
Chapter 24

24.1 Introduction

Terrestrial ecosystems of high latitudes occupy approxi-
mately one-fourth of the Earth’s vegetated surface. Sub-
stantial climatic warming has occurred in many high
latitude areas during the latter half of the 20th Century
(Serreze et al. 2000), and evidence continues to mount
that this warming has been affecting the structure and
function of terrestrial ecosystems in this region (Stow
et al. 2004; Hinzman et al. 2005). It is important to un-
derstand these changes because they may have conse-
quences for the functioning of the climate system, par-
ticularly in the way that (a) radiatively active gases are
exchanged with the atmosphere, (b) water and energy
are exchanged with the atmosphere, and (c) fresh water
is delivered to the Arctic Ocean (Chapin et al. 2000a;
McGuire et al. 2003). The exchange of water and energy
has implications for regional climate that may influence
global climate, while the exchange of radiatively active
gases and the delivery of fresh water to the Arctic Ocean
are processes that could directly influence climate at the
global scale.

Over the past decade the IGBP-GCTE high latitude
transects have become important foci for research on
responses of high latitude terrestrial regions to global
change (Steffen and Shvidenko 1996; McGuire et al.
2002). This network of transects (Fig. 24.1) includes two
in Siberia, the Far East Siberian Transect (FEST) and
the East Siberian Transect (EST); one in Scandinavia
(SCANTRAN/SCANNET), which has been augmented
by carbon storage studies along a transect in Finland;
one in Canada, the Boreal Forest Transect Case Study
(BFTCS); and one in Alaska.

The high latitude transects generally span substantial
temperature gradients (mean annual temperature of 5° to
–15°C) both within and among transects (McGuire et al.
2002). Temperature along each transect co-varies with
precipitation and photosynthetically active radiation.
Disturbance regimes including fire and insects are also
variable among the high latitude transects. For example,
fire is essentially non-existent in much of Scandinavia,
but burns annually an average of approximately 1% of
the boreal forest along the EST (McGuire et al. 2002;

Fig. 24.2). Similarly, land-use and land-cover change also
varies among the high latitude transects (Kurz and Apps
1999; McGuire et al. 2002, 2004).

Each of the transects provides a different perspective
into the responses of high latitude ecosystems to global
change. In this chapter we first summarize how climate,
disturbance regimes, and land cover in high latitudes
have changed during the last several decades. We then
summarize the results of ecological research along these
transects that have contributed towards a richer under-
standing of high latitude terrestrial responses to these
changes. We conclude with a discussion of challenges and
opportunities for integration.

24.2 Recent Changes in Climate, Disturbance
Regimes, and Land Cover

Temperature.  While temperature has changed substan-
tially in high latitudes during recent decades (Serreze
et al. 2000), changes have not been uniform. Warming
has been most pronounced in continental Siberia and in
Alaska, with most of the warming occurring in winter
(December–February) and spring (March–May) (Serreze
et al. 2000; McBean et al. 2005). During the last century,
northern Scandinavia experienced warming during the
1920s and 1930s, cooling from the 1940s until the 1960s,
and warming since the 1970s; this pattern mirrors the glo-
bal mean temperature trend over the last century (IPCC
2001). In recent decades, air temperatures have increased
substantially in western Canada (Serreze et al. 2000).
While eastern Canada generally cooled since the 1970s
(Serreze et al. 2000), the cooling appears to have ceased
since the late 1990s (McBean et al. 2005).

Precipitation.  The increase in the hydrological discharge
of northern Eurasian rivers into the Arctic Ocean over
the last century, as documented by Peterson et al. (2002),
is largely explained by increased moisture transport into
high latitudes (McClelland et al. 2004). Consistent with
this observation, Vaganov et al. (1999) documented in-
creased winter precipitation along the FEST during the
last century. While precipitation has remained stable in
Alaska, several lines of evidence indicate that Alaska is
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experiencing increased drought stress because of in-
creased summer water deficits (Oechel et al. 2000; Bar-
ber et al. 2000). There is also increased variability in cli-
mate in Siberia, and long periods of warm dry weather
have become more frequent.

Permafrost. A wealth of evidence indicates that perma-
frost is warming in the FEST (Hinzman et al. 2005),
Canada (Vitt et al. 2000), Alaska (Fig. 24.3; Romanovsky
and Osterkamp 1997; Osterkamp and Romanovsky 1999;
Hinzman et al. 2005), and Fennoscandia (Christensen
et al. 2004; Luoto et al. 2004). While permafrost warm-
ing is consistent with regional increases in air tempera-
ture, deeper snow cover also plays a roll (Osterkamp and
Romanovsky 1999; Stieglitz et al. 2003). In Alaska, warm-
ing of permafrost may be causing a significant loss of
open water across the landscape, as thawing of perma-
frost connects closed watersheds with groundwater
(Yoshikawa and Hinzman 2003). However, the reduction

Fig. 24.1.
Polar projection vegetation
map indicating the location of
high latitude transects. This
network of transects includes
two in Siberia, the Far East
Siberian Transect (FEST) and
the East Siberian Transect
(EST); one in Scandanvia
(SCANNET), which has been
augmented by carbon storage
studies along a transect in Fin-
land; one in Canada, the Boreal
Forest Transect Case Study
(BFTCS), and one in Alaska

Fig. 24.2. Patterns of historical area burned along each of the high
latitude transects as a function of vegetation distribution (reprinted
with permission from McGuire et al. 2002)
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of open water bodies may also reflect increased evapo-
ration under a warmer and effectively drier climate in
Alaska as the loss of open water has also been observed
in permafrost-free areas (Klein 2005).

