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ABSTRACT

Change detection approaches, such as computing change in spectral indices through time, are a mature and
established science, which is increasingly being applied in operational remote sensing programs. The
quality and consistency of the changes detected using these approaches are linked however to the
processing of the imagery which is required to address issues related to image radiometry, normalization,
and computation of the spectral indices. These processing steps are typically undertaken independently
providing opportunities for computation errors, increasing disk storage needs, and consuming processing
time. In this communication we present an approach for combining these processing steps to facilitate a
more streamlined and computationally efficient approach to change detection using Landsat 5 and 7. The
individual elements of the algorithm (raw Landsat-5 or -7, to calibrated Landsat-7, to top-of-atmosphere
reflectance, to Tasselled Cap components) are described, followed by a description and illustration of the
protocol to algebraically combine the elements. Rather than producing intermediate outputs, the
sequentially integrated data processing protocol operates in memory and produces only the desired outputs.
The proposed approach mitigates opportunities for inappropriate scaling between processing steps, the
consistency of which is especially important for threshold based change detection procedures. In addition,
savings in both processing time and disk storage are afforded through the combination of processing steps,
with processing of the time-1 images reduced from 3 to 2 stages and 5 to 2 stages for the time-2 images,
resulting in savings of 50% and 69% in computing times and disk space requirements respectively.

Index Terms: Change detection, Landsat data correction, Tasselled Cap Transformation, Mountain Pine
Beetle red attack, Enhanced Wetness Difference Index
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I. INTRODUCTION
At the broad scale, Landsat data, in particular when processed using change detection approaches, has
successfully been applied in an increasing number of studies to detect and map forest damage attributable
to the mountain pine beetle [1]. A number of change detection techniques have been used to assess
variations in forest condition [2][3][4]. Prominent among the approaches identified as having operational
potential is the use of the Tasselled Cap Transformation (TCT) [5] which has been shown to capture forest
changes due to harvest [6][7], fire [8][9], and insects [1][10][11][12]. Fundamentally, TCT is a guided and
scaled transformation, which converts Landsat bands into channels of known characteristics: soil brightness,
vegetation greenness, and soil/vegetation wetness. Although TCT was initially proposed for agricultural
applications, it has been found to be sensitive to structural characteristics of forest environments [13]. One
key advantage of the TCT method over other statistical methods such as principal component analysis
(PCA) is that TCT is independent of the individual scenes, while PCA is dependent on the scene being
processed [4]. Changes in these TCT components over time can therefore be related to changes in the
vegetation characteristics. In particular, changes in the TCT wetness components have been identified as a
reliable indicator of forest change [10]. Using this approach [1] proposed the Enhanced Wetness Difference
Index (EWDI) which is calculated as the difference between two wetness indices derived from the TCT of
Landsat images acquired over differing dates. As an example, in areas undergoing mountain pine beetle
attack, positive EWDI values indicate areas of reduced wetness, and are therefore indicative of disturbed
forests. Negative EWDI values represent wetness gain, indicative of areas of re-growth. Areas with close-
to-zero EWDI values represent pixels with no observed change.

For the successful application of this technique, both input Landsat images need to be processed using a
series of radiometric corrections and normalizations that reduce the spectral variations that may be related
to different sensor characteristics, atmospheric conditions, and viewing and illuminating geometries [14].
These processing steps are applied to each pixel of the input images. The sequential execution of these
processing steps is time consuming and storage intensive. Moreover, the errors arising from improper
between-step scaling may impact the effectiveness of thresholding based change detection techniques.
EWDI is such a technique, based on thresholding the difference of TCT wetness indices, to identify forest
changes over time. The determination of the optimal threshold value is a critical task. Using inappropriate
threshold values undermines the reliability of change detection and produces erroneous change maps.

