with element OBSS ×n δ 1ijδ =  if the ith species occurred in the jth plot 

and zero otherwise.  The number of plots containing the ith species is 
1

n
i ij jδ δ

=
=∑�  and 

the proportion of sample plots with this species is i . For incidence-based estimation of 
richness the incidence vector 

p
( )1, , nf f=f K  with { }#k if kδ= =�  contains all the needed 

information. We have . Simply put, f is indexing the number of species 
encountered in 1, 2,..., n plots (Esty 1982, Starr 1979). Species not encountered in any 
sampling plot are captured by f

1

n
OBS kk

S
=

=∑ f

0, the number of ‘missed’ species.  We have .  0OBSS S f= +
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k f×

The total number of times one of the observed species were encountered in the n 
plots is referred to as , in reference to the ‘total catch’, in animal capture-recapture 
parlance (Burnham and Overton  1978, Chao 1989).  is a design-dependent random 
variable that also depends on the population structure. We have 

. The proportion of the ith species in  is 

catchn

catchn

1 1
ˆ OBSS n

catch i ki k
n δ

= =
= =∑ ∑� catchn

1ˆ
ˆ

n
i ijπ

j
catchn

δ= ∑ 1
ˆ 1OBSS

ii
π

=
≡ with ∑ . We shall denote iπ  as the design and population 

dependent ‘catch’ probability of the ith species. A design-unbiased estimator of the 
sampling variance of SOBS is not available. The distribution of SOBS has been assumed 
Poisson with a mean and a variance equal to SOBS. We propose as an estimator 
of the sampling variance on the grounds that  is the average number of plots 
per unique species in the sample. 

2
OBS catchS n−× 1

/catch OBSn S

Estimators of richness 

Nine incidence-based estimators of richness are evaluated. Only a sketch of the 
estimators is given here. Details are found in the provided references. A software 
program for the estimators has been written in MATHEMATICA® (Wolfram Research 
2005) and is available upon request to the senior author. 

Petersen’s capture-recapture estimator (PET) 

Petersen’s capture-recapture estimator (see Thompson, 1992 page 214 EQ 3) of 
richness is  

(1) 
(2)

(1)
(1) (2)

ˆ
∩

⎡ ⎤
= × ×⎢ ⎥

⎣ ⎦
OBS

PET OBS
OBS

SS E η S
S

 

where  denotes the number of species found only in the first-half of a random split of 
the sample plots,  is the number of species found only in the second half of the  

(1)
OBSS

(2)
OBSS



random split,  is the number of species found in both halves, 
, and E stands for the expectation over random splits (here 1000). 

(1) (2)
OBSS ∩

( )(1) (2) (1)/OBS OBS OBSη S S S= +

The bootstrap estimator (BOOT) 
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⎤⎦

Smith and van Belle (1984) were the first to suggest a bootstrap estimation of 
richness. A bootstrap sample of size n is drawn with replacement from the sample 
records. Let  be the number of unique species in the rth bootstrap sample. The 

expected difference over all possible bootstrap samples is an estimate of 
the bias in the observed richness, and when added to the observed richness it yields the 
bootstrap estimate of richness. Smith and van Belle (1984) also detail the estimator we 
use for the sampling variance of the bootstrap estimate. 

r
BOOTS

⎡ −⎣
r
BOOT OBSE S S

The generalized jackknifed estimator (JKk) 

The generalized jackknifed estimator of richness is a linear combination of 
conventional jackknifed estimators (Sharot 1976). The order of a generalized jackknifed 
estimator (k) defines the linear combination of conventional jackknifed estimators that 
enters into the generalization. The estimator is  

(2) ( ) ( )
0

1ˆ ˆ1
! −

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑

k
j k

JKk j
j

k
S n

jk
j S  

where is the conventional leave j-out jackknifed estimator of richness . 

Burnham and Overton (1978) provided an estimator for the variance of 

ˆ
− jS ( )0

ˆ ≡ OBSS S
ˆ

JKkS  based on the 
assumption of a multinomial distribution of ( )1, , ,o nf f fK and application of the delta-
technique (Kendall and Stuart 1969). 

The CHAO1 and CHAO2 estimators 

Chao (1981) and later Chao and Lee (1992) proposed the following estimator  



(3) 21
1

1 1

ˆ
ˆ ˆ
OBS

CHAO
S fS
C C

γ= + × %  

where 1 1
ˆ 1 / catchC f n= − is an estimate of the missed species, and  γ% is an approximation 

to the coefficient of variation of fj , (j = 1,...., n). Chao and Lee (1992) also suggested the 
alternative in (4) as an improvement over (3)  

(4) 21
2

2 2

ˆ
ˆ ˆ
obs

CHAO
S fS
C C

γ= + × )  

where  , and ( ) 1 1
2 1 2

ˆ 1 2 1catch catchC f f n n− −= − − × − γ)  is a potentially better approximation to 
γ  than γ%. 

1 CHAO2
ˆ ˆandCHAOS S  are both non-linear functions of 1, , nf fK . Hence an estimator 

of their sampling variances can be obtained by applying the same assumptions and 
asymptotic approximations as for the jackknifed variance estimators. Details are in Chao 
and Lee (1992). 