Growing Season. Several studies based on remote sens-
ing indicate that growing seasons are changing in high lati-
tudes regions (Dye 2002; McDonald et al. 2004; McGuire
et al. 2004; Smith et al. 2004). These studies identify ear-
lier onset of thaw in both northern North America and
northern Eurasia, but the magnitude depends on the
study. Putting together the trends in the onset of both
thaw and freeze, Smith et al. (2004) indicate that the trend
for longer growing seasons in northern North America
(3 days per decade) is primarily because of later freez-
ing, while the trend in northern Eurasia (1 day per de-
cade) is because the trend for earlier thaw is slightly
greater than the trend for earlier freezing. However, in
the EST Vaganov et al. (1999) found delays in the onset
of the growing season associated with increases in win-
ter precipitation. Data from the Scandinavian transect
also indicate that that growing season changes may be
complex at the regional scale (Callaghan et al. 2004).

Fire Disturbance.  Important changes in land cover that
have occurred in high latitudes include changes associ-
ated with disturbance (e.g., fire, insect outbreaks, timber
harvest, cropland establishment/abandonment, and in-
dustrial activities like oil and gas extraction) and large-

scale changes in the distribution of vegetation (e.g., the
advance of tree line in regions now occupied by tundra).
During the 1970s and 1980s, the area burned annually in
northwest Canada increased substantially (Kurz and
Apps 1999; Stocks et al. 2000, 2003). There is also evi-
dence that fire frequency in Northern Eurasia has in-
creased in recent decades. Analyses of fire frequency data
from Russia suggest a long-term average of annual area
burned of about 10 million ha yr–1 including low-sever-
ity surface fires (Conard and Ivanova 1997; Wirth 2004).
Satellite-based analyses also suggest increased area
burned with an average exceeding 10 million ha yr–1 from
1998 through 2003, with a peak of 22 million ha in 2003
(Soja et al. 2004). After fire, soil temperatures typically
warm and the active layer becomes deeper, but soils cool
again as mosses grow back during succession. However,
severe fires or more frequent fires can lead to the degra-
dation of permafrost, which may result in substantial
mortality of forests.

Insect Disturbance. On average insect infestations an-
nually affect an area almost as large as does fire in the
forests in Canada (Kurz and Apps 1999) and Alaska
(Werner et al. 2006). Since approximately 1920, between
1–2 million ha yr–1 of forests in Canada have annually
experienced insect-induced stand mortality (Kurz and
Apps 1999), while the long-term annual fire area in
Canada averages 2 million ha yr–1 (Stocks et al. 2003).
Large outbreaks seem to occur at intervals of approxi-
mately thirty years. In Russia, the area affected by insect
disturbance is about 2 million ha yr–1 (Shvidenko and
Nilsson 2003), which is less than the area affected by fire.
Similarly, northern Fennoscandia experiences outbreaks
approximately every decade during which thousands of
square kilometers of mountain birch forests are defoli-
ated (Tenow 1996). There is concern that some of the re-
cent large outbreaks that have been observed in Siberia
(Siberian gypsy moth), Canada (Mountain pine beetle),
and Alaska (Spruce bark beetle, Larch sawfly, Eastern
spruce budworm; Werner et al. 2006) are associated with
warm dry weather in the summer. For example, the Si-
berian gypsy moth is estimated to have affected 10 to
11 million ha of forests in the taiga of Siberia in 2001 and
2002, which is much higher than previously observed
rates of infestation. Thus, insect outbreaks that are linked
to climate change appear to be increasing in a number of
areas spanned by the high latitude transects.

Forest Harvest. Annual forest harvest in Canada ap-
proximately doubled from ~0.5 million ha in 1970 to
~1 million ha in 1990 (Kurz and Apps 1999). More dra-
matically, timber harvest in Alaska increased over six-
fold from 1952 to 1992 (McGuire et al. 2004). Recent trends
of forest harvest rates in Canada and Alaska are substan-
tially influenced by economics of the global forest sec-
tor, as much of the harvested wood is exported out of the

Fig. 24.3. Changes in soil temperature at 20 m depth for several
northern sites of the Alaska transect (data courtesy of Tom
Osterkamp; see also Romanovsky and Osterkamp 1997)
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region to markets in Asia and the conterminous United
States. Concern over conservation issues and the collapse
of Asian economies in the 1990s have had substantial
impacts in decreasing forest harvest in Alaska and the
U.S. Pacific northwest during the 1990s. In Russia, forest
harvest between 1950 and 1990 was relatively steady at
about 2 million ha yr–1. The harvested areas were mostly
concentrated in the European North (about two-thirds
of the total) and in the most populated regions of Sibe-
ria. With the breakup of the Soviet Union, forest harvest
during the last 15 years decreased substantially to around
1 million ha yr–1 for the years 2000–2002. This estimate of
recent harvest rates should probably be increased by 15 to
20% because of illegal harvest in the Russian Far East.