In this communication, these separate data processing steps are integrated through linear transformations
(translation, rotation, and scaling). To demonstrate this simplified approach the technique proposed by [1]
is revisited and enhanced with the integrated steps. The following objectives are addressed: 1. to propose an
integrated approach for Landsat data radiometric correction and normalization; 2. to indicate the impact of
the improper scaling on calculating TCT wetness index values; 3. to demonstrate the usefulness of the
proposed approach with respect to mitigating scaling errors and saving computing resources; 4. to serve as
a concise source of information for change detection applications with Landsat imagery. This ready and
tested approach is intended to help users, especially new users, focus on the results of change analyses,
rather than gathering and vetting the appropriate formulas and coefficients from a diverse collection of
scientific literature.
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II. STUDY AREA AND IMAGERY
Demonstration of the proposed technique is over the Merritt Timber Supply Area (TSA), located in the
south-western interior of British Columbia, Canada (Figure 1). Forests in this area are dominated by
lodgepole pine, Douglas-fir, and spruce, with 14% of the forest stands identified as 100% lodgepole pine
from the current field based forest inventory [12]. Four images acquired on two dates were selected for
analysis (Table 1). They were all orthorectified [15]. Since the two images (path 46, rows 25 and 26) were
sequentially collected on the same date, mosaicking was undertaken, using ENVI map tools [16], to create
a seamless image for each date (August 14, 2002 and September 28, 2004).

<<Figure 1 here>>

<<Table 1 here>>
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III. INTEGRATED DATA PROCESSING
As the EWDI is calculated based on the TCT wetness indices derived from two input images [1], any
variations between the inputs that are not indicative of wetness changes should be minimized prior to TCT
transformation. Sources of such variations include different sensor characteristics, atmospheric conditions,
and view and illumination geometries. A series of processing steps is proposed to reduce these possible
sources of variation. The processing steps comprise between-sensor DN conversion, top-of-atmosphere
(TOA) radiance correction, TOA-reflectance correction, and normalization. The between-sensor DN
conversion is used to compensate between-sensor differences in gain, offset, spectral response function,
and signal-to-noise ratio when input images were acquired by different sensors. The TOA-radiance and
reflectance corrections are employed for atmospheric correction when in-situ measurements of atmospheric
and climate conditions at the time of image acquisition are unknown and the imagery was acquired under
clear-sky conditions. Using the gain and offset derived from dark and bright targets, the normalization is
conducted to reduce image discrepancies possibly remaining from differing illumination geometries of the
input imagery that were not fully addressed by the TOA-corrections.

<<Figure 2 here>>

The applicability of the proceeding processing steps is dependent on status of the input images. For
example, if both input images are collected by the same sensor, the step of between-sensor DN conversion
will be dropped. Tailored to the images used in this study where the time-1 input is in orthorectified ETM+
raw DN and the time-2 input is in orthorectified TM raw DN, the data processing, as shown in Figure 2,
incorporates three steps for the time-1 input and five steps for the time-2 input. Normally these steps are
executed sequentially and repeated for each pixel in the input images. However, the sequential execution
consumes both time and disk space, particularly when large images are processed, and may also introduce
possible sources of error due to improper scaling between processing steps. An integrated procedure with
fewer processing steps is accordingly desired. In this section, a method of integration is proposed, which
aggregates the processing steps separately required by the time-1 and -2 input images.

A. Integrated processing for time-1 image

As shown in Figure 2, the three processing steps for the time-1 input image are: TOA-radiance correction,
TOA-reflectance correction, and TCT transformation. Ideally these can be integrated into a single step.
However, considering that the normalization of the time-2 image requires the TOA-reflectance of the time-
1 image, the first two TOA-correction steps are combined instead, leaving the TCT transformation as a
separate step. The two TOA-correction steps are combined as follows: Let X =[x,,...,x,]" be the column vector

representing a pixel of the input image; g'=[g!....g!]" be the column vector representing the gain of radiance
correction; o' =[oll,...,o(1)]T be the column vector representing the offset of radiance correction; and
V=T be the column vector representing the TOA-radiance ofx. Then ' = g'xx +0 fori=1..6. This

equation can be expressed equivalently in the following matrix format:

g 0 .. 0 |x o,

- I 0 v 0| x !

y'=G'Xx+0'= & 2| % (1)
0 0 .. g x o,

Note that all the superscripts used in this derivation and those that follow, are labels indicative of data
processing levels. The TOA-reflectance correction is conducted similarly as follows. Let g* =[g:....¢?]" be the

column vector representing the gain of TOA-reflectance correction; 3 =[y2...,»2]" be the column vector
representing TOA-reflectance of x. Then > =¢> <!, for i=12,...6, which can be represented in the following
matrix format:
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The above TOA-corrections are combined by substituting 3 in (2) with (1), which produces:

;2 — GZJ‘}I — GZ(G‘}‘*’EI)

gl 0 .. Ofl|lg 0 .. 0fnx o, (3)
0 Do 0 0 y .. 0 ,

— &, [ &> R + 0, ]
0 0 .. g2|lo o .. gfx/| |o

Based on the TOA reflectance (5:), TCT wetness index is calculated separately,

wi,=$¢x )}, OF equivalently:

Wi, = &5 =[e s Vs 0T 4)

where wi 1s the TCT wetness index of the pixel ¥ in the time-1 image, and ¢ =[c,....c,]" be the column vector
of the TCT wetness coefficients.