The CHAO3 estimator 

Chao (1989) - in recognizing that 1f  and 2f  are the two most influential 
incidence frequencies for estimating richness - proposed the following estimator which 
we have modified slightly to make it robust against zero-valued frequencies  

(5) 

( )

( )

( )

2*
1

3 *
2

* 1
1 1 2

1 2

* 1
2 1 2

1 2

ˆ
2

1

CHAO OBS

OBS

OBS

f
S S

f
ff S f f

f f

ff S f f
f f

= +

= − − ×
+

⎛ ⎞
= − − × −⎜ ⎟+⎝ ⎠
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A variance estimator is obtained by the same procedure as for the generalized jackknifed 
estimator. 

The Beta-binomial estimator (BBIN) 

The observed incidence vector f can be viewed as a zero-censored outcome of 
draws from a beta-binomial distribution where the probability of success (incidence of a 
species) varies from plot to plot. Accordingly, Dorazio and Royle (2003) proposed a 
maximum likelihood estimate of ≡ −0 OBSf S S under this model. By adding this estimate 
to the observed richness one obtains the BBIN estimator of richness. The estimated 
variance of a BBIN estimate of richness is obtained by the aforementioned delta-
technique. Confidence intervals were derived from the profile-log-likelihood (Lloyd, 
1999).  

The mixed-binomial estimator (MBIN) 

Mao and Colwell (2005) and  Norris and Pollock (1998) viewed the vector f as a 
zero-censored outcome of sampling from a mixture of k binomial distributions where k is 
an unknown parameter to be estimated. As for BBIN, a maximum likelihood estimate of 

 is obtained under this model and added to the observed richness to give 
the MBIN estimate of richness.  Procedures for estimating the sampling variance and 
confidence intervals of a MBIN estimate were similar to those for BBIN. 

≡ −0 OBSf S S

The gamma-mixed Poisson estimator (GPOI) 

A zero-truncated gamma-mixed Poisson distribution (negative binomial) has been 
suggested by several as the generating distribution for f (Chao and Bunge  2002, Chao 
and Lee  1992, Efron and Thisted  1976, Fisher, Corbet, and Williams  1943). The 
probability of ‘missing a species’ ( )0P  is then estimated by method of maximum 
likelihood under this model and  used to inflate the observed richness by dividing it with 
a factor . As for the other model-based estimators, a variance estimator for a GPOI 
estimate was obtained by application of the delta-technique. We imposed a restriction on 
the location parameter of the implied gamma distribution in order to avoid absurdly high 
estimates of richness. A robust estimation procedure proposed by Chao and Bunge (2002) 
was used when either the estimated richness or the estimated variance became aberrant. 

01− P
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The mixed-Poisson estimator (MPOI) 

Here the assumption is that f arises from draws from a mixture of k zero-truncated 
Poisson distributions otherwise the estimation process is in principle the same as for 
MBIN. 

Finite population corrections 

Our richness estimators either explicitly or implicitly assume an infinite area of 
the sampled population of trees. To account for the finite area of the two compartments, 
we reduced all estimates of richness (except the observed) in the following way: 

(6) ˆ ˆ(1 )( )M OBS pc M OBSS S f S S′ = + − −  

where M stands for one of the nine richness estimators (Schreuder, Lin, and Teply 2000, 
Valliant, Dorfman, and Royall, 2000)  . This correction ensures that as  we get 1pcf →
ˆ

M OBSS S′ →  as required.  

Evaluating estimator performance 

A main objective of our study was to assess the performance of estimators of tree 
species richness in the context of a forest inventory with fixed-area plots. Walther and 
Moore (2005) provide a recent review of performance statistics. Our assessment is 
derived from estimates of i) bias (estimated value minus the true value) ii) precision 
(standard error of an estimate), and iii) accuracy (overall discrepancy between an 
estimate and a nominal value). We use three statistics to quantify accuracy: 1) the mean 
absolute difference between an estimate and the true value (Mad), 2) the proportion of 
estimates within 10% of the true value ( )10δ , and 3) the proportion of estimated 95% 

confidence intervals that includes the true value ( )CIp . The estimator with the lowest 
Mad, the highest 10δ , and CIp  closest to 0.95 for a given sampling design would be our 
recommendation to the forest inventory community if the achieved levels of these 
statistics were otherwise acceptable. No absolute threshold can be given for acceptable 
but we surmise that an absolute error in excess of 25% and an estimate with a confidence 
intervals having less than 70% of the nominal coverage would probably be useless as 
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input to a decision making process. We use a loss function (L) in (7) to compute a 
performance score for each estimator (M) across all site specific sample designs: 

(7) ( ) ( )( )10
( )

| site 100 1 0.95
dd C

d D site

MadL M n p p
S

δ
∈

I
⎧ ⎫= × + − + −⎨ ⎬
⎩ ⎭

∑  

where d is a design in the set (D) of all site-specific designs, S is the true richness, dp  is 
the fraction of the site area sampled by design d, and the three accuracy statistics are all 
design specific estimates. Several variants of the above loss function was tried (not 
shown) with next to no consequence on the ranking of estimators. A simple average of 
site-specific rankings in terms of the loss computed from (7) was used as a measure of 
overall performance. 