Agricultural Land Use. In the prairie provinces of
Canada, there was an estimated net deforestation of
12.5 million ha between 1860 and 1992 (based on Raman-
kutty and Foley 1999). Since 1950, Canadian forests have
had a net gain of 3.0 million ha at the expense of agri-
culture. While this is a small proportion of the total for-
est base (<1%), it is important to recognize that most of
the afforestation has occurred in eastern Canada and
deforestation continues to occur in western Canada. In
Russia, abandonment of arable lands between 1988 and
2001 was approximately 30 million ha. Abandonment is
most pronounced in the zone of the boreal forest because
the low productivity lands were unprofitable in the tran-
sition to a market economy. Recent land-use changes in
Fennoscandia primarily include expansion of some of
the larger towns in the region, but at the cost of the rural
areas where depopulation is at an advanced stage as
32 000 Norwegian northern coastal farms have been
abandoned since 1955 (Eilertsen 2002). Habitat fragmen-
tation as a result of increased infrastructure and trans-
port route development has proceeded rapidly since the
1940s and is expected to accelerate.

Treeline responses. The transects differ in the presence
or absence of barriers to coniferous forest movement
northward into areas occupied by tundra. The Brooks
Range separates boreal forest in interior Alaska from arc-
tic tundra on the north slope of Alaska, and there are
ocean barriers to vegetation shifts in the SCANNET re-
gion. In contrast, geography is not a significant barrier
to treeline migration along the Siberian and Canadian
transects. The replacement of tundra with boreal forest
occurred in earlier warm periods of the Holocene in
northern Eurasia (MacDonald et al. 2000) and western
Canada (Spear 1993). Over the last half century, treeline
advances into tundra have been documented in Russia
(Esper and Schweingruber 2004), Canada (Scott et al.
1987; Lavoie and Payette 1994), and Alaska (Suarez et al.
1999; Lloyd et al. 2003; Lloyd and Fastie 2003). However,
fire and human activities in Russia have moved treeline
to the south (Vlassova 2002). In Fennoscandia, treeline

advanced at some sites during the first half of the
20th Century (Hustich 1958; Kullman 1986), but changed
tree growth form at treeline at other sites (e.g., shifts from
stunted krummholz trees to upright trees) without sub-
stantial changes in position of the tree species’ limit
(Kullman 1995). In mountainous areas of Scandinavia,
several studies documented that elevational treeline has
moved upslope during the last half of the 20th century in
association with increases in temperature (Juntunen et al.
2002). However, in Scandinavia there are other issues
besides climate affecting the position of treeline such as
land use and browsing by reindeer and moose (Callaghan
et al. 2004).

24.3 Responses of Radiatively Active Gases

24.3.1 General Issues

High latitude ecosystems contain approximately 30% of
the world’s vegetation carbon (McGuire et al. 1995) and
about 40% of the world’s soil carbon (Melillo et al. 1995).
Much of the soil carbon in high latitude ecosystems is
highly labile and has accumulated simply because of cold
and/or anaerobic soils conditions. Thus, high latitude
ecosystems could substantially affect atmospheric con-
centrations of CO2 and CH4. Likely changes in the fluxes
of CO2 and CH4 could both enhance warming (positive
feedbacks) and mitigate warming (negative feedbacks)
(Smith and Shugart 1993; Chapin et al. 2000a; Clein et al.
2002; Zhuang et al. 2004). As summarized below, studies
of carbon and methane dynamics along the high lati-
tude transects have provided new insights on how CO2
and CH4 exchange respond to changes in climate and
disturbance.

24.3.2 Responses of CO2 Exchange to Climatic Change

Aerobic vs. Anaerobic Decomposition. Warming could
cause release of carbon as CO2 from aerobic boreal soils,
i.e., soils that are not saturated with water, through en-
hanced decomposition (McGuire et al. 1995, Arneth et al.
2002). In anaerobic boreal soils, warming could affect
carbon storage by altering soil drainage patterns. Al-
though soil drainage may be especially vulnerable to the
response of permafrost to climatic warming, the net ef-
fect on CO2 exchange is not clear because drainage can
either be enhanced or retarded by permafrost degrada-
tion. For example, the release of CO2 from aerobic de-
composition is likely to be enhanced if permafrost warm-
ing results in a drop of the water table (Oechel et al. 1995;
Christensen et al. 1998) or thaws soil in areas of discon-
tinuous permafrost (Goulden et al. 1998). In contrast, CO2
emissions from soils are likely to be reduced if perma-
frost thaws in situations where drainage is impeded and
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decomposition is diminished because of aneorobic con-
ditions (Christensen et al. 1998, 2004) and moss produc-
tion is increased (Turetsky et al. 2000).