B. Integrated processing for time-2 image

For processing the time-2 image, there are five steps: (i) conversion of TM to ETM+, (i1) TOA-radiance
correction, (iii) TOA-reflectance correction, (iv) normalization, and (v) TCT wetness calculation. The first
three steps are merged into one step, and the last two steps are combined into another. Let =[x,,..,x,]’ be the

column vector representing a pixel in the time-2 image (Landsat TM); g' =[¢!....¢'1" be the column vector
representing the conversion gain from TM to ETM+; ' =[0/.....0!1" be the column vector representing the
conversion offset; 3' =[y/....»'1" be the column vector representing the converted result of x. Then ' =g xx +0
for i=12,..6. This equation can be expressed equivalently as the following matrix format:

g 0 .. 0 x o,
1 1

S oG'E+5 = 0 g, .. 0[nx, NES (5)
0 0 .. gillx 0,

The TOA-corrections are conducted in the same way as in (1) and (2), and combined with (5). The
integrated correction is:
7 =G (G (G +5)+5%) (6)
where 5’ : TOA-radiance correction offset vector;

¢* : TOA-radiance correction gain matrix;

¢*: TOA-reflectance correction gain matrix;

v : corrected result of pixel x.
The last two steps for correcting the time-2 image, normalization and TCT wetness calculation, are
combined on the basis of the TOA-reflectance 5, which is:
wi, =¢"(G*5* +5%) (7)
where s*: normalization correction offset vector;

G*: normalization correction gain matrix;

¢ : TCT coefficient vector;

wi, : TCT wetness index of pixel x.
Now the correction steps for the time-1 image have been reduced from three to two (as given in (3) and (4)),
and for the time-2 image the correction steps have been reduced from five to two (as given in (6) and (7)).
All the coefficients involved can be found in [17 — 22].

C. Calculation of Enhanced Wetness Difference Index (EWDI)
The final step is the calculation of EWDI:
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EWDI = wi, — wi, (8)
where wi, and wi, are the TCT wetness indices derived from the time-1 and -2 images, respectively. They
are calculated with (4) and (7). As a result, large positive EWDI values indicate wetness loss, while small
EWDI values indicate a lack of change in wetness. Large negative EWDI values represent wetness gain.
Areas with large positive values in the EWDI image are likely to be the mountain pine beetle red attack
areas. However, mountain pine beetle red attack is not the only disturbance that causes wetness loss. Other
disturbances, chiefly harvesting and fire, also result in wetness loss. It is critical to separate these
disturbances through masking. A pine mask is applied to constrain analyses to applicable areas; followed
by a thresholding approach to focus upon wetness difference values that can be attributed to mountain pine
beetle red attack (details presented in [1][12]).
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V. RESULTS AND DISCUSSION
The focus of this communication is on the integrated processing protocol, with an application example
dataset used to demonstrate a context and to illustrate the viability of the approach. Results of the
application, such as accuracy assessment, can be found in [1][12]. It should be pointed out that the protocol
is fully functional, as per the step-by-step implementation of the data processing tasks outlined in Figure 2,
providing the intermediate results out of each step are stored with adequate precision (2-byte integer or 4-
byte floating point). Applications based on Landsat data, however, tend to save the intermediate results in
byte. This tendency may be because Landsat data are provided in byte or the storage space is limited. No
matter which one is relevant, saving the intermediate results in byte involves data scaling. Improper scaling
may result in erroneous outcome, which affect subsequent data processing.

<<Table 2 here>>

To demonstrate the impact of such scaling on calculating TCT wetness indices, the standard flow of the
data processing shown in Figure 2 was implemented. The intermediate results out of each step were scaled
to fit the range of [0, 255] and saved on a hard disk. Meanwhile the integrated approach proposed in the
previous section was implemented as well. Contrary to the standard approach, the integrated approach kept
the reduced intermediate results in floating point without scaling. Table 2 shows the migration of an
arbitrarily selected forest pixel spectrum (from the time-2 image) in data flow, where the values in bold
italic were from the integrated approach. The TCT wetness index calculated using the standard approach
was -18, while the corresponding value calculated using the integrated approach was -20.