Plot effects 

Plot size effects will depend on the spatial distribution and size of the trees of 
each species, the sampling design and the spatial lay-out of a plot. In practical inventory 
applications the important design issue is the expected effect of a change in plot size on 
estimates of  and whether the expected effect is statistically significant when allowing 
for sampling errors. We use Hotelling’s multivariate T

S
2 test to assess the significance of 

plot effects across sample size (Rencher, 1995). Specifically, we tested the null 
hypotheses of no difference between the results obtained with 156 m2 and 400 m2 plots 
and between 400 m2 and 625 m2 plots. A follow-up T2 test of plot × sample size 
interactions was done for all significant plot effects. 

RESULTS 

Bias 

Observed richness was, as expected, downward biased (Tables 1 and 2).  For a 
given fraction of the area sampled the bias was two to three times larger in WGHAT than 
in BCI, a reflection of the much higher number of individual trees sampled in BCI. With 
10% of the area sampled in WGHAT the bias was –56% as opposed to –20% in BCI.  It 
will take a sampling of about 18% of the BCI compartment to bring the bias below 15%.  
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The choice of richness estimator is clearly important (Tables 1 and 2). The best estimator 
reduces the observation bias to between –1% and –15% in WGHAT and to between 1% 
and –11% in BCI. Even the worst estimator produced an estimate with less bias than the 
observed richness. 

Estimates of bias varied by more than 40% between the best and the worst 
estimator. Least performing were MPOI, BOOT, and MBIN. The only estimates with a 
positive bias came from CHAO3, BBIN, and GPOI. Results for CHAO2 are not reported; 
they were almost indistinguishable from CHAO1 results. The jackknifed estimates were a 
mixture of first- (23%), second- (53%) and third- (~21%), and fourth-order (3%) 
generalized estimates. 

 The ranking of several estimators in terms of absolute bias varied with sample 
size. In WGHAT the BBIN estimator was best for n ≤ 15 whereas CHAO3 was best for n 
≥ 20. The GPOI estimator consistently ranked second or third.  The performance of 
CHAO1 improved with increased sample size.  In BCI the estimator with the lowest 
average bias was CHAO3 for sample fractions below 3%, and CHAO1 when 3% to 5% 
of the area is sampled.  At higher sample fractions GPOI or JKk were best. 

[TABLES 1 AND 2 HERE] 

Precision 

Estimates of standard error of the richness estimates are in Tables 1 and 2. For 
one group of estimators (OBS, BOOT, and MPOI) the estimated error was 8% or less 
across all designs and sites. Richness estimates from JKk, CHAO3, and BBIN had the 
highest estimates of standard error. PET, CHAO1, MBIN, and GPOI produced site- and 
sample size dependent estimates of error. 

Estimates of error should, ideally, match the actual error observed in repeated 
sampling. For PET the estimates of error were conservative (at least 25% too large) 
whereas estimates from BOOT, JKk, and GPOI appear liberal (estimated errors are at 
least 25% too small). Only error estimates from OBS and CHAO1 were within 25% of 
the empirical error observed in repeated sampling. The reliability of error estimates from 
CHAO3, BBIN, MBIN, and MPOI appears to depend on either site, sample size or both.  
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The proposed estimator of error for the observed richness appears attractive. In 
contrast, an error estimate based on the assumption of a Poisson distribution of the 
number of observed species would underestimate the empirical error by at least 70%. 

Accuracy 

Mean absolute differences between the estimated and the actual tree species 
richness (Mad, Tables 3 and 4) mirrored, by and large, the results on (absolute) bias. 
Again, the lowest values of Mad were obtained with GPOI and CHAO3 in WGHAT and 
with GPOI, CHAO1, and JKk in BCI. Least performing on both sites were OBS, BOOT 
and MPOI. A fluctuating performance was noted for CHAO1 in WGHAT and CHAO3 in 
BCI. The performance of BBIN is best described as erratic. At comparable fractions of 
the area sampled Mad in WGHAT was about two and a half to three times higher than in 
BCI, a difference attributed, as before, to the difference in the number of sample trees. 

[TABLES 3 AND 4 HERE] 

The proportion of the richness estimates that were within 10% of the true value 
varied among estimators, site, and sample design (Tables 3 and 4). If one wish to see 
80% of the estimates within these limits, then no combination of estimator and design 
could meet this standard in WGHAT. In BCI, however, a combination of 156 m2 plots, a 
sample size greater than 120, and the CHAO1 estimator would. For GPOI, PET, and JKk 
the sample size would need to be about three times larger in order to reach the same 
standard. 

Estimated 95% confidence intervals failed in most cases to include the true 
richness (Tables 3 and 4). A coverage rate better than 75% was only reached by four 
estimators (CHAO1 and CHAO3 for n ≥ 25, BBIN for n ≤ 15, and GPOI for n ≤ 20) in 
WGHAT, and by three in BCI (CHAO1 for n = 140 and plot-size 156 m2, CHAO3 for n 
< 100, and GPOI for n  > 120).  

Overall performance ranking 

By combining three statistics of accuracy, and the proportion of area sampled into 
a single indicator of performance we obtained the estimator ranking in Table 5. The 



ranking of nine estimators was very similar across the two sites; the one exception was 
for BBIN.  GPOI was top-ranked, while second and third place was taken by CHAO1 and 
JKk. Bottom ranks were given to MPOI and OBS. 