Experimental Warming of Aerobic Soils. In general, the
warming of aerobic soils is expected to increase decom-
position in high latitude ecosystems. This warming ef-
fect may be constrained by increases in leaf area index,
which shade the soil surface. For this reason summer soil
temperatures in arctic sites can be higher than those in
the shade of subarctic birch forests (Callaghan et al. 2005).
Although the warming of aerobic soils will tend to in-
crease the release of CO2 from high latitude ecosystems,
the net effect of warming depends on the balance be-
tween production and decomposition. A recent meta-
analysis of experimental warming studies indicates that
an increase in productivity is approximately compensated
by an increase in decomposition rates (Rustad et al. 2001).

Responses to Extension of the Growing Season. Climate
warming is lengthening the growing season throughout
much of the region occupied by high latitude ecosystems
(Dye 2002; McDonald et al. 2004; Smith et al. 2004;
Euskirchen et al. 2006). In temperate forests, annual car-
bon storage is enhanced by approximately 6 g C m–2 for
every day that the growing season is lengthened (Baldocchi
et al. 2001), and modeling analyses suggest that carbon
storage in high latitude ecosystems may have a similar
level of sensitivity to changes in growing season length
(Euskirchen et al. 2006). The start of the growing sea-
son, as defined by photosynthetic activity of the canopy,
is tightly coupled to the thawing of the soil in conifer
stands of the BFTCS in Canada because frozen soil pre-
vents transpiration (Frolking et al. 1999). Eddy covari-
ance studies of Scots pine stands in the EST indicate that
photosynthetic capacity at the beginning of the growing
season is less than expected from relationships of assimi-
lation vs. light and temperature during the peak of the
growing season (Lloyd et al. 2002). One possible cause is
a high respiration cost in needles for restructuring the
photosynthetic apparatus (Shibistova et al. 2002) and for
repairing damage of early season photoinhibition (Ensmin-
ger et al. 2004). Deciduous stands begin net carbon up-
take following leafout, which is also sensitive to the tim-
ing of snowmelt. Studies in Siberia and Alaska indicate
that deciduous forests become net CO2 sinks much later in
the season than coniferous stands, but that the delay is
compensated for by higher assimilation rates and results
in annual carbon balances that are similar between decidu-
ous and coniferous stands (Röser et al. 2002; Lui et al. 2005).

Evidence from Inventory and Remote Sensing Stud-
ies. While site-specific studies do not clearly show
whether experimental warming or lengthening of the
growing season augments carbon storage, analyses of
forest inventory data for Russia suggest that Russian for-

ests are generally sinks for carbon (Schulze et al. 1999,
2002; Shvidenko and Nilsson 2002, 2003). Analyses based
on satellite data suggest that both production and veg-
etation carbon storage have generally been enhanced in
high latitude ecosystems during recent decades (Myneni
et al. 1997, 2001; Randerson et al. 1999; Zhou et al. 2001;
Nemani et al. 2003; Jia et al. 2003), although there are
extensive areas in high latitudes that exhibit decreases
in production (Goetz et al. 2005).

The Role of Soil Nitrogen Cycling. One hypothesis for
the mechanism of increased production is that warming
increases decomposition of soil organic matter to release
nitrogen in forms that can be taken up by plants. Since
production is often limited by plant nitrogen supply in
boreal forests (Van Cleve and Zasada 1976; Van Cleve et al.
1981; Chapin et al. 1986; Vitousek and Howarth 1991;
Schulze et al. 1995; Wirth et al. 2002a), an increase in ni-
trogen availability to plants should increase production.
Several warming experiments and modeling studies have
provided support for this mechanism (Van Cleve et al.
1990; Bonan and Van Cleve 1992; Bergh et al. 1999; Strom-
grem and Linder 2002; Clein et al. 2002). One hypoth-
esis is that the transfer of soil nitrogen released by de-
composition to plants should result in greater carbon
storage in plants because plants have a higher carbon to
nitrogen ratio than soils (Shaver et al. 1992). Whether the
capacity for increased plant growth can offset decompo-
sition losses largely depends on the degree to which ni-
trogen released through enhanced decomposition is
transferred to plants vs. immobilized in soil organic
matter or lost from the terrestrial ecosystems in aquatic
or gaseous pathways (McGuire et al. 1992; Stieglitz et al.
2000). If warming enhances production of high latitude
ecosystems, soil carbon storage could increase if the
transfer of carbon from vegetation to the soil is greater
than the enhancement in decomposition from warming.
If this condition occurs, then the long-term rate of soil
carbon storage depends on whether the carbon that is
transferred to the soil decomposes quickly or slowly
(Hobbie et al. 2000; Clein et al. 2000). Our understand-
ing of soil carbon and nitrogen transformations in re-
sponse to warming is incomplete and is a key gap that
limits our ability to make projections of the long-term
response of soil carbon to warming in high latitude eco-
systems (Clein et al. 2000).

Drought Stress. Warming-induced increases in produc-
tion may not occur if other factors limit production. For
example, forests on coarse-textured soils are among the
most severely nitrogen-limited boreal ecosystems, but are
also frequently subject to drought stress because of low
water retention in the soil and superficial root systems
(Kelliher et al. 1999). Warming has reduced growth in old
white spruce trees growing on south-facing aspects in
interior Alaska because of drought stress (Barber et al.