<<Figure 3 here>>

To complement the above experiment based on a single pixel, the impact of scaling was investigated by
using the entire time-2 dataset. Histograms were produced of the wetness index images derived from both
standard and integrated approaches. As shown in Figure 3, the scaling caused changes in the density
distribution of wetness values are clear. It can be anticipated that such changes will affect subsequent
analysis dependent on TCT wetness values. The altered, possibly inconsistent, wetness index values have
implications to the change detection methods, especially those based on thresholding.

<<Table 3 here>>

The other advantage of the integrated approach lies on saving computing time and storage space. In Table 3
the storage and computation time implications of the standard versus integrated implementation are
provided. Disk space and computing time are based upon a subset taken from the time-2 input (Landsat TM)
resulting in an image size of 3655 pixels and 5495 lines, with six 8-bit channels. This benchmark test is
conducted on a SUN workstation (SUN4U with 4GB memory). The benchmark indicates that when
compared to the standard approach, the integrated approach saves 50% and 69% in computing time and
disk space, respectively. These savings, seemingly insignificant for a few datasets of small sizes, may have
tremendous impact for land cover mapping or change detection applications using many images covering
large areas. Large, national or continental, areas are increasingly mapped and monitored for change over
time [23]. Hundreds of images must be processed to meet the monitoring and mapping objectives of these
large area initiatives. Any savings, in time or disk space, increase the operational feasibility of large area
mapping and monitoring programs. The consistency of information generated enables increased
opportunities for automated analyses and buttresses user confidence in data for analysis and results
subsequently arrived at.
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VI. CONCLUSION
In this study, we reviewed the steps required to process multi-date Landsat images for change detection
purposes. The issues associated with the sequential application of these steps were discussed and an
integrated processing approach was proposed, which reduced the 3-step processing of the time-1 image to 2,
and the 5-step processing of the time-2 image to 2. Benchmark testing indicates that compared to the
standard data flow, the combined data flow can save 50% and 69% in computing time and disk space,
respectively. Moreover, the integrated approach requires fewer data scaling steps with resultant
improvements in numerical consistency, an important factor when relative differences between image dates
are being assessed. The integrated approach is applied to process two-date Landsat-5 TM and -7 ETM+
images for the mapping of mountain pine beetle infestations at a site in south central British Columbia,
Canada.

Though the integrated approach is demonstrated with respect to Landsat datasets, it can be applied to other
remotely sensed datasets by substituting the coefficients in Equation (3), (4), (6), and (7) with the
corresponding values appropriate for other datasets under consideration. There is a wide range of
applications for change detection [3][24], utilizing different spectral indices [7][25][26][27]. The availably
of an integrated processing protocol to mitigate possible data-scaling errors, to reduce disk storage needs,
and to decrease processing times is applicable to a range of user communities and applications areas.
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Tables

Table 1. Landsat image characteristics.

Input Sensor Path Row Time of acquisition Date of acquisition
image (GMT)
Date 1 ETM+ 46 25 18:42:48 2002-08-14
ETM+ 46 26 18:43:12 2002-08-14
Date 2 ™ 46 25 18:38:46 2004-09-28
™ 46 26 18:39:10 2004-09-28

Table 2. Example data values for each processing step based on a forest pixel arbitrarily selected from the time-2 TM
image (with the results from the integrated protocol are in bold italic).

Image ™ ETM+ DN Radiance Reflectance Normalized TCT
channel DN (W/(m? sr um). (%) reflectance (%) wetness
1 42 24 24 23 24 23 -18 =20
2 17 13 13 13 13 13
3 12 12 12 11 12 11
4 69 69 69 69 69 69
5 35 35 35 35 35 35
7 10 12 11 11 12 11

[N

Table 3. Comparison of storage and computing time between standard and combined flow. Computing platform is
SUN4U workstation with 4GB RAM.

Standard Flow Combined Flow
Step  Storage Time Step Storage (kB) Time
(kB) (sec.) (sec.)
1 117,682 157 1 117,682 256
2 117,682 191 2 39,228 164
3 117,682 168
4 117,682 198
5 39,228 130
Totals 5 509,956 844 2 156,910 420
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