[TABLE 5 HERE] 

Plot effects 

A larger plot contains, on average, more species than a smaller plot but the 
increase will be less than suggested by the ratio of areas unless the tree species are 
distributed completely at random throughout the study area. This plot-size effect modifies 
the probability of finding a species in a plot, the vector of observed incidences, and 
consequently, the estimate of richness. Plot effects were expected to diminish with 
increasing sample size. In BCI the average number of species in a 156 m2 plot was 30 
(±7). A plot of 400 m2 contained on average 50 (±15) and a 625 m2 plot 65 (±10). Hence, 
the increase in the number of species was only 64% viz. 54% of the increase expected 
under complete spatial randomness of species specific tree locations. Similarly, estimates 
of the probability of finding a species in a 400 m2 plot was as rule less than expected 
from a direct binomial scaling of the probabilities for a 156 m2 plot (Figure 5). From the 
difference between the two probabilities we derived an estimate of the intra-plot species 
correlation (clustering) of 0.14 for the 156 m2 plot.  For 400 m2 plots this correlation was 
close to zero. 

[FIGURE 5 HERE] 

The number of species found in just one or two plots has a disproportionate effect 
on most estimates of species richness. Their numbers declined, as expected, with plot-
size and sample size (Figure 6). Compared to a 400 m2 plot there was an addition of 
about seven species that would have been observed only once in sampling with 156 m2 
plots. The corresponding difference for 625 and 400 m2 plots declined from about four at 
n = 30 to almost zero at n = 140. Trends in the number of species seen only in two plots 
were somewhat similar for n > 30 but otherwise less pronounced. However, when the 
numbers of species found in one or two plots are plotted against the fraction of area 
sampled (Figure 6) they appear to fall on a single line which suggests that the plot effect, 
if it exists, must be similar in both cases. A -test suggest that the effect is not 
significant at the 5% level of significance). 
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[FIGURE 6 HERE] 

Plot effects also depend on the estimator. With BBIN and GPOI the expected 
reduction in bias with an increase in plot size did not materialize. A significant reduction 
in bias of about 10% (P < 0.001) could be achieved with OBS, PET, BOOT, and MPOI 
by increasing plot size from 156 m2 to 400 m2. A further increase to 625 m2  had only a 
smaller (5%) effect (only significant for BOOT estimates). Figure 7 illustrates typical 
plot effects for three of the four estimators with a significant plot effect. Yet, when 
estimates of richness were plotted against the fraction of area sampled they appear to fall 
on a single line which suggests that plot effects are weak or non-existing. 

[FIGURE 7 HERE] 

DISCUSSION 

Estimating the number of tree species in a forest community is a first step towards 
quantifying an important component of forest biodiversity. The statistical estimation 
problem and choice of estimator remains a challenge (Walther and Moore 2005). As we 
saw, estimators differ widely in their estimates and their differences depend on the forest 
community and on sample design. To paraphrase Bunge and Fitzpatrick (1993): “the 
problem is quite resistant to a statistical solution, essentially because no matter how many 
species have been observed one cannot refute the possibility of a large number of rare 
species”. Link (2003) states it this way: “… even with very large samples, the analysts 
will not be able to distinguish among reasonable models of heterogeneity, even though 
these yield quite distinct inferences about the number of species…”. Stark differences 
between estimates from related and similar models (e.g. GPOI, MPOI, BBIN, and MBIN) 
mirror this statement. Nayak (1996) and Starr (1979) call the problem ‘non-standard’ due 
to the dependency of the estimate on the unknown parameter and the data. A negative 
correlation between the estimate and the true value is another statistical anomaly (Starr 
1979). Mao and Colwell (2005) recently demonstrated the essence of the estimation 
challenge: An artificial enriching of real data sets with a few individuals representing rare 
species significantly changed estimates of richness and their confidence intervals. O’Hara 
(2005) echoes these observations. 

Since our study sites had many rare and just a few common tree species we 
cannot a priori expect to obtain very good estimates of tree species richness from a forest 
inventory.  Without a universally best estimator of richness the choice must be based on 



expected performance. We adopted a somewhat conservative approach to gauge the 
performance of richness estimators by combining three statistics of accuracy and sample 
size into an index of loss. These statistics are suggestive only, not ultimate judgments 
(Walter and Moore 2005). Our assumption that an inflated estimate of richness is harmful 
to credibility (Schreuder, Williams, and Reich 1999) is, of course, arguable. Both inflated 
and deflated estimates of tree species richness can lead to complacency in the 
management and protection of forest tree species diversity, albeit for very different 
reasons. 
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Palmer (1990, 1991) confirmed high rates of positive bias in JK1 (26%) and JK2 
(70%) in a mixed hardwood stand in the Duke Forest in North Carolina (U.S.A.). As in 
our study, the bootstrap estimator did not produce any positive bias.  Hellmann and 
Fowler (1999) assessed JK1, JK2, and BOOT in five different forest communities in 
Michigan. Their results are in many ways parallel to ours. While JK1 and JK2 
consistently outperformed BOOT in terms of bias the high variability of their estimates 
and especially those of JK2 generated non-trivial rates of overestimation. Schreuder, 
Williams, and Reich (1999) also assessed the three CHAO estimators. No positive bias 
was reported for sample sizes of 20 to 700 in eleven populations representing two states 
(Missouri and Minnesota) and an assembly of Loblolly pine plantations in the south-
eastern United States. In their study CHAO3 was at par with CHAO1 viz. CHAO2, in 
contrast to the large differences reported here. We surmise that differences in the ratio 