24.3  ·  Responses of Radiatively Active Gases
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2000), and remote sensing analyses suggest that drought
stress may be affecting a substantial portion of the North
America boreal forest (Goetz et al. 2005). At treeline in
Alaska, the growth of trees located in warm dry sites be-
low the forest margin declined in response to recent
warming, whereas the growth of trees located at treeline,
particularly in wet regions, increased (Lloyd and Fastie
2002). Thus, there appears to be substantial spatial vari-
ability in the response of white spruce growth to recent
warming in Alaska, and studies conducted elsewhere on
other species throughout the boreal forest suggest that
growth responses of warming depend on interactions
between temperature and the timing and amount of pre-
cipitation (Briffa et al. 1998; D’Arrigo and Jacoby 1993;
Jacoby and D’Arrigo 1995; Linderholm et al. 2003).

Winter Decomposition. Warming can also promote the
loss of carbon as CO2 from high latitude terrestrial eco-
systems through higher rates of winter decomposition
and through the increased decomposition of terrestri-
ally derived carbon in aquatic ecosystems. A number of
studies, which have primarily been conducted in the vi-
cinity of the FEST and Alaska transects, have concluded
that winter decomposition represents an important com-
ponent of the annual budget of CO2 exchange between
high latitude ecosystems and the atmosphere (Coyne and
Kelley 1974; Waelbroeck and Louis 1995; Hobbie and
Chapin 1996; Zimov et al. 1993, 1996; Oechel et al. 1997;
Fahnestock et al. 1999; Grogan and Chapin 1999; Shi-
bistova et al. 2002; Michaelson and Ping, 2003). In gen-
eral, winter decomposition is expected to increase with
increases in soil temperature. One particularly interest-
ing hypothesis involves the degree to which the heat of
microbial activity might further enhance decomposition
from high latitude soils (Zimov et al. 1993, 1996). The ni-
trogen released by winter decomposition may be less
accessible to plants than nitrogen released in summer
because of plant dormancy in winter, immobilization of
nitrogen by soil microbes during winter, and loss of ni-
trogen from terrestrial ecosystems in spring runoff.

Terrestrial-Aquatic Linkages. High latitude streams and
lakes can act as conduits for CO2 via the decomposition
of dissolved and particulate carbon derived from terres-
trial ecosystems (Kling et al. 1991). After spring runoff,
concentrations of dissolved and particulate organic car-
bon in high latitude aquatic ecosystems are highly cor-
related with precipitation as water is flushed through the
organic layer (Prokushkin et al. 2005). There is also a sig-
nificant increase in the carbon concentrations of streams
after fire. Therefore, increases in precipitation or in-
creases in the frequency of fire disturbance in high lati-
tudes might enhance delivery of soil organic carbon to
and subsequent decomposition in aquatic ecosystems.
Arctic rivers also deliver a substantial amount of organic
carbon to the Arctic Ocean (Romankevich and Vetrov

2001). A key uncertainty about increases in this flux is
whether this will increase the release of CO2 from imme-
diate decomposition in coastal ecosystems or whether
the carbon will be sequestered in marine sediments.
About half of the carbon entering the Arctic Ocean from
terrestrial ecosystems is from river inputs and about half
from the erosion of coastal soils along the Arctic Ocean.
While some of this carbon may become buried in ocean
sediments, some of this material will likely be immedi-
ately decomposed in coastal Arctic ecosystems. Coastal
erosion has increased in recent decades (Are 1999) asso-
ciated with reduced summer cover of sea ice on the Arc-
tic Ocean. It is expected that erosion of organic matter
from soils along the coast of the Arctic Ocean will in-
crease over the next century if sea ice continues to re-
treat and that this will enhance the CO2 flux to the atmo-
sphere from the Arctic.

24.3.3 Responses of CH4 Exchange to Climatic Change

In general, CH4 emissions of wetlands are expected to
increase dramatically in response to warming (Zhuang
et al. 2004). A study of CH4 emissions from wetlands in
Greenland, Iceland, Scandinavia and Siberia showed that
annual mean emissions were strongly dependent on tem-
perature (Fig. 24.4; Christensen et al. 2003), which indi-
cates that high latitude CH4 emissions could increase in
response to climate warming. Emissions of CH4 will also
depend on changes in the water table. For example, while
the release of CO2 from aerobic decomposition is likely to
be enhanced if permafrost warming results in a drop of
the water table (Oechel et al. 1995; Christensen et al. 1998),
emissions of CH4 are likely to decrease because methano-
genesis is an anaerobic process (Roulet 2000). In contrast,
if the thawing of permafrost results in the expansion of
lakes and wetlands, then releases of CH4 are likely to be en-
hanced (Zimov et al. 1997; Christensen et al. 2004).

Fig. 24.4. The sensitivity of tundra CH4 emissions in Greenland and
Eurasia to soil temperature (reprinted with permission from
Christensen et al. 2003)
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The balance of changes in CO2 exchanges vs. CH4
emissions in terms of their radiative forcing is, however,
complicated and difficult to assess. The current emis-
sions of CH4 from high latitude ecosystems, which are in
the range 20–60 Tg CH4 yr–1 (Zhuang et al. 2004), play a
significant role in the global methane budget. In eastern
Canadian peatlands, the enhanced CH4 emissions asso-
ciated with the creation of wetlands will likely result in a
positive feedback to warming for up to 500 years until
the enhanced storage of carbon in the wetlands (i.e., up-
take of CO2 from the atmosphere) offsets the enhanced
radiative forcing associated with CH4 emissions (Roulet
2000). In the southern end of the EST, recent studies of
wetland trace gas exchange have shown that the radia-
tive forcing of the CH4 emissions are stronger than the
substantial uptake of CO2 (Friborg et al. 2003). For tun-
dra regions of the high latitude transects, the balance of
evidence suggests that tundra is currently a source of
greenhouse warming due to substantial CH4 emissions
(Callaghan et al. 2005; Zhuang et al. 2004) that represent
a radiative forcing effect that is much greater than small
source/sink activity associated with the exchange CO2
(Sitch et al. 2006). It is also likely that this source strength
will increase in the future due to enhanced CH4 emis-
sions regardless of the strength of the carbon sink in tun-
dra regions (Callaghan et al. 2005).

24.3.4 Responses to Changes in Disturbance
and Land Cover

General Issues. A number of regional analyses suggest
that carbon storage in high latitude forests is largely deter-
mined by how stand-age distribution changes at the re-
gional scale. For stand-replacing disturbance, the tempo-
ral course of carbon storage in forests is largely controlled
by wood increment and decomposition of coarse woody
debris. Disturbance is generally characterized by a period
of ecosystem carbon loss, during which production is less
than decomposition, followed by a period of ecosystem
carbon gain once production exceeds decomposition. If
disturbances in high latitude regions become more frequent
or more severe, carbon could be released from some eco-
system carbon pools (Kasischke et al. 1995; Wirth et al.
2002b), although the carbon stored in dead wood initially
increases after disturbance (Shvidenko and Nilsson 2002).

Changes in Fire and Insect Disturbance Regimes. To-
gether, both fire and insect disturbance have likely re-
leased substantial amounts of carbon into the atmosphere
from forests in Canada (Kurz and Apps 1999; Chen et al.
2000; Amiro et al. 2001) and Russia (Shvidenko and
Nilsson 2000a,b; Kajii et al. 2003). The degree to which
increased fire frequency could release carbon from high
latitude ecosystems depends, in part, on fire severity. Fires
in most of the southern Eurasian boreal forest, which is

dominated by Scots pine and Sibierian larch, tend to be
surface fires in which most trees survive because of thick
bark. In contrast, fires in the permafrost zone of far east-
ern Russia (Gmelin’s larch), in Siberian dark taiga for-
ests (spruce, fir, stone pine) and in boreal North America
(mainly spruce), tend to be stand-replacing fires (Wirth
et al. 1999; Shvindenko and Nilsson 2000a; McGuire et al.
2002; Wirth 2004; Csiszar et al. 2004). Analyses of the
effects of climate change projections on fire weather sug-
gest that climate change could increase fire frequency in
Canada (Flannigan et al. 2001; Csiszar et al. 2004). In con-
trast, palaeoecological work in Canada revealed that colder
and wetter periods were associated with higher fire fre-
quencies (Lesieur et al. 2002). Nevertheless, of disturbance
regime responses to climate change, fire is the disturbance
agent that has the greatest potential to quickly release large
amounts of carbon from high latitude regions.

The Influence of Disturbance Severity. Disturbance se-
verity may substantially affect the temporal dynamics of
carbon release and storage of high latitude ecosystems.
For example, severe fires can lead to a complete destruc-
tion of organic soils. In these cases there is a large loss of
up to 60 t C ha–1 CO2 in fire emissions, but the ecosys-
tem could come into positive carbon balance sooner if
post-fire decomposition rates are low and vegetation re-
covery is high. The severity of fire disturbance also could
affect the trajectory of vegetation succession after fire.
Insect disturbance that causes partial or complete stand
mortality leads to immediate post-fire carbon loss be-
cause of lowered production. In stands that have suffered
substantial mortality, subsequent additional loss of car-
bon may occur if stands are then salvage logged. Also,
stands affected by insect disturbance may be more vul-
nerable to fire because tree mortality generally increases
the flammability of forest stands.

Changes in Forest Harvest Regimes. Forests of high lati-
tude regions represent a wood resource of global signifi-
cance. In general, forest harvest and management results
in lower vegetation and soil carbon stocks than equivalent
unmanaged forests. In the Russian Far East, carbon loss
from illegal logging in the transboundary areas (Rosen-
cranz and Scott 1992) results in the export of wood to China
and other Asian countries, but this activity has not offset
the drop in legal commercial logging associated with the
breakup of the Soviet Union. Thus, it is expected that the
change in the degree of forest harvest in the Russian bo-
real forest will result in net carbon storage over the next
few decades unless harvest rates return to previous levels.

Changes in Treeline. Although rapid tree migration rates
of up to 25 km yr–1 (Ritchie and MacDonald 1986) have
been suggested for warming periods in the early Ho-
locene, there are major uncertainties concerning the fu-
ture rate of forest movement and the extent of range ex-

24.3  ·  Responses of Radiatively Active Gases
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pansion that can take place. It is estimated that the po-
tential increase in ecosystem carbon storage by replac-
ing tundra with boreal forest is likely to proceed at a very
slow pace because of inertia associated with the ability
of boreal forests to migrate into regions of arctic tundra
(Starfield and Chapin 1996; Chapin and Starfield 1997;
Lloyd et al. 2003). The replacement of arctic tundra with
boreal forest could increase ecosystem carbon storage
substantially (Smith and Shugart 1993; Betts 2000).