1 /f f  and its distribution are the cause for these discrepancies. In tree species rich wet 
tropical forests (He and Hubbell  2003, Pascal and Pélissier  1996) the ratio 1 / 2f f  is not 
only much higher but also more variable than in sub-tropical and temperate forests 
(Liermann, Steel, Rosing et al. 2004).  

We only studied incidence-based estimators in our assessment. Estimators based 
on extrapolation of either species-area curves or species accumulation curves have a long 
history in applied ecology (Engen, 1978) but have increasingly been criticized for the 
lack of a sample-based framework (Bunge and Fitzpatrick 1993). A species accumulation 
curve derived from a conventional forest inventory will, in most cases, not lend itself to 
extrapolation. Krishnamani, Kumar, and Harte (2004), however, obtained a surprisingly 
realistic estimate of 893 for the number of tree species in the Western Ghats of India from 
just 48 conventional inventory sample plots. A strong relationship between plot 
similarities (absence/presence of a species) and inter-plot distances was exploited. Cao, 
Larsen and White (2004) also used estimators based on plot dissimilarities for estimating 
bird and fish species richness in two regions of the United States of America and found 
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them to perform reasonably well. Condit, Hubbell, Lafrankie et al. (1996), however, 
found that the relationship between dissimilarity and distance to vary across a population.  

Our study reiterated the importance of choosing a richness estimator and a sample 
design (Brose, Martinez, and Williams 2003, Bunge and Fitzpatrick  1993, Colwell, Mao, 
and Chang 2004, Gimaret-Carpentier, Pélissier, Pascal et al. 1998, Keating, Quinn, Ivie et 
al.  1998). Estimators based on a mixture of truncated distributions of the probability of 
species incidence do not seem to justify the added computational burden and complexity 
of estimation (Lindsay and Roeder 1992, Mao and Colwell 2005). At least not if the sole 
purpose is for an estimation of tree species richness. The promising performance of GPOI 
needs corroboration by additional studies since it has not previously been used for the 
purpose of estimating tree species richness, nor has it been widely used elsewhere. The 
runner-up  CHAO1 (Bunge and Fitzpatrick  1993, Bunge, Fitzpatrick, and Handley  
1995, Keating, Quinn, Ivie et al. 1998, Lee S.-M. and Chao  1994, Walther and Martin  
2001) has a solid track record which should make it the estimator of choice until further 
studies corroborate our GPOI results. Petersen’s estimator might be favoured by agencies 
opposed to any risk of an inflated estimate.  

Forest inventories are generally conducted with fixed-area plots. Plot-size and 
shape is generally determined by considerations of cost, logistics, and statistical 
efficiency. It appears that for small to moderate sample sizes the sampling variation in 
GPOI and CHAO1 estimates of tree species richness swamps the importance of plot-size 
and shape (Schreuder, Williams, and Reich 1999, Schreuder, Lin, and Teply 2000). Plot-
size effects are otherwise manifest due to a clustering of tree species (Condit, Hubbell, 
Lafrankie et al. 1996), especially if a fixed number of trees are selected at each sample 
location (Gimaret-Carpentier, Pélissier, Pascal et al.  1998).  

CONCLUSIONS 

In tree species rich forests, with many rare, a few common species, and a weak 
spatial clustering of tree species at small spatial scales, a conventional forest inventory 
with fixed-area plots can produce reasonable incidence-based estimates of tree species 
richness when the estimator is carefully chosen. A gamma-Poisson estimator appears 
most promising but until corroborated by other studies Chao’s 1981 estimator is 
recommended. 
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TABLE 1. Relative bias in estimates of tree species richness for WGHAT. Actual and 
average of estimated relative sampling errors are in parentheses (Actual/Estimated). 
Table entries are in % of the true tree species richness of 93.  

 Sample size  (% Area sampled) 
 10 (3.2) 15 (4.8) 20 (6.4) 25 (8.0) 30 (9.6) 
OBS -75 

(4/4) 
-69 
(4/4) 

-64 
(4/4) 

-60 
(4/4) 

-56 
(4/4) 

PET -46 
(4/11) 

-38 
(4/11) 

-34 
(4/10) 

-29 
(3/9) 

-25 
(3/9) 

BOOT -69 
(5/3) 

-62 
(4/3) 

-57 
(4/3) 

-52 
(3/3) 

-48 
(3/3) 

JKk -49 
(19/11) 

-39 
(20/12) 

-32 
(22/13) 

-25 
(25/14) 

-20 
(24/14) 

CHAO1 -47 
(18/17) 

-36 
(18/18) 

-28 
(17/19) 

-20 
(17/20) 

-12 
(17/21) 

CHAO3 -28 
(39/71) 