24.4 Responses of Water and Energy Exchange

24.4.1 General Issues

Most of the energy that heats Earth’s atmosphere is first
absorbed by the land surface and then transferred to the
atmosphere. The energy exchange properties of the land
surface therefore have a strong direct influence on cli-
mate. High latitude ecosystems differ from more south-
erly biomes in having a long period of snow cover, when
white surfaces might be expected to reflect incoming ra-
diation (high albedo) and therefore absorb less energy
for transfer to the atmosphere. Observed winter albedo
in the boreal forest varies between 0.11 (conifer stands)
and 0.21 (deciduous stands) (Betts and Ball 1997). This
is much closer to summer albedo (0.08–0.15) than to the
winter albedo of tundra (0.6–0.8), which weather mod-
els had previously assumed to be appropriate for boreal
forests. The incorporation of true boreal albedo into cli-
mate models led to substantial improvements in medium-
range weather forecasting and in climate re-analyses
(Viterbo and Betts 1999). There is substantial spatial vari-
ability in winter albedo within high latitude ecosystems
due to the spatial mosaic of conifer forests, deciduous
forests, non-forested wetlands, burn scars, and tundra
(Chapin et al. 2000a). The latter three have an albedo of
approximately 0.6 when the short-statured vegetation is
snow covered.

During summer, albedo of boreal vegetation is lower
than in winter, with deciduous stands and boreal non-
forested wetlands having approximately twice the albedo
of conifer forests (Chapin et al. 2000a; Chambers and
Chapin 2003). This difference in albedo leads to fluxes
of sensible heat in conifer stands that are 2 to 3 times
those of deciduous stands, whereas the latent energy
fluxes (i.e., evapotranspiration) of deciduous forest
stands in the boreal forest are 1.5 to 1.8 times greater than
those of conifer forest stands (Schulze et al. 1999;
Baldocchi et al. 2000; Chapin et al. 2000a). Because tran-
spiration is tightly linked to photosynthesis, latent heat
exchange tends to be dominated by transpiration in bo-
real forest stands with high productivity (e.g., deciduous
forests). In contrast, evaporation plays a more important
role than transpiration in the latent energy exchange of
forest stands with low productivity (e.g., black spruce and

pine forests), where surface evaporation from mosses or
lichens can account for up to half of total evaporation
(Baldocchi et al. 2000; Kelliher et al. 1999). The substan-
tial sensible heating over conifer stands leads to thermal
convection and may contribute to the frequency of thun-
derstorms and lightning (Dissing and Verbyla 2003),
which plays an important role in the fire regime of the
boreal forest as a source of ignition.

24.4.2 Responses to Changes in Climate,
Disturbance, and Land Cover

Responses to Changing Growing Seasons. Responses
of high-latitude ecosystems to global change could in-
fluence water and energy exchange with the atmosphere
in several ways. Because there are substantial seasonal
and spatial differences in sensible and latent energy ex-
change in high latitude ecosystems, climate warming
could affect regional climate by altering both positive and
negative feedbacks. One positive feedback associated with
climate warming may result from lengthening of the grow-
ing season, which leads to earlier snowmelt and later snow
cover. This effectively reduces annual albedo and should
lead to substantial heating of the atmosphere (Chapin et al.
2005). Besides the extension of the snow-free period, the
extension of ice-free periods on lake surfaces and the
reduction in the area occupied by glaciers and continen-
tal ice sheets may also enhance atmospheric warming.

Responses to Changes in Vegetation. Positive feedbacks
that involve changes in vegetation include more shrubs
in tundra (Sturm et al. 2001; Silapswan et al. 2001), ex-
pansion of boreal forest into regions now occupied by
tundra (Chapin et al. 2005), and replacement of summer-
green conifers (larch) with evergreen conifers (pine;
Kharuk et al. 2005). These changes would lead to sub-
stantial heating of the atmosphere, a response that could
possibly accelerate the replacement of tundra by boreal
forest (Table 24.1; Bonan et al. 1995; McFadden et al. 1998;
Chapin et al. 2000a,b). Studies conducted with general
circulation models indicate that the position of north-
ern treeline has a substantial influence on global climate,
with effects extending to the tropics (Bonan et al. 1992;
Thomas and Rowntree 1992; Foley et al. 1994).
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Responses to Changes in Disturbance Regimes. Dis-
turbance and logging may also affect energy exchange
with the atmosphere. For example, while fire disturbance
often reduces albedo shortly after the fire, it also pro-
vides the opportunity for herbs, shrubs, and eventually
deciduous broadleaf trees to develop, which will gener-
ally raise albedo. Thus, disturbance regimes that increase
the proportion of non-forested lands and deciduous for-
ests could reduce energy absorption and represent a
negative feedback to atmospheric warming (Chapin et al.
2000a). In Siberia, self-replacing pine and larch in light
taiga forests occur on dry upland soils and on perma-
frost, respectively (Furyaev et al. 2001). After these veg-
etation types are disturbed by fire or logging, a some-
times sparse post-fire vegetation and the lack of a de-
ciduous pioneer phase result in a high and sustained pro-
duction of sensible heat (Schulze et al. 1999). Severe fires
in the Russian Far East can cause the collapse of perma-
frost and prevent the recovery of trees, effectively increas-
ing albedo by converting conifer forests into ecosystems
dominated by deciduous herbs and shrubs for hundreds
of years. In general, post-fire deciduous broadleaf stands
have a higher summer albedo (0.14) than do conifer
stands (0.09) which they replace and therefore transfer
less energy to the atmosphere (Chambers et al. 2003), as
described above. Thus, the degree to which the response
of vegetation dynamics to climate warming influences
regional climate depends on the interaction of factors
that may both enhance and mitigate warming.

24.5 Delivery of Freshwater to the Arctic Ocean

24.5.1 General Issues

The delivery of freshwater from high latitude ecosystems
is of special importance because the Arctic Ocean, which
contains only about 1% of the world’s ocean water and
receives about 11% of world river runoff (Forman et al.
2000; Shiklomanov et al. 2000), is the most river-influ-
enced and land-locked of all oceans. Changes in fresh-
water inflow, which currently contribute as much as 10%
to the upper 100 meters of the water column for the en-
tire Arctic Ocean (Barry and Serreze 2000), could alter
salinity and sea ice formation to affect the strength of
the North Atlantic Deep Water Formation (Aagaard and
Carmack 1989; Broecker 1997). Modeling studies suggest
that maintenance of thermohaline circulation is sensi-
tive to fresh-water inputs to the North Atlantic (Manabe
and Stouffer 1995).

High latitude ecosystems play a significant role in the
hydrology of the circumpolar north because they domi-
nate the land-mass that contributes to the delivery of
freshwater to the Arctic Ocean. Over the past 70 years
there has been a 7% increase in the delivery of freshwa-
ter from the major Russian rivers to the Arctic Ocean

(Peterson et al. 2002; Serreze et al. 2003). The analysis of
McClelland et al. (2004) evaluated three mechanisms for
these changes: (1) the construction of dams on the ma-
jor Siberian rivers, (2) the thawing of permafrost, and
(3) an acceleration of the fire regime. Of these possible
explanations, an increase in fire frequency during the
20th century has the greatest potential to influence trends
in runoff. However, the changes in the fire regime can-
not fully explain the magnitude of increase in the delivery
of freshwater to the Arctic Ocean, and therefore it appears
that a poorly detected increase in precipitation may be the
primary cause of the increased discharge. Nevertheless,
a major challenge is to better understand and quantify
the role of disturbance regime dynamics in the discharge
dynamics of freshwater into the Arctic Ocean.

24.6 Summary and Conclusions

While it is clear that changes in high latitude regions have
consequences for the climate system via a number of
possible pathways (Fig. 24.5), we do not completely un-
derstand whether the net effect of changes will enhance
or mitigate warming. Responses of water, energy, and
trace gas exchange may result in either positive or nega-

Fig. 24.5. The response times over which different positive and nega-
tive feedbacks to climate are most pronounced (reprinted with per-
mission from Chapin et al. 2000a)

24.6  ·  Summary and Conclusions
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tive feedbacks to both regional and global warming. Of
particular concern is whether the net response of high
latitude ecosystems could lead to positive feedbacks that
greatly enhance the rate of regional and global warming.
While the responses of carbon storage in high latitude
ecosystems have important implications for the rate of
CO2 accumulation in the atmosphere and international
efforts to stabilize the atmospheric concentration of CO2
(Smith and Shugart 1993; Betts 2000), it is important to
understand how simultaneous changes in other trace gas
exchanges and albedo of high latitude ecosystems also
influence regional and global energy balance. For ex-
ample, the reduction in radiative forcing associated with
enhanced carbon storage from an expansion of the bo-
real forest may be exceeded by the warming effects of
lower albedo (Betts 2000). Also, current responses of fire
regimes to climate change suggest that fire is likely to
increase in frequency and severity in the future, which
has implications for both carbon storage and albedo of
high latitude ecosystems. Increased delivery of freshwa-
ter from the high latitudes to the Arctic Ocean also has
substantial implications for climate if it disrupts ther-
mohaline circulation by weakening the formation of
North Atlantic Deep Water, a response to warming that
could ironically launch the Earth into another ice age
(Manabe and Stouffer 1995). The exchange of water, en-
ergy, and trace gases among high latitude ecosystems, the
atmosphere and the ocean are linked. Therefore, analyses
of the response of high latitude ecosystems to global change
will require an integrated understanding of how the re-
sponse of these linkages will manifest themselves at a spec-
trum of spatial and temporal scales. The studies that have
been conducted within and among the high latitude
transects have laid the foundation for integration of eco-
logical research with climate system research. Further de-
velopment of this integrated understanding is relevant to
identifying the implications for how the responses of high
latitude ecosystems will influence the climate system. These
insights are important for the development of mitigation
and adaptation strategies in high latitude regions and in
regions outside of the high latitudes.
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