-21 
(34/70) 

-15 
(31/64) 

-6 
(35/57) 

-2 
(32/62) 

BBIN -2 
(32/25) 

10 
26/20) 

20 
(24/20) 

34 
(23/22) 

45 
(23/24) 

MBIN -53 
(16/24) 

-42 
(13/36) 

-40 
(13/29) 

-38 
(13/21) 

-34 
(12/18) 

GPOI -10 
(38/26) 

-13 
(23/19) 

-16 
(17/16) 

-17 
(14/14) 

-18 
(12/12) 

MPOI -70 
(5/6) 

-63 
(5/6) 

-57 
(5/5) 

-53 
(5/4) 

-50 
(5/4) 
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TABLE 2. Relative bias of estimates of tree species richness for BCI. Actual and average 
of estimated relative sampling errors are in parentheses (Actual/Estimated). Table entries 
are in % of true tree species richness of 301. 

 Plot 
area 
in 
m2

% Area 
Sampled 

OBS PET BOOT JKk CHAO1 CHAO3 BBIN MBIN GPOI MPOI 

40 156 1.2 -43 
(2/2) 

-27 
(1/3) 

-36 
(3/2) 

-20 
(14/7) 

-21 
(6/6) 

-4 
(14/10) 

87 
(15/15) 

-31 
(14/9) 

4 
(19/7) 

-35 
(5/7) 

60 156 1.9 -37 
(2/1) 

-23 
(1/2) 

-31 
(2/2) 

-17 
(13/7) 

-15 
(5/6) 

1 
(13/9) 

101 
(16/16) 

-31 
(6/6) 

10 
(18/7) 

-31 
(5/6) 

80 156 2.5 -34 
(2/1) 

-21 
(1/2) 

-28 
(2/1) 

-14 
(16/8) 

-12 
(5/6) 

5 
(13/9) 

101 
(8/14) 

-27 
(5/7) 

9 
(15/6) 

-28 
(3/5) 

100 156 3.1 -31 
(1/1) 

-19 
(1/2) 

-26 
(2/1) 

-15 
(6/5) 

-10 
(4/6) 

8 
(12/9) 

100 
(9/15) 

-21 
(6/13) 

10 
(12/6) 

-28 
(2/5) 

120 156 3.8 -29 
(1/1) 

-17 
(1/2) 

-24 
(2/1) 

-9 
(22/9) 

-8 
(4/6) 

12 
(14/10) 

107 
(11/13) 

-21 
(5/8) 

10 
(10/6) 

-26 
(2/4) 

140 156 4.4 -27 
(1/1) 

-16 
(1/2) 

-22 
(2/1) 

-7 
(21/9) 

-6 
(4/6) 

16 
(16/10) 

120 
(37/34) 

-12 
(8/30) 

11 
(9/5) 

-24 
(2/5) 

40 400 3.2 -32 
(2/2) 

-19 
(1/3) 

-26 
(2/2) 

-15 
(10/6) 

-18 
(4/4) 

6 
(14/9) 

76 
(10/13) 

-26 
(6/3) 

-11 
(7/4) 

-26 
(4/6) 

60 400 4.8 -27 
(2/1) 

-16 
(1/2) 

-22 
(2/2) 

-10 
(18/8) 

-14 
(3/4) 

10 
(14/9) 

79 
(8/10) 

-22 
(5/4) 

-9 
(5/4) 

-23 
(3/5) 

80 400 6.4 -24 
(2/1) 

-14 
(1/2) 

-19 
(2/1) 

-12 
(6/5) 

-12 
(4/4) 

13 
(14/9) 

90 
(10/12) 

-17 
(5/8) 

-7 
(6/4) 

-20 
(2/5) 

100 400 8.0 -22 
(2/1) 

-13 
(1/2) 

-18 
(2/1) 

-11 
(6/4) 

-10 
(4/4) 

15 
(14/9) 

92 
(5/13) 

-15 
(6/6) 

-6 
(6/3) 

-19 
(2/5) 

120 400 9.6 -20 
(2/1) 

-11 
(1/2) 

-16 
(2/1) 

-8 
(13/6) 

-9 
(4/3) 

19 
(16/9) 

92 
(7/7) 

-13 
(6/5) 

-5 
(6/3) 

-18 
(2/5) 

140 400 11.2 -19 
(2/1) 

-10 
(1/2) 

-15 
(2/1) 

-6 
(8/5) 

-7 
(4/4) 

20 
(15/11) 

31 
(20/2) 

-13 
(6/9) 

-3 
(6/3) 

-17 
(2/5) 

40 625 5.0 -27 
(2/1) 

-16 
(1/2) 

-22 
(2/2) 

-11 
(13/7) 

-16 
(3/3) 

12 
(14/9) 

63 
(6/10) 

-20 
(7/5) 

-13 
(4/3) 

-23 
(3/6) 

60 625 7.5 -22 
(2/1) 

-13 
(1/2) 

-18 
(2/1) 

-10 
(6/5) 

-12 
(3/3) 

18 
(15/10) 

80 
(7/12) 

-15 
(6/4) 

-9 
(4/3) 

-19 
(2/6) 

80 625 10.0 -20 
(1/1) 

-10 
(1/2) 

-16 
(2/1) 

-5 
(13/7) 

-10 
(3/3) 

21 
(14/11) 

73 
(6/10) 

-13 
(6/6) 

-7 
(3/3) 

-16 
(3/5) 

100 625 12.5 -18 
(1/1) 

-9 
(1/2) 

-14 
(2/1) 

-4 
(11/6) 

-8 
(3/3) 

24 
(13/12) 

77 
(13/8) 

-10 
(6/6) 

-5 
(4/3) 

-16 
(2/5) 

120 625 15.0 -16 
(1/1) 

-8 
(1/1) 

-12 
(1/1) 

-4 
(5/5) 

-6 
(2/3) 

27 
(12/11) 

43 
(24/3) 

-9 
(6/11) 

-3 
(3/3) 

-14 
(2/5) 

140 625 17.5 -15 
(1/1) 

-7 
(1/1) 

-11 
(1/1) 

-3 
(7/5) 

-5 
(2/3) 

27 
(12/12) 

35 
(24/2) 

-7 
(6/13) 

-2 
(3/3) 

-13 
(2/5) 



TABLE 3. Relative mean absolute error of tree species richness estimates for WGHAT. 
Per cent of estimates within 10% of true value ( )10δ and coverage rates of estimated 

confidence intervals ( )CIp are in parentheses ( )10 / CIpδ . 

 Sample size (% Area sampled) 
 10 (3.2) 15 (4.8) 20 (6.4) 25 (8.0) 30 (9.6) 
OBS 75 

(0/0) 
69 
(0/0) 

64 
(0/0) 

60 
(0/0) 

56 
(0/0) 

PET 46 
(2/15) 

38 
(3/21) 

34 
(3/21) 

29 
(5/28) 

25 
(8/34) 

BOOT 69 
(0/0) 

62 
(0/0) 

57 
(0/0) 

52 
(0/0) 

48 
(0/0) 

JKk 50 
(4/15) 

41 
(5/21) 

36 
(8/28) 

31 
(11/37) 

27 
(16/46) 

CHAO1 47 
(4/28) 

37 
(5/43) 

29 
(12/58) 

22 
(21/76) 

17 
(33/86) 

CHAO3 42 
(8/59) 

34 
(12/67) 

28 
(18/73) 

27 
(19/79) 

25 
(23/85) 

BBIN 24 
(28/78) 

21 
(35/79) 

24 
(29/63) 

34 
(15/36) 

45 
(4/13) 

MBIN 56 
(2/14) 

53 
(2/18) 

47 
(2/11) 

41 
(2/9) 

37 
(4/10) 

GPOI 31 
(23/76) 

21 
(28/80) 

20 
(26/78) 

19 
(27/72) 

19 
(24/70) 

MPOI 70 
(0/0) 

63 
(0/0) 

57 
(0/0) 

53 
(0/0) 

50 
(0/0) 
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TABLE 4. Relative mean absolute error of tree species richness estimates for BCI (in per 
cent of 301). Per cent of estimates within 10% of true value ( )10δ and coverage rates of 

estimated 95% confidence intervals ( )CIp are in parentheses ( )10 / CIpδ . 

n  Plot 
area 
in m2

% Area 
Sampled 

OBS PET BOOT JKk CHAO1 CHAO3 BBIN MBIN GPOI MPOI 

40 156 1.2 43 
(0/0) 

27 
(0/0) 

36 
(0/0) 

23 
(11/19) 

21 
(3/12) 

12 
(48/76) 

86 
(0/0) 

32 
(4/4) 

15 
(48/60) 

36 
(0/0) 

60 156 1.9 37 
(0/0) 

23 
(0/0) 

31 
(0/0) 

20 
(10/16) 

15 
(16/32) 

11 
(52/84) 

100 
(0/0) 

31 
(2/0) 

15 
(46/56) 

32 
(0/0) 

80 156 2.5 34 
(0/0) 

21 
(0/0) 

28 
(0/0) 

19 
(12/20) 

12 
(31/47) 

11 
(62/84) 

101 
(0/0) 

27 
(6/6) 

13 
(47/60) 

28 
(0/0) 

100 156 3.1 31 
(0/0) 

19 
(0/0) 

26 
(0/0) 

16 
(12/18) 

10 
(54/66) 

12 
(49/88) 

100 
(0/0) 

23 
(6/6) 

12 
(54/58) 

28 
(0/0) 

120 156 3.8 29 
(0/0) 

17 
(0/0) 

24 
(0/0) 

16 
(27/27) 

8 
(72/74) 

14 
(51/74) 

107 
(0/0) 

21 
(14/12) 

11 
(52/57) 

26 
(0/0) 

140 156 4.4 27 
(0/0) 

16 
(1/0) 

22 
(0/0) 

16 
(30/41) 

6 
(86/90) 

17 
(34/66) 

120 
(0/0) 

20 
(14/12) 

12 
(45/50) 

24 
(0/1) 

40 400 3.2 32 
(0/0) 

19 
(0/0) 

26 
(0/0) 

16 
(15/24) 

18 
(4/3) 

12 
(54/81) 

77 
(0/0) 

26 
(0/2) 

12 
(37/32) 

26 
(0/0) 

60 400 4.8 27 
(0/0) 

16 
(2/0) 

22 
(0/0) 

16 
(19/27) 

14 
(12/3) 

14 
(42/72) 

79 
(0/0) 

22 
(0/0) 

10 
(62/34) 

23 
(0/0) 

80 400 6.4 24 
(0/0) 

14 
(6/0) 

19 
(0/0) 

13 
(33/33) 

12 
(32/19) 

15 
(42/64) 

90 
(0/0) 

17 
(12/12) 

8 
(64/46) 

20 
(0/0) 

100 400 8.0 22 
(0/0) 

13 
(16/0) 

18 
(0/0) 

11 
(36/34) 

10 
(49/20) 

16 
(38/62) 

93 
(0/0) 

14 
(24/24) 

7 
(72/49) 

19 
(0/0) 

120 400 9.6 20 
(0/0) 

11 
(29/1) 

16 
(0/0) 

11 
(48/50) 

9 
(60/38) 

20 
(34/48) 

92 
(0/0) 

13 
(36/36) 

7 
(74/57) 

18 
(0/0) 

140 400 11.2 19 
(0/0) 

10 
(45/1) 

15 
(2/0) 

9 
(57/51) 

7 
(76/50) 

20 
(32/46) 

30 
(10/0) 

15 
(18/18) 

5 
(88/64) 

17 
(0/0) 

40 625 5.0 27 
(0/0) 

16 
(1/0) 

22 
(0/0) 

14 
(26/35) 

16 
(3/1) 

14 
(47/73) 

63 
(0/0) 

20 
(2/2) 

13 
(26/16) 

23 
(0/0) 

60 625 7.5 22 
(0/0) 

13 
(11/0) 

18 
(0/0) 

11 
(42/40) 

12 
(25/4) 

18 
(39/57) 

80 
(0/0) 

15 
(6/6) 

9 
(57/32) 

19 
(0/0) 

80 625 10.0 20 
(0/0) 

11 
(29/0) 

16 
(0/0) 

10 
(52/48) 

10 
(54/14) 

20 
(22/55) 

73 
(0/0) 

13 
(22/22) 

7 
(85/44) 

16 
(2/2) 

100 625 12.5 18 
(0/0) 

9 
(57/0) 

14 
(2/0) 

8 
(72/62) 

8 
(79/33) 

25 
(10/42) 

77 
(0/0) 

11 
(36/38) 

5 
(91/60) 

16 
(3/3) 

120 625 15.0 16 
(0/0) 

8 
(80/2) 

12 
(6/0) 

6 
(91/72) 

6 
(94/52) 

25 
(14/32) 

43 
(0/0) 

13 
(29/29) 

4 
(98/82) 

14 
(6/6) 

140 625 17.5 15 
(0/0) 

7 
(94/4) 

11 
(24/0) 

6 
(85/63)
 

5 
(100/67) 

26 
(11/30) 

35 
(0/0) 

13 
(18/28) 

4 
(100/84) 

13 
(3/4) 

29 
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TABLE 5. Relative loss function scores (normalized to interval [0;1]) and rankings of 
tree species richness estimators (1 = best, 10 = worst).  See EQ 7 and text for details on 
loss function. 

 WGHAT BCI  

 Rel.
loss 

Rank Rel. 
loss 

Rank Overall
Rank 

OBS 1.00 10 0.54 9 10 
PET 0.59 6 0.34 5 5 
BOOT 0.95 8 0.49 7 8 
JKk 0.52 5 0.13 2 4 
CHAO1 0.20 3 0.14 3 2 
CHAO3 0.12 2 0.25 4 3 
BBIN 0.28 4 1.00 10 7 
MBIN 0.78 7 0.37 6 6 
GPOI 0.00 1 0.00 1 1 
MPOI 0.96 9 0.50 8 9 
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FIGURE 1. Relative number of WGHAT tree species (S%) versus relative incidence in 
plots of 100 m2. 

FIGURE 2. Histogram of number of WGHAT tree species (S) in 100 m2 plots. 

FIGURE 3.  Relative number of BCI tree species (S%) versus relative incidence in plots 
of 156 m2. 

FIGURE 4. Histogram of number of BCI tree species (S) in a 156 m2 plot. 

FIGURE 5. Left: Probability of finding a tree species in a 400 m2 plot (p400) plotted 
against the probability of finding it in a 156 m2 plot (p156). Estimates from data are in 
black and estimates obtained by a binomial scaling of results from 156 m2 plots are in 
gray. Right: Corresponding estimates for the 625 m2 versus 400 m2 plots. 

FIGURE 6. Frequencies of tree species found in only one plot (f1) and two plots (f2) 
versus sample size viz. proportion of area sampled (%Area). Plot size: 156 m2 (black), 
400 m2 (medium gray), and 625 m2 (light gray). The interval of plus/minus one standard 
error of an estimate is indicated by a vertical line. 

FIGURE 7. Estimates of tree species richness versus sample size (left column) and 
proportion of area sampled (%Area). Plot size: 156 m2 (black), 400 m2 (medium gray), 
and 625 m2 (light gray). The interval of plus/minus one standard error of an estimate is 
indicated by a vertical line. 
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